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Abstract. We classify small, non-associative division alge-

bras up to isotopy. We reduce the classification problem to an

involved case distinction that a computer program can solve. As a

result, we classify algebras with 4, 8, 16, and 9 elements. In par-

ticular, we show that non-associative division algebras of size 4, 8,

and 9 are isotopes of a Galois field, whereas there are three isotopy

classes of division algebras with 16 elements.

Introduction

Assume a distributed database consisting of a large number of objects
that can be created, deleted, and modified by manipulations. We want
to capture the state of the system in a very small bit-string (a signature
as in [2]). We now hash (map) the set of all possible manipulations into
a finite, non-associative algebra. We can capture the state of an object
also in a signature, an element in that algebra, initially 1. Whenever a
manipulation changes an object, we multiply the current signature of the
object with the signature of the manipulation. Since there are frequent
manipuliations that change a large number of objects in a given set (such
as increasing the salary of all objects representing faculty), the distribu-
tive law becomes useful. The state of the database is given as the sum of
the signatures of all objects. Since manipulations do not commute, the
finite algebra made up of all possible (non-zero) signatures needs to be
non-communative, thus, it also needs to be non-associative. Furthermore,
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the algebra should be a division algebra, i.e. a vector space over a finite
field with a multiplication such that the left multiplication of non-zero
elements is invertible. A simple way to come up with candidate algebras
is to use the isotope of a Galois field GF(2k).

The concept of isotopy goes back to A. A. Albert [1]. Our application
leads to the mathematical question on the classification of finite algebras
up to isotopy. Finite algebras of dimension two are isotopes of Galois
fields. Few work seems to have been done in this area, an exception being
[3, 4]. In this article, we present a classification for algebras with 8, 16,
and 27 elements. To do so, we reduce the number of possibilities using
elementary mathematical arguments and then use software for a final,
brute force calculation. The vast majority of the work presented here
is spent verifying the software, while the actual programs run fast. Due
to a combinatorial explosion, obtaining similar results for larger algebras
is currently computationally infeasible. The limiting factor is the size of
main memory and the much slower performance of hard drives which leads
to runtimes of months and years regardless of parallelization. Further
mathematical insight is needed here. Because of the bit-based nature of
current computing, results in characteristic 2 are especially valuable.

1. Definition and basic properties

Definition 1. A non-associative division algebra A over a field Φ is a
non-associative division algebra such that for every element a 6= 0, the
left-multiplication La : A → A, x 7→ a · x is a bijection.

Definition 2. Let f, g, and h be vector space automorphisms of a non-
associate division algebra A. The (f, g, h) isotope of a (non-associative)
algebra (A, ·) is the same algebra (A, ⋆) with a new multiplication defined
by x ⋆ y := h−1(f(x) · g(x)).

Isotopy is an equivalence relation. Obviously, an isotope of a division
algebra is also a division algebra. A finite-dimensional algebra is a di-
vision algebra if and only if the equation x · y = 0 implies that x or y

are zero. Thus, we can equivalently identify finite dimensional division
algebras through the right multiplication.

1.1. Existence of unity

If A is a division algebra with left multiplication L and a ∈ A is not zero,
then a is a left one in the isotope with left multiplication L̂x = L−1

a ◦Lx.

With a little bit more work, we can find an isotope with a (left and
right) one. Assume that a ∈ A is a left one. Form the isotope with left
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multiplication L̂x = R−1
a ◦ Lx ◦ Ra. Clearly, a is still a left one in this

isotope, but it is also a right one because x ⋆ a = R−1
a (x(aa)) = x. This

important observation is due to Kaplansky, but seems to be unpublished
(according to H. Petersson, Hagen).

1.2. Isotopes of fields

Assume that (A, ·) is a field with one 1. Assume that its (f, g, h)-isotope
(A, ⋆) has a one e. This implies h = Lg(e) ◦ f and g = Lg(e)/f(e) ◦ f. In

particular, we have the identity f(a ⋆ b) = h−1
(

g(e)f(a)f(b)
f(e)

)

. From this,

it follows that (A, ⋆) is associative. Thus:

Proposition 1. An isotope of a field that has a one is also a field.

2. GF(3)3

We start out with a base B consisting of a one 1 and two elements x, y of
GF(3)3. Obviously

MatB(Lx) =





0 a b

1 c d

0 e f





with scalars a, b, c, d, e, f ∈ GF(3). In addition, we know that all linear
combinations of the identity matrix and Lx are invertible. Replacing x′

by α · 1 + β · x in B changes this matrix to

MatB(Lx′) =





0 β2a− α2 − αβc βb− αd

1 2α+ βc d

0 β2e α+ βf





To form a division algebra, all non-trivial linear combinations of the iden-
tity matrix and Lx have to be invertible. A computerized brute force
calculation reveals that the set of possible left multiplications with the x

has 24 equivalence classes. A · Lx · A−1 is the left multiplication matrix
with respect to the same base in the (A, id, A−1)-isotope of the original
algebra. Accordingly, we introduce a further equivalence relation on the
set of all possible left multiplications of the above form that now only has
5 equivalence classes. That is, we can assume without loss of generality
and up to isotopy that Lx is one of the following matrices:





0 1 1
1 0 0
0 1 0









0 1 1
1 1 0
0 1 0









0 0 2
1 1 0
0 1 0









0 2 2
1 1 0
0 1 0









0 0 1
1 0 1
0 1 0
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The choice of these particular matrices is an artifact of the enumeration
of matrices in our program. Similarly,

MatB(Ly) =





0 a b

0 c d

1 e f





with (different) scalars a, b, c, d, e, f ∈ GF(3). Replacing y by y′ =
α · 1 + β · y in B changes this matrix to

MatB(Ly′) =





0 βa− αe −α2 + β2b− αβf

0 α+ βc β2d

1 e 2α+ βf





This gives of course again 24 equivalence classes of matrices. Taking the
identity matrix, a matrix from the first list, and a matrix from the second
list defines a non-associative algebra. However, it turns out that only 10
of them are division algebras. A final brute force calculation reveals that
all these algebras are isotopes.

3. Algebras of size 4, 8, 16

In the case of four elements, we can use elementary case distinctions:

Proposition 2. GF(4) is the only division algebra with unity 1 over
GF(2) such that every sub-algebra generated by 1 and an arbitrary element
x has dimension at most 2.

Proof: Since Lx is invertible for x 6= 0, x2 = x implies either that
x = 1 or that x = 0. If every sub-algebra generated by 1 and x has
dimension at most 2, and x 6= 0, 1, then x2 = x + 1. If x and y are
linearly independent and not equal to 1, we can apply this equation to
x + y and obtain xy = yx + 1. Finally, if we apply this last equation to
three linearly independent elements x, y, and z, neither of which equal
1, we obtain (x+ y+ z)2 = (x+ y+ z), which is a contradiction. Hence,
the dimension of such an algebra cannot exceed 3. However, as we will
see, it can also not have dimension 3. For assume a basis (1, x, y). Since
x already has inverse 1 + x, the product xy cannot equal 1. xy = x

implies y = 1, a contradiction, and xy = 1 + x means yx = x, also a
contradiction. Hence we remain with xy = x + y or yx = x + y. In the
first case, (1+x)(1+x+ y) = 0 and in the second (1+x+ y)(1+x) = 0,
a contradiction. Hence, such an algebra can only have dimension 2, must
have a base (1, x) with x2 = 1 + x, i.e. must be GF(4).
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Proposition 3. The only division algebras over GF(2) of dimension 3
are isotopes of GF(8).

Proof: According to Proposition 2, there exists an element x such that
1, x, x2 are linearly independent. With respect to this base, the matrix
representation of the left multiplications L1, Lx, and Lx2 are given by





1 0 0
0 1 0
0 0 1



 ,





0 0 ∗
1 0 ∗
0 1 ∗



 ,





0 ∗ ∗
0 ∗ ∗
1 ∗ ∗



 .

This gives us 29 possible algebras. Many are not division algebras and we
can apply Proposition 1 to ascertain that those that are are indeed fields.
Alternatively, we can find an explicit isotopy relationship to GF(8). In
both cases, a brute force calculation proves the theorem.

Recall that the opposite algebra Aop of an algebra A (with multipli-
cation ·) is the same vectorspace, but a new multiplication defined by
x ·op y = y · x.

Theorem 1. There are three isotopy classes among the division algebras
of dimension 4 over GF(2). One class contains GF(24), and any of the
other two classes contains the opposite algebras of the remaining class.
contains the opposite algebras of the other.

Proof: We classify these division algebras using the matrix representa-
tion of the left multiplications with respect to a chosen basis. For con-
venience of presentation, we encode a column vector t(b1, b2, b3, b4) with
coefficients in {0, 1} as the hexadecimal digit b1 ∗8+ b2 ∗4+ b3 ∗2+ b4 ∗1
∈ {0, 1, . . . , 9, a, . . . f}. Because of Proposition 2, any four-dimensional
division algebra over GF(2) contains an element x such that 1, x, x2 are
linearly independent. Assume that x3 := x · x2 is in the linear span
< 1, x, x2 > of 1, x, x2. We expand 1, x, x2 to a basis of the algebra and
have with respect to this base

L(x) =









0 0 ∗ ∗
1 0 ∗ ∗
0 1 ∗ ∗
0 0 0 ∗









and either L(x) or L(x + 1) is not invertible. Therefore, 1, x, x2, x3 is a
base. With respect to this base, the matrix for L(x), L(x2), and L(x3)
respectively must have the form









0 0 0 1
1 0 0 ∗
0 1 0 ∗
0 0 1 ∗









,









0 ∗ ∗ ∗
0 ∗ ∗ ∗
1 ∗ ∗ ∗
0 ∗ ∗ ∗









,









0 ∗ ∗ ∗
0 ∗ ∗ ∗
0 ∗ ∗ ∗
1 ∗ ∗ ∗









.
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The small number of possibilities (228) allows us to use computer software
to determine the isotopy classes. To keep the runtime under control, we
first generate a list of all invertibe 4 by 4 matrices. We use this list to
decide for each possible assignments of the free variables (the stars in the
preceeding equation) whether the resulting algebra is a division algebra.
This gives us 178 division algebras. We then determine isotopy classes
by identifying in a first pass whether for X ∈ GL(4) and algebras A and
A′ we have

X{L(a)|a ∈ A}X−1 = {XL(a)X−1|a ∈ A} = {L′(a′)|a′ ∈ A′}

This leaves us with 6 equivalence classes under this relation with finer
equivalency classes. Our second, much more compute-intensive pass then
uses a brute force enumeration of all pairs of invertible matrices X and
Y whether

X{L(a)|a ∈ A}Y = {L′(a′)|a′ ∈ A′}

This leaves exactly three equivalence classes. One has representative
GF(16), the other ones are given by L(1), L(x), L(x2), and L(x3) equal
to (8421, 4219, 21f5, 1a87) and (8421, 4219, 2945, 15f3). It turns out
that the latter two algebras are opposite algebras of each other.

I have not succeeded in proving or disproving that the only division
algebras of dimension 3 over a field GF(p), p a prime, are isotopes of
fields and leave it as a conjecture.
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