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ABSTRACT. Let G be a group, let S be a subgroup with
infinite index in G and let FsG be a certain ZsG-module. In this
paper, using the cohomological invariant E(G, S, FsG) or simply
E(G,S) (defined in [2]), we analyze some results about splittings of
group G over a commensurable with S subgroup which are related
with the algebraic obstruction “sing(.S)" defined by Kropholler and
Roller ([8]. We conclude that (G, S) can substitute the obstruction
“sing~(5)" in more general way. We also analyze splittings of groups
in the case, when G and S satisfy certain duality conditions.

Introduction

Let (G, S) be a group pair, where G is a group and S is a subgroup of G.
Consider the power set PG of G and the set FG of the finite subsets of G.
Under boolean addition “+”, PG is an addtive group and has a natural
structure of left ZoG-module. It is easy to see that PG ~ C’oind{Gl}Zg
(denoted by ZG) and FG =~ Ind?l}Zg ~ ZsG. Let FsG:={B C G| B C
F.S for some finite subset F' of G }. Clearly, FsG is a ZoG-submodule
of PG. Consider the ZsG-module Indgm = ZsG ®y,5 Z2S with the
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natural G-action of the induced module (g.(g1 ® m) = gg1 ® m). It is true
that the modules ZoG ®7,5 7S and FsG are ZoG-isomorphic.

Let resg]_-SG : HY(G; FsG) — H'(S; FsG) be the restriction map, we
denote it simply by res§. When [G : S] = oo, we can define E(G, S) :=
1 + dimg, Ker(res§).

As we have stated in [1], E(G, S) is an algebraic invariant of the cate-
gory C which objects are the group pairs (G, S) with [G : S] = oo, and
which morphisms are maps ¢ : ((G,S), FsG)) — ((L, R), FsG)) consist-
ing of a homomorphism « : G — L with «(S) C R and a homomorphism
¢ : FsG — FsG such that ¢(a(g).x) = g.¢(x) for all x € FsG.

Some properties of E(G, S) and its relation to the invariant end &(G, S)
defined by Kropholler and Roller in [9] were studied in [2] and [3].

Now, suppose that H'(G; FsG) ~ Zs with generator u. Then the
“obstruction" sing(.S) is defined by sing(S) := res§ (u) (see [8]). When
G and S are finitely generated and H'(G; FsG) ~ Zs, there is necessary
and (under some additional hypotheses) sufficient condition for G to split
over a commensurable with S subgroup. This condition is that sing(.S)
is zero ([8]).

The purpose of this paper is to analyze some results about splittings of
a group G over a commensurable with S subgroup obtained, via sing.(.5),
by Kropholler and Roller (given in [8]), in terms of the invariant E(G, S).
We show that F (G, S) can replace, under less hypotheses, the obstruction
sing(.S). Initially we recall some definitions and results.

1. Some results about splittings of groups

Definition 1. (i) Let the groups H and K be given by presentations
H =< ger(H);rel(H) >, K =< ger(K);rel(K) >, where ger denotes a
set generators and rel a set of defining relations for each group. Suppose
that S € H andT C K are subgroups with a given isomorphism 6 : S = T.
Then, the free product H xg K, of H and K with amalgamated subgroup
S ~ T, is given by H xg K =< ger(H),ger(K);rel(H),rel(K),s =
0(s),Vs € S >.

(ii) Let H be a group, let S and T be subgroups of H with a given iso-
morphism o : S — T. The HNN-group (or HNN extension) over base
group H, with respect to o : S ~ T and stable letter p, is given by
Hxg, =< ger(H),p;rel(H),psp~! = o(s),Vs € S > .

Definition 2. A group G splits over a subgroup S if either G is a HNN-
group Hxg o for some subgroup H containing S and some monomorphism
o from S to H, or G is an amalgamated free product H xg K with H #
S~T#K.
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Definition 3 ([11]). Let G be a group and let PG be the power set of G.
Consider the following submodules of PG: FG which consists of the finite
subsets of G and QG :={A € PG : Vg € G,A+gA € FG}. The number
of ends of G is defined by e(G) := dimgz, (QG/FG) = dimg, (PG/FG)®.

Example 1. (a) We have G = Z + Z = Z *1y Z, and e(Z * Z) = oc;
(b) Zo*Zo =Zo *(1} Zo, and e(Zg * Zg) = 2.

(6)Z = {1}xq1y, g =< {1},p,psp~" = 5,¥s € {1} >=<p>, and ¢(Z) =
2.

Remark 1. It is known that e(G) can take only the values 0, 1,2 or co
([11], p.176). So, if e(G) > 2, then e(G) = 2 or oo.

Many important results about splittings of groups, involving the clas-
sical end e(G), were proved in [12] and [13] by Stallings. In the following
result (see [13]), Stallings gave a complete characterization for finitely
generated groups which split over some finite subgroup.

Theorem 1. If G is a finitely generated group, then e(G) > 2 if and only
if G splits over a finite subgroup. []

We note that e(Z @& Z) = 1 and so Z & Z does not split over a finite
subgroup, but Z ®Z splits over a infinite subgroup since Z ®Z= (a) ® (b)=
(a,bya.b=b.a) = {a,b;b~ .a.b=a(a)) = Hxy, iq = “Zxz, ia" is a HNN-
group, where H = (a) ~ 7Z, b is the stable letter, S = T = H and
oc=1d:5—=1T.

The classical end e(G) was generalized for pairs of groups (G, S) by
Houghton in [7] and Scott (using another terminology) in [10]. Following
the terminology from Scott, the number of ends of the pair (G, .S) is given
by e(G, S) := dimg,(P(G/S)/F(G/S9))C.

Remark 2. Scott in [10] has proved many results about splittings of
groups. He tried to generalize Theorem 1, due to Stallings, for groups
which split over infinite subgroups. He showed that “If G splits over a
subgroup S, then e(G,.S) > 2" (see [10], Lemma 1.8). The converse of this
result is false in general. In fact, Scott tried to prove the following result:
“e(G,S) > 2 if and only if G splits over some finite extension of S," but
this is also false in general. The main result obtained by Scott was:

Theorem 2 ([10], Theorem 4.1). If G and S are finitely generated groups
and for any g € G — S there is a subgroup Gy of finite index in G such
that G contains S but not g, then e(G,S) > 2 if and only if G has a
subgroup T of finite index in G such that T' contains S and T splits over
S. O
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In [8], Kropholler and Roller studied the splitting of a group G over a
commensurable with S subgroup which we will see in the next section.
Here we recall the definition of commensurability.

Definition 4. Two subgroups S and T of a group G are said to be
commensurable if and only if [S: SNT| < oo and [T : SNT| < cc.

Example 2. It is clear that if S is a subgroup of T" with [T : S] < oo,
then 7' is commensurable with S.

2. The obstruction singg(S) and E(G,S)

In this section we analyze some results obtained by Kropholler and Roller
in [8], about the obstruction sing(.S), under the point of view of the
invariant E(G, S).

We recall that sing;(S) was defined when HY(G; FsG) ~ Zy and we
observe that H'(G; FsG) ~ Zs is equivalent to é(G, S) = 2, where &(G, S)
denotes the invariant end defined by Kropholler and Roller in [9], which
is also a generalization for pairs of groups (G, S) of the classical invariant
end e(G). In fact, é(G,S) = 1+ dimg, HY(G; FsG) if [G : S] = oo ([9),
Lemma 1.2).

Moreover, we can easily verify that sing;(S) = 0 if and only if
Ker resg # 0 and we have:

Lemma 1. If (G, S) is a group pair with HY(G; FsG) ~ Zs, then
(i) singg(9) =0 & E(G,S) = 2,

(ii) singg(S) # 0« E(G,S) = 1.

Proof. We have [G : S] = oo since H'(G; FsG) ~ Zs, and E(G,S) =
1 + dim Ker resg. Then, .

(i) sing(S) = 0 < Kerres§ = HY(G,FsG) ~ 7y & E(G,S) = 2.

(i) sing;(9) # 0 & Kerres§ = 0 & E(G,S) = 1. O

The following result presents a necessary condition for G to split over
a commensurable with S subgroup, which was proved in [8], and that can
be adapted to the invariant F(G, S), by means of the last lemma.

Proposition 1 ([8], Lemma 2.4). Let (G, S) be a group pair with finitely
generated S and G. Suppose that Hl(g;st) ~ Zo. If G splits over a
commensurable with S subgroup, then E(G,S) = 2. O

Motivated by this fact and considering the invariant E(G, S) defined
without the restriction H @G, FsG) ~ Zs, we believed that it is possible,
through the invariant E(G, S), to extend the result of the last proposition,



M. G. C. ANDRADE, E. L. C. FANTI 5

removing the assumption H'(G, FsG) ~ Zs. In fact, this is possible (see
Theorem 3 bellow), and the proof is similar to that given in [8], uses
the following lemmas, which proofs have been adapted to the invariant,
without the use of the hypothesis H(G, FsG) ~ Zs.

Lemma 2. Let (G,S) be a group pair with finitely generated S and G.
The following conditions are equivalent:
(i) E(G,S) =2

(ii) There exists [B] = B+ FsG € (;__Dsf;)G (i.e., B+gB € FsG,¥g € G)
such that [B] # [0],[B] # [G] and SB = B. O

Proof. Let F =S Zs be a ZoG projective resolution of Zo. Then F' — Zo
is a Z9S projective resolution of Zs, since ZoG is a free ZsS-module.
Consider the exact sequence

PG
0 at .pag 0.
s FsG

We have the following commutative diagram of chain complexes with
exact rows:

P
0 — Homg (F, FsG) — Homg (F, PG) — Homg(F, e
FsG

| ' ro

0 — Homg(F, FsG) — Homg(F, PG) — Homg(F, ——
FsG

Hence, mapping the functor H*(—), and recalling the definition of coho-
mology group, we have the following commutative diagram with exact
rows:

)—0

) —=0.

P

0= HO(G; FsG) = HO(G; PG) = HO(G; 5 o2) = HY(G: FoG) = -

S
i \Lz ¢j iresg
0 0 og. LG\ 2
0= H°(S; FsG)— H°(S; PG) = H"(S; —) = H'(S; FsG) = - - -
FsG

We have in (i) and (i) that [G : S] = oo, and so H(G;FsG) =
(Ind$ PS)¢ = 0. By Shapiro’s lemma (PG)“ ~ H%(G; PG) ~ Zy and
H(G; PG) = 0. So we obtain:

P
(PG)0 o (L) 2 HY (G FoG) ——0

. - G
i l] J/TGSS

0 (@) (PO)* = (£ 0)° 2 HY(S F5G) =

0
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Suppose now that (i) is true. If E(G,S) = 1+ dim Kerres§ > 2, there

exists u € H'(G; FsG), u # 0 such that resg u = 0. Since 9 is surjective,
P

there exists [By] € (}_—%)G such that u = §[By|, with [By] ¢ Im 8 =
S

{[0], [G]} since §[By] # 0 and Im 8 = Kerd. Using the commutativity

of the diagram, we obtain p(j[By]) = (res§ o6)[By] = res§ u = 0. Hence

[Bo] = j[Bo] € Kerp = Ima, and therefore there exists B € (PG)°

such that [B] = a(B) = [By]. So we have SB = B, [B] € (]]__D—C;)G and
S

[B] & {[0], [G]} (since [B] = [By]), which proves (ii).

P
Conversely, assuming (ii), consider [B] € (%)G such that [B] #
S

0], [B] # [G] and SB = B. Thus [B] € Im3 = Kerd and therefore
u:= §([B]) # 0, with B € (PG)®. By the commutativity of the diagram
we obtain res§ u = res§ (4[B]) = (poj)([B]) = p([B]) = p(a(B)) = 0.
Therefore, Kerres§ # 0 and so E(G, S) > 2. O

Lemma 3. Let S and T be subgroups of G. If T' is commensurable with
S then E(G,S) > 2 if and only if E(G,T) > 2.

Proof. Initially we prove that, if H and K are subgroups of G, with K <
H <G and [H: K] =n < oo, then E(G,K) > 2 implies E(G, H) > 2.

In fact, if E(G, K) > 2, then there exists, by Lemma 2, B C G such
that B+ gB € FxG,Vg € G,[B] # [0],[B] # |G] and KB = B. Since
[H : K] < oo we have that FxG = FgG. Thus

B+gB € FyG,Vg €G. (1)

Let Hy = {h1,...,h,} be a set of representatives for the left cosets hK,
h € H. We have

B+ HyB B+ (mMBU...Uh,B) C(B+hB)U...U(B+ h,B)
FIHU...UF,H, [with F; € FG,i=1,...,n by (1)]

(M U...UF,)H

N

Therefore B+ HyB € FgG and so [B] = [HoB]. Consider By := HyB.
Hence:
(a) Bo + 9By € FyG,Vg € G, because

By+gBy = HyB+gHyB = (HyB+ B)+ (B+gHyB)
= (HopB+B)+ B+g(hiBU...Uh,B)
= (HyB+B)+ B+ (ghqBU...Ugh,B)
C (B+HyB)+ (B+ghiB)+ ...+ (B+ ghy,B) € FuG,

where the last affirmation is consequence of (1).
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(b) [Bo] # [0] and [By] # [G] since [By] = [B] and [B] # [0] and [G].
(c) HBy = By since By C HBy and, using that HHy C H (because
Hy ¢ H), H = hKU...UhoK = HoK, KB = B and By = HyB,
we obtain HBy = H(HoB) C HB = HyKB = HyB = By. Hence By
satisfies Lemma 2(ii) for the group pair (G, H) and so E(G, H) > 2.
Now, if T' is a commensurable with S subgroup of G, then E(G, S) <
E(G,SNT) and E(G,T) < E(G,SNT) (2], Proposition 7). Hence
E(G,S) > 2 implies E(G,S NT) > 2 and so, by the initially proved
statement, we have E(G,T) > 2. Similarly, E(G,T) > 2 implies E(G, S) >
2. ]

Theorem 3. Let (G, S) be a group pair with finitely generated S and G
and [G, S] = oo. If G splits over a commensurable with S subgroup, then
E(G,S) > 2. Or equivalently, if E(G,S) =1, then G does not split over
any commensurable with S subgroup.

Proof. Suppose that G splits over a commensurable with .S subgroup 7.
Then, similarly to the proof of Lemma 2.4 in [8], we obtain a set B C G
satisfying the condition (ii) of Lemma 2, and so E(G,T) > 2. O]

As a consequence of the Theorem, we have the following result in the
duality theory. For concepts and results of duality theory see [4], [5] and

[6].

Corollary 1. If either (G, S) is a duality pair of dimension n over Zo (or
simply a D™-pair) with [G : S| = oo, or G is a duality group of dimension
n (D™-group) and the homological dimension hdS < n — 2, then G does
not split over any commensurable with S subgroup.

Proof. This follows from the former theorem and the fact that, under the
above hypotheses, E(G,S) =1 (see [2]|, Proposition 8). O

Example 3. Consider G =< a > * <b>~ZxZ and S =< aba~'b~! >.
We know that (G, S) is a PD?pair. So, by the previous corollary, G does
not split over any commensurable with S subgroup. In particular, G does
not split over any finite extension of S.

Remark 3. Theorem 3 can be considered as an extension of the Krophol-
ler-Roller’s result since, in the former example, H'(G; FsG) has infinite
dimension (or equivalently, é(G,.S) = co) and therefore the obstruction
sing(.9) is not defined. Moreover, if G and S are as in Example 3, then G
does not split over any commensurable with S subgroup and the invariant
end e(G, S) = oo > 2. This example confirms that the Scott’s initial idea
(see Remark 2) is not really true.
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Now, consider a group G with subgroups S and K satisfying the
following conditions:
(a) G is a finitely generated group of cohomological dimension cdG < n;
(b) S is a PD" " -subgroup of G;
(c) HYG; FsG) =~ Zs;
(d) cdK < (n—1) for any subgroup K of G such that (G : K) = co.
In [8], §3, the authors have proved the following result considering these
hypotheses:

Proposition 2 (|8], Lemma 3.2). Suppose that [Ng(S) : S] = oo, where
N¢a(S) denotes the normaliser of S in G. Then G splits over a commen-
surable with S subgroup if and only if, the obstruction singg(S) =0. O

We hoped to generalize the last proposition, removing the hypothesis
(c) and replacing the condition sing,(S) = 0 by E(G,S) > 2. However,
we prove (see next theorem ) that if [Ng(S) : S] = oo, then the hypothesis
(c) is a consequence of the others and so can not be removed. We also
observe that hypothesis (b) can be replaced by (b’): S is a D"~ !-subgroup
of G. So we need the following lemma which proof is similar to the one of
Lemma 3.1 in [8].

Lemma 4. Let (G,S) be a group pair satisfying the conditions (a), (b’)
and (d). If [Ng(S) : S] = oo then

(i) [G: Ng(S)] < o0, and

(ii) Ng(S)/S has an infinite cyclic subgroup of finite index. O

Now, we can prove the mentioned result.

Theorem 4. Let (G, S) be a group pair satisfying the conditions (a), (b”)
and (d). Let C' be the dualizing module of S. If [Ng(S) : S] = oo then
G is a D"-group with dualizing module C' such that ResgC’ ~ C" and
HY(G; FsG) ~ Zs.

Proof. Under the above hypotheses we have, by the previous lemma, that
N¢(S)/S has a subgroup L/S ~ Z with finite index such that [G : L] < oco.
Consider the short exact sequence 0 — S — L — L/S — 0. Since S is a
D" !_group with dualizing module ¢’ and L/S is a PD'-group, then L is
a D"-group with dualizing module H"(L;ZoL) ~ Zs @ C' ~ C’ (as ZsL-
modules) ([4], Theorem 9.10). Hence, using that G' does not have Z-torsion
(since edG < n) and [G : L] < oo, we conclude that (see [4], Theorem
9.9) G is a D"-group with dualizing module C' = H"(G;Z2G) with
Res$C ~ C' (as ZoL-modules). Thus S is a D" !-group with dualizing
module C’ ~ ResgC , where C' is the dualizing module of G. Finally, using
duality and Shapiro’s lemma, we have H'(G; FsG) ~ Zs. O
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In [8], §5, under the hypothesis that G is a PD™-group and S is a
P D" !-subgroup, the authors proved the following fact:

Theorem 5 ([8], Theorem A). Let G be a PD"-group and S a PD" -
subgroup. Then G splits over a commensurable with S subgroup if and
only if sing,(S) = 0. O

Adapting this result to the invariant E(G, S) we have:

Theorem 6. Let G be a PD"-group and S a PD"_l-subgrqup. Then G
splits over a commensurable with S subgroup if and only if E(G,S) = 2.

Proof. This follows from the previous theorem and Lemma 1. O

Example 4. In the two following cases G and S satisfy the hypotheses
of the former theorem and E(G,S) = 2 (|2| Example 6 (iii) and (vi),
respectively). So G splits over a commensurable with S subgroup:

(1) G=7Fand S =ZF 1 k> 2;

(2) G= (CZ ®7Z) X 7Z, where 0 : Z — Aut(Z & Z) is defined by 6(c)(a,b) =
{ ; (1] ] Z ] = { 210 (1) [ Z } = (a,2ca + b), with the operation in
G defined by ((a7 b)a C) + ((alﬂ b1)7cl> = ((CL, b) + 9(0)(@1, b1)> c+ Cl) =
(a+a1,b+ by +2car,c+ 1) e S={((a,b),0);a,b € Z}.

Using the last result and Theorem 3 we have:

Proposition 3. Let G be a finitely generated group, T and S subgroups
of G with S <T < G,[G:T] <ooand [T : S| =o00. If S and T are
finitely generated and E(T, S) =1, in particular, if T is a PD"-group, S
a PD" -subgroup, and T does not split over a commensurable with S
subgroup, then also G does not split over a commensurable with S subgroup.

Proof. We have E(G,S) < E(T,S) =1 ([2], Proposition 7). So the result
follows from Theorem 3. O
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