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Abstract. In this paper new criteria of semi-commutativity

and results on self-coincidence of an arbitrary point P in the terms

of properties of vectors of n-ary groups are obtained.

It is well known that the most important tool for investigation of n-ary
groups and for development of their applications is the concept of semi-
commutativity. In this connection see for example [1, 2, 3, 4, 5, 6, 7, 8].

In the paper [9] P.A. Alexandrov introduced the concept of self-
coincidence for geometric figures. He used this concept to construct differ-
ent types of groups.

The results by S.A. Rusakov [5] and P.S. Alexandrov [9] allowed to
introduce the concept of self-coincidence of points (of elements) of an
n-ary group G.

Finding of new semi-commutativity criteria of n-ary groups as well
as the study of self-coincidence of some elements of geometric figures
constructed on the basis of an n-ary group is a very topical problem in
our opinion.

The results presented in the paper are connected with the above-
mentioned field of investigation. It should be noted that vector equalities
which are presented in our theorems not only describe semi-commutativity
criteria of an n-ary group G = 〈X, ( ),[−2] 〉 but establish the fact of
self-coincidence of an arbitrary point p ∈ X as well.

Recall that an n-ary group G is said to be semi-abelian if the equality

(x1x
n−1
2 xn) = (xnx

n−1
2 x1)
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holds for any sequence xn1 ∈ Xn. Further for the elements of an n-ary
group G = 〈X, ( ),[−2] 〉 we use the term a point.

A point

Sa(b) = (ab[−2]
2n−4
b a)

is called a point that is symmetric with a point b relatively a point a. The
sequence of k elements of X is called a k-gon of G. A tetragon 〈a, b, c, d〉
of an n-ary group G is called a parallelogram of G if

(ab[−2]
2n−4
b c) = d.

Let’s say that a point p ∈ X self-coincides if there is a sequence of
symmetries of this point relatively other points of X, in the result of which
this point maps into itself.

An ordered pair 〈a, b〉 of points a, b ∈ X is called a directed segment
of an n-ary group G and it is denoted by ab.

If a, b, c, d ∈ X, then the directed segments ab and cd are called to be
equal and they write ab = cd if the tetragon 〈a, c, d, b〉 is a parallelogram
of G.

Let V be the set of all directed segments of an n-ary group G. According
to Proposition 1 in the paper [5] the binary relation = on the set V is a
relation of equivalence and partitions the set V into disjoint classes. The
class generated by the directed segment ab has the following form:

K(ab) = {uv | uv ∈ V , uv = ab}.

A vector
−→
ab of an n-ary group G is a class K(ab), i.e.

−→
ab = K(ab).

Other notations, definitions and results used in the paper can be found
in the following papers [4, 5, 6, 7, 8].

Now let us introduce the obtained results.
Theorem 1. Let a, b, c, p be arbitrary points of X and d ∈ X be a

point such that the tetragon 〈a, b, c, d〉 is a parallelogram of G. An n-ary

group G is semi-abelian if and only if the following equality holds:

−→pa+
−−−−→
Sa(p)b+

−−−−−−→
Sb(Sap))c+

−−−−−−−−−−→
Sc(Sb(Sa(p)))d =

−→
0 . (1)

Proof. 1. Let G be a semi-abelian n-ary group. Let’s establish the validity
of (1).

Taking into account Theorem 8 in [8], Definition 4 in [5], Proposition 1
in [8], Equality 3.28 in [4], and the fact that for any x ∈ X sequences

x[−2]2n−4
x and x[−2]2n−4

x x are neutral 2(n− 1)-sequences the following can
be obtained:
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−→pa+
−−−−→
Sa(p)b =

−−−−−−−−−−−−−−−−−−→
p(a(Sa(p))

[−2] Sa(p) . . .
︸ ︷︷ ︸

2n−4

b) =

=
−−−−−−−−−−−−−−−−−−−−−−−−−−−−−→
p(a(ap[−2]2n−4

p a)[−2] (ap[−2]2n−4
p a) . . .

︸ ︷︷ ︸

2n−4

b) =

=
−−−−−−−−−−−−−−−−−→
p(aa[−2]2n−4

a pa[−2]2n−4
a b) =

−−−−−−−−−−→
p(pa[−2]2n−4

a b). (2)

Taking into account (2) one can obtain

−→pa+
−−−−→
Sa(p)b+

−−−−−−−→
Sb(Sa(p))c =

−−−−−−−−−−→
p(pa[−2]2n−4

a b) +
−−−−−−−−−−−→
Sb(ap

[−2]2n−4
p a)c =

=
−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−→
p((pa[−2]2n−4

a b)(Sb(ap
[−2]2n−4

p a))[−2] Sb(ap
[−2]2n−4

p a) . . .
︸ ︷︷ ︸

2n−4

c) =

= p((a[−2]2n−4
a b)(b(ap[−2]2n−4

p a)[−2] (ap[−2]2n−4
p a) . . .

︸ ︷︷ ︸

2n−4

b)[−2]

−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−→
(b(ap[−2]2n−4

p a)[−2] (ap[−2]2n−4
p a) . . .

︸ ︷︷ ︸

2n−4

b) . . .

︸ ︷︷ ︸

2n−4

c) =

= p((pa[−2]2n−4
a b)(ba[−2]2n−4

a pa[−2]2n−4
a b)[−2]

−−−−−−−−−−−−−−−−−−−−−→
(ba[−2]2n−4

a pa[−2]2n−4
a b) . . .

︸ ︷︷ ︸

2n−4

c) =

=

−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−→

p(pa[−2]2n−4
a bb[−2]

2n−4
b ap[−2]2n−4

p ab[−2]
2n−4
b c) =

−−−−−−−−−→

p(ab[−2]
2n−4
b c). (3)

Now taking into account Definition 4 in [5], Equality 3.28 in [4],
Proposition 1 in [8] we have

Sc(Sb(Sa(p))) = Sc(Sb(ap
[−2]2n−4

p a)) =

= Sc(b(ap
[−2]2n−4

p a)[−2] (ap[−2]2n−4
p a) . . .

︸ ︷︷ ︸

2n−4

b) =

= Sc(ba
[−2]2n−4

a pa[−2]2n−4
a b) =

= (c(ba[−2]2n−4
a pa[−2]2n−4

a b)[−2] (ba[−2]2n−4
a pa[−2]2n−4

a b) . . .
︸ ︷︷ ︸

2n−4

c) =

= (cb[−2]
2n−4
b ap[−2]2n−4

p ab[−2]
2n−4
b c). (4)
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Taking into consideration (3) and (4), the fact that the tetragon 〈a, b, c, d〉
is a parallelogram of G and that G is a semi-abelian group one can obtain

−→pa+
−−−−→
Sa(p)b+

−−−−−−−→
Sb(Sa(p))c+

−−−−−−−−−−→
Sc(Sb(Sa(p)))d =

=

−−−−−−−−−→

p(ab[−2]
2n−4
b c) +

−−−−−−−−−−−−−−−−−−−−−−−−−→

(cb[−2]
2n−4
b ap[−2]2n−4

p ab[−2]
2n−4
b c)d =

= p((ab[−2]
2n−4
b c)(cb[−2]

2n−4
b ap[−2]2n−4

p ab[−2]
2n−4
b c)[−2]

−−−−−−−−−−−−−−−−−−−−−−−−−−−−→

(cb[−2]
2n−4
b ap[−2]2n−4

p ab[−2]
2n−4
b c) . . .

︸ ︷︷ ︸

2n−4

d) =

=

−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−→

p(ab[−2]
2n−4
b cc[−2]2n−4

c ba[−2]2n−4
a pa[−2]2n−4

a bc[−2]2n−4
c d) =

=
−−−−−−−−−−−−−−−−−→
p(pa[−2]2n−4

a bc[−2]2n−4
c d) =

−−−−−−−−−−−−−−−−−−−−−−−−−−→

p(pa[−2]2n−4
a bc[−2]2n−4

c (ab[−2]
2n−4
b c)) =

=

−−−−−−−−−−−−−−−−−−−−−−−−−−→

p(pa[−2]2n−4
a bc[−2]2n−4

c (cb[−2]
2n−4
b a)) = −→pp =

−→
0 .

Thus we proved the equality (1).

2. Now we suppose that (1) is true. We shall prove that G is semi-
abelian.

From (1) we have

−→pa+
−−−−→
Sa(p)b+

−−−−−−−→
Sb(Sa(p))c = −

−−−−−−−−−−→
Sc(Sb(Sa(p)))d

and so
−→pa+

−−−−→
Sa(p)b+

−−−−−−−→
Sb(Sa(p))c =

−−−−−−−−−−→
dSc(Sb(Sa(p))).

Therefore from (3) and (4) we have

−−−−−−−−−→

p(ab[−2]
2n−4
b c) =

−−−−−−−−−−−−−−−−−−−−−−−−−→

d(cb[−2]
2n−4
b ap[−2]2n−4

p ab[−2]
2n−4
b c). (5)

From (5) on the basis of Definition 2 in [5] we conclude that the tetragon

〈p, d, (cb[−2]
2n−4
b ap[−2]2n−4

p ab[−2]
2n−4
b c), (ab[−2]

2n−4
b c)〉

is a parallelogram of G, so the equality

(pd[−2]
2n−4
d (cb[−2]

2n−4
b ap[−2]2n−4

p ab[−2]
2n−4
b c)) = (ab[−2]

2n−4
b c). (6)

holds.
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Since by the hypothesis the tetragon 〈a, b, c, d〉 is a parallelogram of
G the equality

(ab[−2]
2n−4
b c) = d. (7)

is valid.
In view of (7) we obtain from (6) that

(p(ab[−2]
2n−4
b c)[−2] (ab[−2]

2n−4
b c) . . .

︸ ︷︷ ︸

2n−4

(cb[−2]
2n−4
b ap[−2]2n−4

p ab[−2]
2n−4
b c)) =

= (ab[−2]
2n−4
b c)

and hence

(pc[−2]2n−4
c ba[−2]2n−4

a (cb[−2]
2n−4
b ap[−2]2n−4

p ab[−2]
2n−4
b c)) = (ab[−2]

2n−4
b c).

Therefore

(cb[−2]
2n−4
b ap[−2]2n−4

p ab[−2]
2n−4
b c) = (ab[−2]

2n−4
b cp[−2]2n−4

p ab[−2]
2n−4
b c),

so

(cb[−2]
2n−4
b ap[−2]2n−4

p ab[−2]
2n−4
b cc[−2]2n−4

c ba[−2]2n−4
a p) = (ab[−2]

2n−4
b c).

Then

(cb[−2]
2n−4
b a) = (ab[−2]

2n−4
b c). (8)

Since a, b, c are arbitrary points of X then on the basis of Proposition 4
in [7] and (8) we conclude that G is a semi-abelian n-ary group.

The proof is complete.
Theorem 2. Let a, b, c, d, p be arbitrary points of X. An n-ary group

G is semi-abelian if and only if the following equality holds:

−→pa+
−−−−→
Sa(p)b+

−−−−−−−→
Sb(Sa(p))c+

−−−−−−−−−−→
Sc(Sb(Sa(p)))d+

+
−−−−−−−−−−−−−−−−−−−−−−→
Sd(Sc(Sb(Sa(p))))(dc

[−2]2n−4
c b)+

+
−−−−−−−−−−−−−−−−−−−−−−−→
S
(dc[−2]2n−4

c b)
(Sd(Sc(Sb(Sa(p))))) =

−→
0 . (9)

Proof. 1. Let G be a semi-abelian n-ary group. We shall show that
Equality (9) is true. In order to prove this we sequentially summarize
vectors mentioned in (9) taking into account Theorem 8 in [8], Definition
4 in [5], Equality 3.28 in [4], Proposition 1 in [8], and the fact that for
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any x ∈ X the sequences x[−2]2n−4
x x and xx[−2]2n−4

x are neutral 2(n− 1)-
sequences.

So we have

−→pa+
−−−−→
Sa(p)b =

−−−−−−−−−−−−−−−−−→
p(a(Sa(p))

[−2] Sa(p) . . .
︸ ︷︷ ︸

2n−4

) =

=
−−−−−−−−−−−−−−−−−−−−−−−−−−−−−→
p(a(ap[−2]2n−4

p a)[−2] (ap[−2]2n−4
p a)) . . .

︸ ︷︷ ︸

2n−4

b) =

=
−−−−−−−−−−−−−−−−−→
p(aa[−2]2n−4

a pa[−2]2n−4
a b) =

−−−−−−−−−−→
p(pa[−2]2n−4

a b);

−→pa+
−−−−→
Sa(p)b+

−−−−−−−→
Sb(Sa(p))c =

−−−−−−−−−−→
p(pa[−2]2n−4

a b) +
−−−−−−−→
Sb(Sa(p))c =

=
−−−−−−−−−−→
p(pa[−2]2n−4

a b) +
−−−−−−−−−−−−−−−−−−→
(b(Sa(p))

[−2] Sa(p) . . .
︸ ︷︷ ︸

2n−4

b)c =

=
−−−−−−−−−−→
p(pa[−2]2n−4

a b) +
−−−−−−−−−−−−−−−−−→
(ba[−2]2n−4

a pa[−2]2n−4
a b)c =

= p((pa[−2]2n−4
a b)(ba[−2]2n−4

a pa[−2]2n−4
a b)[−2]

−−−−−−−−−−−−−−−−−−−−−→
(ba[−2]2n−4

a pa[−2]2n−4
a b) . . .

︸ ︷︷ ︸

2n−4

c) =

=

−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−→

p(pa[−2]2n−4
a bb[−2]

2n−4
b ap[−2]2n−4

p ab[−2]
2n−4
b c) =

−−−−−−−−−→

p(ab[−2]
2n−4
b c). (10)

Taking into account Definition 4 in [5], Equality 3.28 in [4], and
Proposition 1 in [8] we have

Sc(Sb(Sa(p))) = Sc(Sb(ap
[−2]2n−4

p a)) =

= Sc(b(ap
[−2]2n−4

p a)[−2] (ap[−2]2n−4
p a) . . .

︸ ︷︷ ︸

2n−4

b) =

= Sc(ba
[−2]2n−4

a pa[−2]2n−4
a b) =

= (c(ba[−2]2n−4
a pa[−2]2n−4

a b)[−2] (ba[−2]2n−4
a pa[−2]2n−4

a b) . . .
︸ ︷︷ ︸

2n−4

c) =

= (cb[−2]
2n−4
b ap[−2]2n−4

p ab[−2]
2n−4
b c). (11)

Hence in view of (10) and (11) we obtain
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−→pa+
−−−−→
Sa(p)b+

−−−−−−−→
Sb(Sa(p))c+

−−−−−−−−−−→
Sc(Sb(Sa(p)))d =

=

−−−−−−−−−→

p(ab[−2]
2n−4
b c) +

−−−−−−−−−−−−−−−−−−−−−−−−−→

(cb[−2]
2n−4
b ap[−2]2n−4

p ab[−2]
2n−4
b c)d =

p((ab[−2]
2n−4
b c)(cb[−2]

2n−4
b ap[−2]2n−4

p ab[−2]
2n−4
b c)[−2]

−−−−−−−−−−−−−−−−−−−−−−−−−−−−→

(cb[−2]
2n−4
b ap[−2]2n−4

p ab[−2]
2n−4
b c) . . .

︸ ︷︷ ︸

2n−4

d) =

=

−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−→

p(ab[−2]
2n−4
b cc[−2]2n−4

c ba[−2]2n−4
a pa[−2]2n−4

a bc[−2]2n−4
c d) =

=
−−−−−−−−−−−−−−−−−→
p(pa[−2]2n−4

a bc[−2]2n−4
c d). (12)

Taking into consideration (11) and the previous arguments we have

Sd(Sc(Sb(Sa(p)))) =

= (d(cb[−2]
2n−4
b ap[−2]2n−4

p ab[−2]
2n−4
b c)[−2]

(cb[−2]
2n−4
b ap[−2]2n−4

p ab[−2]
2n−4
b c) . . .

︸ ︷︷ ︸

2n−4

d) =

=
−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−→
(dc[−2]2n−4

c ba[−2]2n−4
a pa[−2]2n−4

a bc[−2]2n−4
c d). (13)

Taking into account (12) and (13) we have

−→pa+
−−−−→
Sa(p)b+

−−−−−−−→
Sb(Sa(p))c+

−−−−−−−−−−→
Sc(Sb(Sa(p)))d+

+
−−−−−−−−−−−−−−−−−−−−−−→
Sd(Sc(Sb(Sa(p))))(dc

[−2]2n−4
c b) =

−−−−−−−−−−−−−−−−−→
p(pa[−2]2n−4

a bc[−2]2n−4
c d)+

+ (dc[−2]2n−4
c ba[−2]2n−4

a pa[−2]2n−4
a bc[−2]2n−4

c d)[−2]

−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−→
(dc[−2]2n−4

c ba[−2]2n−4
a pa[−2]2n−4

a bc[−2]2n−4
c d) . . .

︸ ︷︷ ︸

2n−4

(dc[−2]2n−4
c b)) =

= p(pa[−2]2n−4
a bc[−2]2n−4

c dd[−2]
2n−4
d cb[−2]

2n−4
b ap[−2]2n−4

p
−−−−−−−−−−−−−−−−−−−−−−−→

ab[−2]
2n−4
b cd[−2]

2n−4
d dc[−2]2n−4

c b) = −→pa. (14)

But G is semi-ablelian and so in view of (13) we have

S
(dc[−2]2n−4

c b)
(Sd(Sc(Sb(Sa(p))))) =

= ((dc[−2]2n−4
c b)(dc[−2]2n−4

c ba[−2]2n−4
a pa[−2]2n−4

a bc[−2]2n−4
c d)[−2]
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(dc[−2]2n−4
c ba[−2]2n−4

a pa[−2]2n−4
a bc[−2]2n−4

c d) . . .
︸ ︷︷ ︸

2n−4

(dc[−2]2n−4
c b)) =

= ((bc[−2]2n−4
c d)d[−2]

2n−4
d cb[−2]

2n−4
b ap[−2]2n−4

p ab[−2]
2n−4
b cd[−2]

2n−4
d

dc[−2]2n−4
c b) = (ap[−2]2n−4

p a). (15)

Finally using (14) and (15) we obtain

−→pa+
−−−−→
Sa(p)b+

−−−−−−−→
Sb(Sa(p))c+

+
−−−−−−−−−−→
Sc(Sb(Sa(p)))d+

−−−−−−−−−−−−−−−−−−−−−−→
Sd(Sc(Sb(Sa(p))))(dc

[−2]2n−4
c b)+

+
−−−−−−−−−−−−−−−−−−−−−−−−→
S
(dc[−2]2n−4

c b)
(Sd(Sc(Sb(Sa(p)))))a = −→pa+

−−−−−−−−−−→
(ap[−2]2n−4

p a)a =

=
−−−−−−−−−−−−−−−−−−−−−−−−−−−−→
p(a(ap[−2]2n−4

p )[−2] (ap[−2]2n−4
p a) . . .

︸ ︷︷ ︸

2n−4

a) =

=
−−−−−−−−−−−−−−−−−−→
p(aa[−2]2n−4

a pa[−2]2n−4
a a) = −→pp =

−→
0 .

Consequently we have proved that (9) holds.
2. Suppose that (9) is true. We shall prove that G is a semi-abelian

group.
Since in the previous arguments the property of semi-commutativity

of G was used only in (15) we can conclude that (14) holds.
From (9) we obtain

−→pa+
−−−−−−−−−−−−−−−−−−−−−−−−→
S
(dc[−2]2n−4

c b)
(Sd(Sc(Sb(Sa(p)))))a =

−→
0

so taking into account (13) we have

−→pa+
−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−→
S
(dc[−2]2n−4

c b)
(dc[−2]2n−4

c ba[−2]2n−4
a pa[−2]2n−4

a bc[−2]2n−4
c d)a =

−→
0 ,

so

−→pa+ ((dc[−2]2n−4
c b)(dc[−2]2n−4

c ba[−2]2n−4
a pa[−2]2n−4

a bc[−2]2n−4
c d)[−2]

−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−→
(dc[−2]2n−4

c ba[−2]2n−4
a pa[−2]2n−4

a bc[−2]2n−4
c d) . . .

︸ ︷︷ ︸

2n−4

(dc[−2]2n−4
c b))a =

−→
0 ,

and hence

−→pa+ ((dc[−2]2n−4
c b)d[−2]

2n−4
d cb[−2]

2n−4
b ap[−2]2n−4

p
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−−−−−−−−−−−−−−−−−−−−−−−−→

ab[−2]
2n−4
b cd[−2]

2n−4
d dc[−2]2n−4

c b)a =
−→
0 ,

or

−→pa+

−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−→

((dc[−2]2n−4
c b)d[−2]

2n−4
d cb[−2]

2n−4
b ap[−2]2n−4

p a)a =
−→
0 .

Then taking into consideration Theorem 8 in [8] we have

p(a(dc[−2]2n−4
c bd[−2]

2n−4
d cb[−2]

2n−4
b ap[−2]2n−4

p a)[−2]

−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−→

(dc[−2]2n−4
c bd[−2]

2n−4
d cb[−2]

2n−4
b ap[−2]2n−4

p a) . . .
︸ ︷︷ ︸

2n−4

a) =
−→
0 ,

so

−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−→

p(aa[−2]2n−4
a pa[−2]2n−4

a bc[−2]2n−4
c db[−2]

2n−4
b cd[−2]

2n−4
d a) =

−→
0 ,

and hence

−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−→

p(pa[−2]2n−4
a bc[−2]2n−4

c db[−2]
2n−4
b cd[−2]

2n−4
d a) =

−→
0 .

Since
−→
0 = −→pp holds for any p ∈ X, then

−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−→

p(pa[−2]2n−4
a bc[−2]2n−4

c db[−2]
2n−4
b cd[−2]

2n−4
d a) = −→pp.

From this equality it can be concluded that

(pa[−2]2n−4
a bc[−2]2n−4

c db[−2]
2n−4
b cd[−2]

2n−4
d a) = p.

Let’s multiply both parts of this equality by the expression ap[−2]2n−4
p

from the left, and by the expression a[−2]2n−4
a dc[−2]2n−4

c b from the right.
Then

(ap[−2]2n−4
p pa[−2]2n−4

a (bc[−2]2n−4
c d)b[−2]

2n−4
b cd[−2]

2n−4
d aa[−2]2n−4

a

dc[−2]2n−4
c b) = (ap[−2]2n−4

p pa[−2]2n−4
a dc[−2]2n−4

c b).

Hence taking into account the neutrality of the sequences x[−2]2n−4
x x and

xx[−2]2n−4
x for any x ∈ X we obtain

(bc[−2]2n−4
c d) = (dc[−2]2n−4

c b). (16)
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Taking into consideration the arbitrariness of points b, c, d ∈ X on the
basis of Proposition 4 in [7] and (16) we conclude that G is a semi-abelian
n-ary group.

The proof is complete.
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