Algebra and Discrete Mathematics Volume 9 (2010). Number 1. pp. 79 – 85 © Journal "Algebra and Discrete Mathematics"

A generalization of groups with many almost normal subgroups

RESEARCH ARTICLE

Francesco G. Russo

Communicated by L. A. Kurdachenko

Dedicated to Professor I.Ya. Subbotin on the occasion of his 60-th birthday

ABSTRACT. A subgroup H of a group G is called almost normal in G if it has finitely many conjugates in G. A classic result of B. H. Neumann informs us that $|G : \mathbf{Z}(G)|$ is finite if and only if each H is almost normal in G. Starting from this result, we investigate the structure of a group in which each nonfinitely generated subgroup satisfies a property, which is weaker to be almost normal.

1. Anti- $\mathfrak{X}C$ -Groups

In this paper \mathfrak{X} denotes an arbitrary class of groups which is closed with respect to forming subgroups and quotients, \mathfrak{F} is the class of all finite groups, \mathfrak{F}_{π} is the class of all finite π -groups (π set of primes), $\check{\mathfrak{C}}$ is the class of all Chernikov groups, \mathfrak{PF} is the class of all polycyclic-by-finite groups, $\mathfrak{S}_2\mathfrak{F}$ is the class of all (soluble minimax)-by-finite groups. Given a positive integer r, we recall that the operator L, defined by

(1.1)
$$L\mathfrak{X} = \{G \mid \langle g_1, g_2, \dots, g_r \rangle \in \mathfrak{X}, \forall g_1, g_2, \dots, g_r \in G\},\$$

from \mathfrak{X} to \mathfrak{X} is called *local operator* for \mathfrak{X} . See [12, §C, p.54]. We recall that the operator H, which associates to \mathfrak{X} the class of hyper- \mathfrak{X} -groups

This paper is dedicated to the memory of my father and to the future of my brother. 2010 Mathematics Subject Classification: 20C07; 20D10; 20F24.

Key words and phrases: Dietzmann classes; anti- $\mathfrak{X}C$ -groups; groups with \mathfrak{X} -classes of conjugate subgroups; Chernikov groups.

is called *extension operator*. See [12, §E, p.60]. The notation follows [11, 12, 13, 16].

A subgroup H of a group G is called *almost normal* in G if H has finitely many conjugates in G, that is, if $|G : \mathbf{N}_G(H)|$ is finite. Neumann's Theorem [16, Chapter 4, Vol.I, p.127] shows that G has each H which is almost normal in G if and only if $G/\mathbf{Z}(G) \in \mathfrak{F}$. We have $\mathbf{N}_G(Cl_G(H)) =$ $core_G(\mathbf{N}_G(H)) = \bigcap_{x \in G} \mathbf{N}_G(H)^x = \bigcap_{x \in G} \mathbf{N}_G(H^x)$, where $Cl_G(H)$ is the set of conjugates of H in G. $|G : \mathbf{N}_G(H)| = |Cl_G(H)|$ is finite if and only if $G/core_G(\mathbf{N}_G(H)) \in \mathfrak{F}$. In [8, 9] G has \mathfrak{F} -classes of conjugate subgroups, if $G/core_G(\mathbf{N}_G(H)) \in \mathfrak{F}$ for each H in G. Thus Neumann's Theorem can be reformulated, stating that G has $G/core_G(\mathbf{N}_G(H)) \in \mathfrak{F}$ for each Hin G if and only if $G/\mathbf{Z}(G) \in \mathfrak{F}$. See [9, Introduction]. More generally, G has \mathfrak{X} -classes of conjugate subgroups, if $G/core_G(\mathbf{N}_G(H)) \in \mathfrak{F}$ for each H in G. [9, Main Theorem] describes groups having \mathfrak{C} -classes of conjugate subgroups. [8, Main Theorem] describes those having $\mathfrak{P}\mathfrak{F}$ classes of conjugate subgroups.

Recall that $\mathbf{Z}_{\mathfrak{X}}(G) = \{x \in G \mid G/\mathbf{C}_G(\langle x \rangle^G) \in \mathfrak{X}\}$ is a characteristic subgroup of G, called $\mathfrak{X}C$ -center of G. See [12, Definition B.1, Proposition B.2]. G is called $\mathfrak{X}C$ -group if it coincides with its $\mathfrak{X}C$ -center. $\mathfrak{F}C$ groups, $\check{\mathfrak{C}}C$ -groups, $(\mathfrak{P}\mathfrak{F})C$ -groups and $(\mathfrak{S}_2\mathfrak{F})C$ -groups are well-known and described in [4, 7, 11, 12, 13, 15].

If G has \mathfrak{F} -classes of conjugate subgroups, then it is an $\mathfrak{F}C$ -group. From [9, Lemma 2.3], if G has $\check{\mathfrak{C}}$ -classes of conjugate subgroups, then it is a $\check{\mathfrak{C}}C$ -group. From [8, Corollary 2.7], if G has \mathfrak{PF} -classes of conjugate subgroups, then it is a $(\mathfrak{PF})C$ -group. From [17, Lemma 2.4], if G has $\mathfrak{S}_2\mathfrak{F}$ -classes of conjugate subgroups, then it is an $(\mathfrak{S}_2\mathfrak{F})C$ -group. The next lemma allows us to generalize these facts.

Lemma 1.1. Assume that $\mathfrak{FX} = \mathfrak{X}$. If G has \mathfrak{X} -classes of conjugate subgroups, then $\mathbf{Z}_{\mathfrak{X}}(G) = G$.

Proof. Let $g \in G$. $G/H \in \mathfrak{X}$, where $H = core_G(\mathbf{N}_G(\langle g \rangle))$. Let $H_1 = \mathbf{C}_H(\langle g \rangle)$ and $H_2 = core_G(H_1) = \mathbf{C}_H(\langle g \rangle^G)$. It is enough to prove $G/H_2 \in \mathfrak{X}$. Of course, $H \ge \mathbf{N}_H(\langle g \rangle)$. Conversely, an element of $\mathbf{N}_H(\langle g \rangle)$ is an element of G, fixing $\langle g \rangle^x = \langle g^x \rangle$ by conjugation for every $x \in G$, again fixing $\langle g \rangle$ by conjugation. If x = 1, then we get the elements of H and so $H \le \mathbf{N}_H(\langle g \rangle)$. Then $H/H_1 = \mathbf{N}_H(\langle g \rangle)/\mathbf{C}_H(\langle g \rangle)$ is isomorphic to a subgroup of the automorphism group of $\langle g \rangle$ and so it is finite. The same is true if we consider H_1/H_2 and $\mathbf{N}_G(\langle g \rangle)/\mathbf{C}_G(\langle g \rangle)$. Therefore, G/H_2 is an extension of the finite group H_1/H_2 by the finite group H/H_1 by $G/H \in \mathfrak{X}$. From $(\mathfrak{F})\mathfrak{X} = \mathfrak{F}\mathfrak{X} = \mathfrak{X}, G/H_2 \in \mathfrak{X}$.

We recall that \mathfrak{X} is called *Dietzmann class*, if for every group G and $x \in G$, the following implication is true:

(1.2) if $x \in \mathbf{Z}_{\mathfrak{X}}(G)$ and $\langle x \rangle \in \mathfrak{X}$, then $\langle x \rangle^G \in \mathfrak{X}$,

See [12, Definitions B.1 and B.6]. Dietzmann classes are studied in [11, 12, 13]. $\mathcal{F}C$ -groups form a Dietzmann class [12, Proposition D.3, b)]. In particular, this is true for periodic ($\mathfrak{PF}C$ -groups, which are obviously $\mathcal{F}C$ -groups. Note that \mathcal{F} is a Dietzmann class [12, Proposition B.7, b)], but \mathfrak{PF} is not a Dietzmann class [12, Example B.8, c)]. Unfortunately, it is not known whether ($\mathfrak{PF}C$ -groups, $\check{\mathfrak{C}}C$ -groups or ($\mathfrak{S}_2\mathfrak{F})C$ -groups form a Dietzmann class. See [4, 7, 11, 12, 13, 15]. But, they extend locally the class of $\mathcal{F}C$ -groups. Therefore, the next result is significant.

Theorem 1.2 (see [12], Theorem E.3). If $\mathfrak{F}_{\pi} \subseteq \mathfrak{X} \subseteq L\mathfrak{F}_{\pi}$, then $(H\mathfrak{X})C$ is a Dietzmann class.

From Lemma 1.1, if $\mathfrak{X} = \mathfrak{F}$, then $\mathfrak{F}C$ is a Dietzmann class. From Lemma 1.1 and Theorem 1.2, if $\mathfrak{F}_{\pi} \subseteq \mathfrak{X} \subseteq L\mathfrak{F}_{\pi}$, then $(H\mathfrak{X})C$ is a Dietzmann class. Therefore, it is meaningful to ask whether we may weaken the Neumann's Theorem, looking at the following property for G:

(1.3) if *H* is non-finitely generated, then $G/core_G(\mathbf{N}_G(H)) \in \mathfrak{X}$, where $\mathfrak{F}_{\pi} \subseteq \mathfrak{X} \subseteq L\mathfrak{F}_{\pi}$.

G is called *anti-\mathfrak{X}C-group* if it satisfies (1.3). *Anti-\mathfrak{F}C-groups* were described in [5]. *Anti-\check{\mathfrak{C}}C-groups* and *anti-(\mathfrak{PF})C-groups* were described in [18]. This line of research goes back to [14] and deals with the structure of groups with given properties of a system of subgroups. See [1, 2, 3, 5, 6, 10, 18, 20, 21].

2. Locally Finite Case

We omit the elementary proofs of the next two results.

Lemma 2.1. Subgroups and quotients of anti- $\mathfrak{X}C$ -groups are anti- $\mathfrak{X}C$ -groups.

Lemma 2.2. If G is an anti- $\mathfrak{X}C$ -group and $\mathbf{Z}_{\mathfrak{X}}(G) = G$, then G has \mathfrak{X} -classes of conjugate subgroups.

Lemma 2.3. Assume that x is an element of the anti- \mathcal{C} -group G. If $A = Dr_{i \in I}A_i$ is a subgroup of G consisting of $\langle x \rangle$ -invariant nontrivial direct factors A_i , $i \in I$, with infinite index set I, then x belongs to $\mathbf{Z}_{\mathfrak{X}}(G)$.

Proof. This follows by [18, Lemma 3.3, Proof], considering \mathfrak{X} and $\mathbf{Z}_{\mathfrak{X}}(G)$.

Corollary 2.4. Assume that G is an anti- $\mathfrak{X}C$ -group and $A = Dr_{i \in I}A_i$ is a subgroup of G consisting of infinitely many nontrivial direct factors. Then A is contained in $\mathbf{Z}_{\mathfrak{X}}(G)$.

Lemma 2.5. Assume that g is an element of the anti- $\mathfrak{X}C$ -group G and $A = Dr_{i \in I}A_i$ is a subgroup of G, with I as in Lemma 2.3. If $g \in \mathbf{N}_G(A)$ and $g^n \in \mathbf{C}_G(A)$ for some positive integer n, then g belongs to $\mathbf{Z}_{\mathfrak{X}}(G)$.

Proof. This follows by [18, Lemma 3.7, Proof], considering \mathfrak{X} and $\mathbf{Z}_{\mathfrak{X}}(G)$.

Corollary 2.6. If the anti- $\mathfrak{X}C$ -group G has an abelian torsion subgroup that does not satisfy the minimal condition on its subgroups, then all elements of finite order belong to $\mathbf{Z}_{\mathfrak{X}}(G)$.

Proof. This follows by [18, Corollary 3.9, Proof], considering \mathfrak{X} and $\mathbf{Z}_{\mathfrak{X}}(G)$.

Theorem 2.7. If G is a locally finite anti- $\mathfrak{X}C$ -group, then either G has \mathfrak{X} -classes of conjugate subgroups or G is a Chernikov group.

Proof. This follows by [18, Theorem 3.12, Proof], considering \mathfrak{X} and $\mathbf{Z}_{\mathfrak{X}}(G)$.

Note that Theorem 2.7 improves [18, Theorems 3.11 and 3.12].

Lemma 2.8. Assume that \mathfrak{X} is residually closed. If G has \mathfrak{X} -classes of conjugate subgroups, then $G \in \mathfrak{N}_2\mathfrak{X}$, where \mathfrak{N}_2 is the class of nilpotent groups of class at most 2.

Proof. Let $\mathbf{N}(G) = \bigcap_{H \leq G} \mathbf{N}_G(H)$ be the norm of G. $\mathbf{N}(G) \leq \mathbf{Z}_2(G)$ from a result of Schenkman [19, Corollary 1.5.3]. Since G has \mathfrak{X} -classes of conjugate subgroups, $G/\mathbf{N}(G)$ is residually \mathfrak{X} and so $G/\mathbf{N}(G) \in \mathfrak{X}$. This gives as claimed. \Box

Corollary 2.9. Assume that \mathfrak{X} is residually closed. If G is a locally finite anti- $\mathfrak{X}C$ -group, then either $G \in \mathfrak{N}_2\mathfrak{X}$ or G is a Chernikov group.

Proof. This follows by Theorem 2.7 and Lemma 2.8.

3. Locally Nilpotent Case

Recall that G has finite abelian section rank if it has no infinite elementary abelian p-sections for every prime p (see [16, Chapter 10, vol.II]). Following [5, 16, 20], a soluble-by-finite group G is an \mathfrak{S}_1 -group if it has finite abelian section rank and the set of prime divisors of orders of elements of G is finite.

Theorem 3.1. Assume that \mathfrak{X} is residually closed. Let G be an anti- $\mathfrak{X}C$ group having an ascending series whose factors are either locally nilpotent or locally finite. Then either G has \mathfrak{X} -classes of conjugate subgroups or is a soluble-by-finite \mathfrak{S}_1 -group or has a normal soluble \mathfrak{S}_1 -subgroup K such that $G/K \in \mathfrak{X}$.

Proof. G has an ascending normal series whose factors are either locally nilpotent or locally finite by [16, Theorem 2.31]. Let K be the largest radical normal subgroup of G. From Lemma 2.1 and Corollary 2.9, the largest locally finite normal subgroup T/K of G/K is either a Chernikov group or in $\mathfrak{N}_2\mathfrak{X}$.

In the first case, if H/T is a locally nilpotent normal subgroup of G/T, then $\mathbf{C}_{H/K}(T/K)$ is a locally nilpotent normal subgroup of G/K, so $\mathbf{C}_{H/K}(T/K)$ is trivial and H/K is a Chernikov group. Then T = G and so G has a normal radical subgroup K such that T/K is a Chernikov group (in this situation G is said to be a radical-by-Chernikov group).

In the second case, T/K = (N/K)(L/K), where $N/K \in \mathfrak{N}_2$ is a normal subgroup of T/K such that $(T/K)/(N/K) \in \mathfrak{X}$. If N/K is nontrivial, then there exists a nontrivial element $xK \in N/K$ such that $\langle xK \rangle^G = \langle x \rangle^G K/K$ is a nilpotent normal subgroup of G/K contained in T/K. Since G/K has no nontrivial locally nilpotent normal subgroups, we get to a contradiction. Therefore N/K is trivial and $T/K \in \mathfrak{X}$. Then we may deduce as above that G has a normal radical subgroup K such that $T/K \in \mathfrak{X}$ (in this situation G is said to be a radical-by- \mathfrak{X} group).

Assume that G has \mathfrak{X} -classes of conjugate subgroups. Then every abelian subgroup of G has finite total rank by Corollary 2.4. A result of Charin [16, Theorem 6.36] implies that K is a soluble \mathfrak{S}_1 -group. We conclude that G has a normal soluble \mathfrak{S}_1 -subgroup K such that G/K is a Chernikov group. Therefore G is an extension of a soluble \mathfrak{S}_1 -group by an abelian group with min by a finite group. An abelian group with minis clearly an \mathfrak{S}_1 -group and the class of \mathfrak{S}_1 -groups is closed with respect to extensions of two of its members (see [16, Chapter 10]). Therefore G is a soluble-by-finite \mathfrak{S}_1 -group. The remaining case is that G has a normal soluble \mathfrak{S}_1 -subgroup K such that $G/K \in \mathfrak{X}$.

Note that Theorem 3.1 improves [18, Theorems 4.1 and 4.2].

Corollary 3.2. Assume that \mathfrak{X} is residually closed. Let G be an anti- $\mathfrak{X}C$ group having an ascending series whose factors are either locally nilpotent or locally finite. Then either $G \in \mathfrak{N}_2 \mathfrak{X}$ or G is a soluble-by-finite \mathfrak{S}_1 -group or G has a normal soluble \mathfrak{S}_1 -subgroup K such that $G/K \in \mathfrak{X}$.

Proof. This follows by Theorem 3.1 and Corollary 2.9.

References

- V. S. Charin, D. I. Zaitsev, Groups with finiteness conditions and other restrictions for subgroups, Ukrainian Math. J., 40, 1988, pp.233-241.
- [2] S. N. Chernikov, Groups with given properties of a system of subgroups, Modern Algebra, Nauka, Moscow, 1980.
- [3] B. Hartley, A dual approach to Chernikov modules, Math. Proc. Cambridge Phil. Soc., 82, 1977, pp.215–239.
- [4] S. Franciosi, F. de Giovanni, M. J. Tomkinson, Groups with polycyclic-by-finite conjugacy classes, Boll. U.M.I., 4B, 1990, pp.35–55.
- [5] S. Franciosi, F. de Giovanni, L. A. Kurdachenko, On groups with many almost normal subgroups, Ann. Mat. Pura Appl., CLXIX, 1995, pp.35–65.
- [6] H. Heineken, L. A. Kurdachenko, Groups with Subnormality for All Subgroups that Are Not Finitely Generated, Ann. Mat. Pura Appl., CLXIX, 1995, pp.203– 232.
- [7] L. A. Kurdachenko, On groups with minimax conjugacy classes, In: Infinite groups and adjoining algebraic structures, Kiev (Ukraine), Naukova Dumka, 1993, pp.160–177.
- [8] L. A. Kurdachenko, J. Otál, P. Soules, Groups with polycyclic-by-finite conjugate classes of subgroups, Comm. Algebra, 32, 2004, pp.4769–4784.
- [9] L. A. Kurdachenko, J. Otál, Groups with Chernikov classes of conjugate subgroups, J. Group Theory, 54, 2005, pp.93–108.
- [10] L. A. Kurdachenko, J. M. Munoz Escolano, J. Otál, Antifinitary linear groups, Forum Math., 20, 2008, pp.27-44.
- [11] R. Maier, J. C. Rogério *C-elements in groups and Dietzmann classes*, Beiträge Algebra Geom., 40, 1999, pp.243–260.
- [12] R. Maier, Analogues of Dietzmann's Lemma, In: Advances in Group Theory, Naples (Italy), Aracne Ed., 2002, pp.43–69.
- [13] R. Maier, The Dietzmann property of some classes of groups with locally finite conjugacy classes, J. Algebra, 277, 2004, pp.364–369
- [14] G. A. Miller, H. C. Moreno Non-abelian groups in which every subgroup is abelian, Trans. Amer. Math. Soc., 4, 1903, pp.398–404.
- [15] Ya. D. Polovickii, The groups with extremal classes of conjugate elements, Siberian Math. J., 5, 1964, pp.891–895.
- [16] D. J. Robinson. Finiteness conditions and generalized soluble groups, Vol. I and II, Springer, Berlin, 1972.
- [17] F.G. Russo, Groups with soluble minimax conjugate classes of subgroups, Mashhad Research J. Math. Sci., 1, 2007, pp.41–49.

- [18] F.G. Russo, Anti-CC-Groups and Anti-PC-Groups, Int. J. Math. Math. Sciences, Article ID 29423, 2007, 11 pages.
- [19] R. Schmidt, Subgroup lattices of groups, de Gruyter, Berlin, 1994.
- [20] D. I. Zaitsev, On locally soluble groups with finite rank, Doklady A. N. SSSR, 240, 1978, pp.257–259.
- [21] D. I. Zaitsev, On the properties of groups inherited by their normal subgroups, Ukrainian Math. J., 38, 1986, pp.707–713.

CONTACT INFORMATION

F. G. Russo Department of Mathematics, University of Naples Federico II, via Cinthia I-80126, Naples, Italy *E-Mail:* francesco.russo@dma.unina.it URL: russodipmatunina.altervista.org

Received by the editors: 25.02.2010 and in final form 25.02.2010.