Algebra and Discrete Mathematics Volume 9 (2010). Number 1. pp. 72 – 78 © Journal "Algebra and Discrete Mathematics"

Hall operators on the set of formations of finite groups

Andrei P. Mekhovich, Nikolay N. Vorob'ev and Nikolay T. Vorob'ev

Communicated by L. A. Shemetkov

Dedicated to Professor I.Ya. Subbotin on the occasion of his 60-th birthday

ABSTRACT. Let π be a nonempty set of primes and let $\mathfrak F$ be a saturated formation of all finite soluble π -groups. It is constructed the saturated formation consisting of all finite π -soluble groups whose $\mathfrak F$ -projectors contain a Hall π -subgroup.

Introduction

In the theory of soluble Fitting classes P. Lockett and P. Hauck considered the classes $\mathcal{L}_{\pi}(\mathfrak{F})$ and $\mathcal{K}_{\pi}(\mathfrak{F})$.

Definition 1 ([1, 2]). Let π be a set of primes and let \mathfrak{F} be a Fitting class of finite soluble groups. Then

 $\mathcal{L}_{\pi}(\mathfrak{F}) = (G \in \mathfrak{S} : an \mathfrak{F}\text{-injector of } G \text{ contains a Hall } \pi\text{-subgroup of } G);$ $\mathcal{K}_{\pi}(\mathfrak{F}) = (G \in \mathfrak{S} : a \text{ Hall } \pi\text{-subgroup of } G \text{ belongs to } \mathfrak{F}).$

In [1] (see also [3, IX, 1.22]) Lockett used the class $\mathcal{L}_{\pi}(\mathfrak{F})$ to obtain a description of the injectors for a Fitting class product \mathfrak{FG} . It was proved that $\mathcal{L}_{\pi}(\mathfrak{F})$ and $\mathcal{K}_{\pi}(\mathfrak{F})$ are Fitting classes. Furthermore, $\mathcal{K}_{\pi}(\mathfrak{F})$

Research of the second author is partially supported by Belarussian Republic Foundation of Fundamental Researches (BRFFI, grant F08M-118)

²⁰⁰¹ Mathematics Subject Classification: 20D10.

Key words and phrases: Hall π -subgroup, π -soluble group, formation of finite groups, saturated formation, canonical satellite, \mathfrak{F} -projector.

 $\mathcal{L}_{\pi}(\mathfrak{F} \cap \mathfrak{S}_{\pi})$. Hence we may consider \mathcal{L}_{π} and \mathcal{K}_{π} as operators on the set of all Fitting classes for every π . The class $\mathcal{K}_{\pi}(\mathfrak{F})$ was introduced by Hauck [2] and has been studied in detail by Brison [4] and Cusack [5]. Moreover, Brison [6, 7] applied $\mathcal{K}_{\pi}(\mathfrak{F})$ to obtain a description of Hall subgroups radicals.

Analogously one may consider the following operators on the set of all soluble formations.

Definition 2 ([8, 9]). Let π be a set of primes and let \mathfrak{F} be a formation of finite soluble groups. Then

 $\mathcal{L}^{\pi}(\mathfrak{F}) = (G \in \mathfrak{S} : an \mathfrak{F}\text{-projector of } G \text{ contains a Hall } \pi\text{-subgroup of } G);$

 $\mathcal{K}^{\pi}(\mathfrak{F}) = (G \in \mathfrak{S} : a \ Hall \ \pi\text{-subgroup of } G \ belongs \ to \ \mathfrak{F}).$

In [9] Blessenohl proved that if \mathfrak{F} is a saturated formation, then $\mathcal{K}^{\pi}(\mathfrak{F})$ is a saturated formation.

Further L.A. Shemetkov posed the following question in this trend.

Problem (see [10, Problem 19]). Let \mathfrak{F} be a saturated formation of finite groups, $\mathcal{C}_{\pi}(\mathfrak{F})$ be the class of all groups G such that there exist Hall π -subgroups of G in \mathfrak{F} and any two of them are conjugate. Is the class $\mathcal{C}_{\pi}(\mathfrak{F})$ a saturated formation?

The positive answer of Problem 19 was given by L.M. Slepova [11] in the class of all π -separable groups for some restrictions to \mathfrak{F} ; in [12] it was shown by E.P. Vdovin, D.O. Revin and L.A. Shemetkov that $\mathcal{C}_{\pi}(\mathfrak{F})$ is solubly saturated formation for any solubly saturated formation \mathfrak{F} . However L.A. Shemetkov and A.F. Vasil'ev [13] proved that in general the class $\mathcal{C}_{\pi}(\mathfrak{N})$ is not a saturated formation, where \mathfrak{N} is the class of all nilpotent groups.

Wenbin Guo and Baojin Li [14] proved that $\mathcal{K}_{\pi}(\mathfrak{F})$ is a local Fitting class for every local Fitting class \mathfrak{F} . In general N.T. Vorob'ev and V.N. Zagurskii [15] gave the positive answer of Shemetkov's Problem for soluble ω -local Fitting classes.

K. Doerk and T. Hawkes investigated an analog of Problem 19 for the class $\mathcal{L}^{\pi}(\mathfrak{F})$. It was proved, that if \mathfrak{F} is a solubly saturated formation, then $\mathcal{L}^{\pi}(\mathfrak{F})$ is a saturated formation (see [8, Bemerkung]). Note that the analog of the above-mentioned problem has the negative answer for soluble Schunck classes (see [8, Beispiel 1]) and soluble Fitting classes (see [3, IX, 3.15]).

A purpose of this paper is to investigate an analog of Shemetkov's Problem for the class $\mathcal{L}^{\pi}(\mathfrak{F})$, where \mathfrak{F} is the saturated formation of all soluble π -groups.

All groups considered are finite and π -soluble for some fixed nonempty set of primes π . All unexplained notations and terminologies are standard. The reader is referred to [16], [10] and [3] if necessary.

1. Preliminaries

Recall notation and some definitions used in this paper.

A group class closed under taking homomorphic images and finite subdirect products is called *a formation*.

A group G is said to be π -soluble if every chief factor of G is either a p-group for some $p \in \pi$ or a π' -subgroup.

The complementary set of primes, $\mathbb{P}\backslash\pi$, is denoted by π' . $\sigma(G)$ denotes the set of all distinct prime divisors of the order of a group G.

Functions of the form

$$f: \mathbb{P} \to \{\text{formations of groups}\}\$$

are called $local \ satellites$ (see [10]). For every local satellite f it is defined the class

$$LF(f) = (G: G \text{ has } f\text{-central chief series}),$$

i.e., for every chief factor H/K of G we have

$$G/C_G(H/K) \in f(p)$$
 for every $p \in \pi(H/K)$.

If \mathfrak{F} is a formation such that $\mathfrak{F} = LF(f)$ for a local satellite f, then the formation \mathfrak{F} is said to be saturated and f is a local satellite of \mathfrak{F} .

If \mathfrak{F} is a saturated formation, by [3, IV, 4.3] we have $\operatorname{Char}(\mathfrak{F}) = \sigma(\mathfrak{F})$, where $\sigma(\mathfrak{F}) = \bigcup \{\sigma(G) : G \in \mathfrak{F}\}.$

A satellite F of a formation \mathfrak{F} is called *canonical* if $F(p) \subseteq \mathfrak{F}$, and $F(p) = \mathfrak{N}_p F(p)$ for all $p \in \mathbb{P}$ [17].

Let $\mathfrak F$ be a formation. A subgroup H of a group G is called $\mathfrak F$ -maximal in G provided that

- (1) $H \in \mathfrak{F}$, and
- (2) if $H \leq V \leq G$ and $V \in \mathfrak{F}$, then H = V.

A subgroup H of G is called an \mathfrak{F} -projector of G if HN/N is \mathfrak{F} -maximal in G/N for all $N \triangleleft G$.

By $\operatorname{Proj}_{\mathfrak{F}}G$ we denote the (possibly empty) set of all \mathfrak{F} -projectors of G.

Let \mathfrak{F} be a saturated formation and let \mathfrak{H} be a formation. Following [3, IV, 1.1] we denote the class $(\mathfrak{F} \downarrow \mathfrak{H})$ as follows:

$$(\mathfrak{F}\!\!\downarrow\!\!\mathfrak{H})=(G:\mathrm{Proj}_{\mathfrak{F}}G\subseteq\mathfrak{H}).$$

If $\mathfrak{H} = \emptyset$, then $(\mathfrak{F} \downarrow \mathfrak{H}) = \emptyset$.

If $RB \supseteq A$, then it is said that A/B covered by R.

The symbols G_{π} , \mathfrak{E}^{π} , $\mathfrak{E}_{\pi'}$, \mathfrak{E}_{π} and \mathfrak{N}_p denote, respectively, a Hall π -subgroup of a group G, the class of all π -soluble groups, the class of all π -groups, the class of all p-groups.

We need some lemmas to prove the main result.

Lemma 1 ([18, Lemma 1.2, Lemma 1.3]). Let $\mathfrak{F} = LF(F)$ be the formation of all soluble π -groups. Then the following statements hold:

(1) $\mathfrak{F} = LF(m)$, where

$$m(p) = (\mathfrak{F} \! \downarrow \! F(p)) \text{ for all } p \in \mathbb{P}.$$

- (2) If V is an \mathfrak{F} -projector of a group G, then:
 - (a) V covers every m-central chief factor of G.
 - (b) Every chief factor of G covered of the subgroup V is m-central.

Lemma 2 ([10, Theorem 15.7]). Let \mathfrak{F} be a saturated formation and G be a group having $\sigma(\mathfrak{F})$ -soluble \mathfrak{F} -residual. Then G has \mathfrak{F} -projectors and any two of them are conjugate.

2. The proof of Theorem

First we prove

Lemma 3. Let \mathfrak{F} be a saturated formation of all soluble π -groups. Then the following statements hold:

- (1) The class $\mathcal{L}^{\pi}(\mathfrak{F})$ is a formation.
- (2) $\mathfrak{E}_{\pi'}\mathcal{L}^{\pi}(\mathfrak{F}) = \mathcal{L}^{\pi}(\mathfrak{F}).$

Proof. (1) If $\pi = \emptyset$, then $\mathcal{L}^{\emptyset}(\mathfrak{F}) = \mathfrak{S}^{\pi}$; if $\pi = \mathbb{P}$, then $\mathcal{L}^{\mathbb{P}}(\mathfrak{F}) = \mathfrak{F}$. We have saturated formations \mathfrak{S}^{π} and \mathfrak{F} , and hence the result. Now suppose $\emptyset \subset \pi \subset \mathbb{P}$. Since a formation \mathfrak{F} is saturated, by [3, IV, 4.3] we have $\operatorname{Char}(\mathfrak{F}) = \sigma(\mathfrak{F})$.

Since $\sigma(\mathfrak{F}) \subseteq \pi$, a π -soluble group G is $\sigma(\mathfrak{F})$ -soluble. Consequently, the subgroup $G^{\mathfrak{F}}$ of G is $\sigma(\mathfrak{F})$ -soluble.

Let $G \in \mathcal{L}^{\pi}(\mathfrak{F})$, let $K \triangleleft G$ and let F be an \mathfrak{F} -projector of G. Then there exists a Hall π -subgroup G_{π} of G such that $G_{\pi} \subseteq F$.

By [10, Lemma 15.2] and [10, Lemma 15.1], we see that $G_{\pi}K/K$ is a Hall π -subgroup of G/K and FK/K is an \mathfrak{F} -projector of G/K. Therefore $G/K \in \mathcal{L}^{\pi}(\mathfrak{F})$.

Let K_1 and K_2 be normal subgroups of G such that $K_1 \cap K_2 = 1$ and let $G/K_1 \in \mathcal{L}^{\pi}(\mathfrak{F})$ and $G/K_2 \in \mathcal{L}^{\pi}(\mathfrak{F})$. Then $G_{\pi}K_1/K_1 \subseteq FK_1/K_1$ and $G_{\pi}K_2/K_2 \subseteq FK_2/K_2$, where $G_{\pi}K_1/K_1$ is a Hall π -subgroup of G/K_1

and $G_{\pi}K_2/K_2$ is a Hall π -subgroup of G/K_2 , FK_1/K_1 is an \mathfrak{F} -projector of G/K_1 and FK_2/K_2 is an \mathfrak{F} -projector of G/K_2 .

Therefore $G_{\pi}K_1 \subseteq FK_1$ and $G_{\pi}K_2 \subseteq FK_2$. Hence $G_{\pi}K_1 \cap G_{\pi}K_2 \subseteq FK_1 \cap FK_2$. By [18, Lemma 1.4] and [10, Theorem 15.2] we have $G_{\pi}(K_1 \cap K_2) \subseteq F(K_1 \cap K_2)$, i.e., $G_{\pi} \subseteq F$. Thus $G \in \mathcal{L}^{\pi}(\mathfrak{F})$. This proves (1).

(2) Inclusion $\mathcal{L}^{\pi}(\mathfrak{F}) \subseteq \mathfrak{E}_{\pi'}\mathcal{L}^{\pi}(\mathfrak{F})$ is obvious. We show that $\mathfrak{E}_{\pi'}\mathcal{L}^{\pi}(\mathfrak{F}) \subseteq \mathcal{L}^{\pi}(\mathfrak{F})$. Let $G \in \mathfrak{E}_{\pi'}\mathcal{L}^{\pi}(\mathfrak{F})$. Then $G^{\mathcal{L}^{\pi}(\mathfrak{F})} \in \mathfrak{E}_{\pi'}$ and $G/G^{\mathcal{L}^{\pi}(\mathfrak{F})} \in \mathcal{L}^{\pi}(\mathfrak{F})$.

Let G_{π} be a Hall π -subgroup of G and let F be an \mathfrak{F} -projector of G. By [10, Lemma 15.2] and [10, Lemma 15.1], we see, $G_{\pi}G^{\mathcal{L}^{\pi}(\mathfrak{F})}/G^{\mathcal{L}^{\pi}(\mathfrak{F})}$ is a Hall π -subgroup of $G/G^{\mathcal{L}^{\pi}(\mathfrak{F})}$ and $FG^{\mathcal{L}^{\pi}(\mathfrak{F})}/G^{\mathcal{L}^{\pi}(\mathfrak{F})}$ is an \mathfrak{F} -projector of $G/G^{\mathcal{L}^{\pi}(\mathfrak{F})}$. Therefore

efore
$$G_{\pi}G^{\mathcal{L}^{\pi}(\mathfrak{F})}/G^{\mathcal{L}^{\pi}(\mathfrak{F})} \subseteq F^{x}G^{\mathcal{L}^{\pi}(\mathfrak{F})}/G^{\mathcal{L}^{\pi}(\mathfrak{F})}.$$

By [10, Lemma 15.1], $F^x G^{\mathcal{L}^{\pi}(\mathfrak{F})}/G^{\mathcal{L}^{\pi}(\mathfrak{F})}$ is an \mathfrak{F} -projector of $G/G^{\mathcal{L}^{\pi}(\mathfrak{F})}$, where $x \in G/G^{\mathcal{L}^{\pi}(\mathfrak{F})}$. Consequently,

$$|G/G^{\mathcal{L}^{\pi}(\mathfrak{F})}: F^{x}G^{\mathcal{L}^{\pi}(\mathfrak{F})}/G^{\mathcal{L}^{\pi}(\mathfrak{F})}| = \frac{|G|}{|F^{x}G^{\mathcal{L}^{\pi}(\mathfrak{F})}|} =$$

$$\frac{|G||F \cap G^{\mathcal{L}^{\pi}(\mathfrak{F})}|}{|F||G^{\mathcal{L}^{\pi}(\mathfrak{F})}|} = \frac{|G|}{|F||G^{\mathcal{L}^{\pi}(\mathfrak{F})}|}$$

is a π' -number. Since $|G^{\mathcal{L}^{\pi}(\mathfrak{F})}|$ is a π' -number, |G:F| is a π' -number. Thus a Hall π -subgroup G_{π} of G is contained in the \mathfrak{F} -projector F of G. Hence $G \in \mathcal{L}^{\pi}(\mathfrak{F})$. The lemma is proved.

The following theorem shows that if \mathfrak{F} is a saturated formation, then the formation $\mathcal{L}^{\pi}(\mathfrak{F})$ is saturated.

Theorem. Let $\mathfrak{F} = LF(F)$ be the formation of all soluble π -groups. Then $\mathcal{L}^{\pi}(\mathfrak{F}) = LF(f)$ for a local satellite f such that

Proof. If $\pi = \emptyset$, then $\mathcal{L}^{\emptyset}(\mathfrak{F}) = \mathfrak{S}^{\pi}$; if $\pi = \mathbb{P}$, then $\mathcal{L}^{\mathbb{P}}(\mathfrak{F}) = \mathfrak{F}$. We have saturated formations \mathfrak{S}^{π} and \mathfrak{F} , and hence the result.

Now suppose $\emptyset \subset \pi \subset \mathbb{P}$. Since a formation \mathfrak{F} is saturated, by [3, IV, 4.3] we have $\operatorname{Char}(\mathfrak{F}) = \sigma(\mathfrak{F})$.

So a π -soluble group G is $\sigma(\mathfrak{F})$ -soluble. Consequently, the subgroup $G^{\mathfrak{F}}$ of G is $\sigma(\mathfrak{F})$ -soluble.

By Lemma 1 we have $\mathfrak{F} = LF(m)$, where m is a local satellite of \mathfrak{F} such that $m(p) = \mathfrak{F} \downarrow F(p)$ for all $p \in \mathbb{P}$.

We show $LF(f) \subseteq \mathcal{L}^{\pi}(\mathfrak{F})$. Suppose $LF(f) \nsubseteq \mathcal{L}^{\pi}(\mathfrak{F})$. Let G be a group of minimal order in $LF(f) \setminus \mathcal{L}^{\pi}(\mathfrak{F})$. Then G is a monolithic group and $K = G^{\mathcal{L}^{\pi}(\mathfrak{F})}$ is the socle of G. We have |G/K| < |G|, so by induction, $G/K \in \mathcal{L}^{\pi}(\mathfrak{F})$. If T is an \mathfrak{F} -projector of G and G_{π} is a Hall π -subgroup of G, then by the definition $\mathcal{L}^{\pi}(\mathfrak{F})$, we have $G_{\pi}K/K \subseteq TK/K$. Hence $G_{\pi}K \subseteq TK$. Since G is π -soluble, K is either a p-group, where $p \in \pi$ or a normal π' -subgroup.

Let K be a p-group, where $p \in \pi$. Since $G \in LF(f)$,

$$G/C_G(K) \in f(p) = (\mathfrak{F} \downarrow F(p)).$$

By Lemma 1, an \mathfrak{F} -projector T covers K, i.e., $K \subseteq T$. Therefore $T = TK \supseteq G_{\pi}K \supseteq G_{\pi}$. It follows that $G \in \mathcal{L}^{\pi}(\mathfrak{F})$, a contradiction.

Now let $K \in \mathfrak{E}_{\pi'}$. Lemma 3 implies $G \in \mathfrak{E}_{\pi'}\mathcal{L}^{\pi}(\mathfrak{F}) = \mathcal{L}^{\pi}(\mathfrak{F})$, a contradiction.

We prove the converse inclusion, i.e., $\mathcal{L}^{\pi}(\mathfrak{F}) \subseteq LF(f)$. Suppose $\mathcal{L}^{\pi}(\mathfrak{F}) \nsubseteq LF(f)$. Let H be a group of minimal order in $\mathcal{L}^{\pi}(\mathfrak{F}) \setminus LF(f)$. Then H is a monolithic group and $R = H^{LF(f)}$ is the socle of H. Since H is π -soluble, R is either a p-group, where $p \in \pi$ or a normal π' -subgroup.

Let R be a π' -subgroup. By induction, $H/R \in LF(f)$. Consequently, all factors of the chief series $H \supset \ldots \supset R$ are f-central. By assumption, $H/C_H(R) \in \mathfrak{S}^{\pi} = f(p)$. Hence $H \in LF(f)$, a contradiction.

Now let R be a p-group, where $p \in \pi$. If H_{π} is a Hall π -subgroup of H and V is an \mathfrak{F} -projector of H, then by Chunihin's Theorem [19], we have $R \subseteq H_{\pi}$. Since $H \in \mathcal{L}^{\pi}(\mathfrak{F})$, $H_{\pi} \subseteq V$. Consequently, $R \subseteq V$, i.e., V covers R. Lemma 1 implies that R is m-central chief factor of H. By induction, $H/R \in LF(f)$. Consequently, $H \in LF(f)$. This final contradiction completes the proof.

References

- [1] P. Lockett, On the theory of Fitting classes of finite soluble groups, *Math. Z.* **131** (1973) pp. 103–115.
- [2] P. Hauck, Eine Bemerkung zur kleinsten normalen Fittingklasse, J. Algebra 53 (1978) pp. 395–401.
- [3] K. Doerk and T. Hawkes, Finite soluble groups, Walter de Gruyter, Berlin-New York, 1992.
- [4] O.J. Brison, Hall operators for Fitting classes, Arch. Math.[Basel] 80 (33) (1979/80) pp. 1–9.
- [5] E. Cusack, Strong containment of Fitting classes, J. Algebra 64 (3) (1980) pp. 414–429.
- [6] O.J. Brison, A criterion for the Hall-closure of Fitting classes, Bull. Austral. Math. Soc. 23 (1981) pp. 361–365.

- [7] O.J. Brison, Hall-closure and products of Fitting classes, J. Austral. Math. Soc. Ser. A. 32 (1984) pp. 145–164.
- [8] K. Doerk and T. Hawkes, Ein Beispiel aus der Theorie der Schunckklassen, Arch. Math. [Basel] 31 (1978) pp. 539–544.
- [9] D. Blessenohl, Über Formationen und Halluntergruppen endlicher auflösbarer Gruppen, *Math. Z.* **142** (3) (1975) pp. 299–300.
- [10] L.A. Shemetkov, Formations of finite groups, Nauka, Main Editorial Board for Physical and Mathematical Literature, Moscow, 1978 (in Russian).
- [11] L.M. Slepova, On formations of $E^{\mathfrak{F}}$ -groups, Doklady AN BSSR **21** (7) (1977) pp. 587–589 (in Russian).
- [12] E.P. Vdovin, D.O. Revin and L.A. Shemetkov, Formations of finite \mathcal{C}_{π} -groups, The International Scientific Conference "X The Belarusian Mathematical Conference" November 3–7, 2008, Minsk, Institute of Mathematics of National Academy of Sciences of Belarus (2008) pp. 12–13.
- [13] L.A. Shemetkov and A.F. Vasil'ev, Nonlocal formations of finite groups, *Doklady AN Belarusi* 39 (4) (1995) pp. 5–8 (in Russian).
- [14] Guo Wenbin and Li Baojun, On Shemetkov problem for Fitting classes, *Beitr. Algebra und Geom.* **48** (1) (2007) pp. 281–289.
- [15] N.T. Vorob'ev and V.N. Zagurskii, Fitting classes with given properties of Hall subgroups, *Matematicheskiye Zametki* **78** (2) (2005) pp. 234–240 (in Russian); translated in *Mathematical Notes* **78** (2) (2005) pp. 213–218.
- [16] B. Huppert, Endliche Gruppen, Springer-Verlag, Berlin-Heidelberg-New York, 1967.
- [17] A.N. Skiba and L.A. Shemetkov, Multiply ω -local formations and Fitting classes of finite groups, $Matematicheskiye\ Trudy\ 2\ (1)\ (1999)\ pp.\ 114–147\ (in Russian);$ translated in Siberian Adv. Math. 10 (2) (2000) pp. 112–141.
- [18] N.T. Vorob'ev, Maximal screens of local formations, Algebra i Logika 18 (2) (1979) pp. 137–161 (in Russian).
- [19] S.A. Chunihin, Subgroups of finite groups, Nauka i tekhnika, Minsk, 1964 (in Russian).

CONTACT INFORMATION

A. P. Mekhovich

Polotsk State Agricultural Economic College, Oktyabrskaya street, 55, Polotsk, 211413, Belarus

E-Mail: amekhovich@yandex.ru

N. N. Vorob'ev, N. T. Vorob'ev Vitebsk State University of P.M. Masherov, Moscow Avenue, 33, Vitebsk, 210038, Belarus

E-Mail: vornic2001@yahoo.com

Received by the editors: 08.11.2009 and in final form 21.05.2010.