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Abstract. Let π be a nonempty set of primes and let F be a

saturated formation of all finite soluble π-groups. It is constructed

the saturated formation consisting of all finite π-soluble groups

whose F-projectors contain a Hall π-subgroup.

Introduction

In the theory of soluble Fitting classes P. Lockett and P. Hauck considered
the classes Lπ(F) and Kπ(F).

Definition 1 ([1, 2]). Let π be a set of primes and let F be a Fitting class
of finite soluble groups. Then

Lπ(F) = (G ∈ S : an F-injector of G contains a Hall π-subgroup of G);

Kπ(F) = (G ∈ S : a Hall π-subgroup of G belongs to F).

In [1] (see also [3, IX, 1.22]) Lockett used the class Lπ(F) to obtain
a description of the injectors for a Fitting class product FG. It was
proved that Lπ(F) and Kπ(F) are Fitting classes. Furthermore, Kπ(F) =
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Lπ(F ∩Sπ). Hence we may consider Lπ and Kπ as operators on the
set of all Fitting classes for every π. The class Kπ(F) was introduced
by Hauck [2] and has been studied in detail by Brison [4] and Cusack
[5]. Moreover, Brison [6, 7] applied Kπ(F) to obtain a description of Hall
subgroups radicals.

Analogously one may consider the following operators on the set of
all soluble formations.

Definition 2 ([8, 9]). Let π be a set of primes and let F be a formation
of finite soluble groups. Then

Lπ(F) = (G ∈ S : an F-projector of G contains a Hall π-subgroup of G);

Kπ(F) = (G ∈ S : a Hall π-subgroup of G belongs to F).

In [9] Blessenohl proved that if F is a saturated formation, then Kπ(F)
is a saturated formation.

Further L.A. Shemetkov posed the following question in this trend.

Problem (see [10, Problem 19]). Let F be a saturated formation of finite
groups, Cπ(F) be the class of all groups G such that there exist Hall π-
subgroups of G in F and any two of them are conjugate. Is the class
Cπ(F) a saturated formation?

The positive answer of Problem 19 was given by L.M. Slepova [11] in
the class of all π-separable groups for some restrictions to F; in [12] it
was shown by E.P. Vdovin, D.O. Revin and L.A. Shemetkov that Cπ(F)
is solubly saturated formation for any solubly saturated formation F.
However L.A. Shemetkov and A.F. Vasil’ev [13] proved that in general
the class Cπ(N) is not a saturated formation, where N is the class of all
nilpotent groups.

Wenbin Guo and Baojin Li [14] proved that Kπ(F) is a local Fit-
ting class for every local Fitting class F. In general N.T. Vorob’ev and
V.N. Zagurskii [15] gave the positive answer of Shemetkov’s Problem for
soluble ω-local Fitting classes.

K. Doerk and T. Hawkes investigated an analog of Problem 19 for the
class Lπ(F). It was proved, that if F is a solubly saturated formation,
then Lπ(F) is a saturated formation (see [8, Bemerkung]). Note that
the analog of the above-mentioned problem has the negative answer for
soluble Schunck classes (see [8, Beispiel 1]) and soluble Fitting classes
(see [3, IX, 3.15]).

A purpose of this paper is to investigate an analog of Shemetkov’s
Problem for the class Lπ(F), where F is the saturated formation of all
soluble π-groups.
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All groups considered are finite and π-soluble for some fixed nonempty
set of primes π. All unexplained notations and terminologies are stan-
dard. The reader is refereed to [16], [10] and [3] if necessary.

1. Preliminaries

Recall notation and some definitions used in this paper.
A group class closed under taking homomorphic images and finite

subdirect products is called a formation.
A group G is said to be π-soluble if every chief factor of G is either a

p-group for some p ∈ π or a π′-subgroup.
The complementary set of primes, P\π, is denoted by π′. σ(G) de-

notes the set of all distinct prime divisors of the order of a group G.
Functions of the form

f : P → {formations of groups}

are called local satellites (see [10]). For every local satellite f it is defined
the class

LF (f) = (G : G has f -central chief series),

i.e., for every chief factor H/K of G we have

G/CG(H/K) ∈ f(p) for every p ∈ π(H/K).

If F is a formation such that F = LF (f) for a local satellite f , then the
formation F is said to be saturated and f is a local satellite of F.

If F is a saturated formation, by [3, IV, 4.3] we have Char(F) = σ(F),
where σ(F) =

⋃

{σ(G) : G ∈ F}.
A satellite F of a formation F is called canonical if F (p) ⊆ F, and

F (p) = NpF (p) for all p ∈ P [17].
Let F be a formation. A subgroup H of a group G is called F-maximal

in G provided that
(1) H ∈ F, and
(2) if H 6 V 6 G and V ∈ F, then H = V .
A subgroup H of G is called an F-projector of G if HN/N is F-

maximal in G/N for all N EG.
By ProjFG we denote the (possibly empty) set of all F-projectors of

G.
Let F be a saturated formation and let H be a formation. Following

[3, IV, 1.1] we denote the class (F

։

H) as follows:

(F

։

H) = (G : ProjFG ⊆ H).
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If H = ∅, then (F

։

H) = ∅.
If RB ⊇ A, then it is said that A/B covered by R.
The symbols Gπ, Sπ, Eπ′ , Eπ and Np denote, respectively, a Hall

π-subgroup of a group G, the class of all π-soluble groups, the class of all
π′-groups, the class of all π-groups and the class of all p-groups.

We need some lemmas to prove the main result.

Lemma 1 ([18, Lemma 1.2, Lemma 1.3]). Let F = LF (F ) be the forma-
tion of all soluble π-groups. Then the following statements hold:

(1) F = LF (m), where

m(p) = (F

։

F (p)) for all p ∈ P.

(2) If V is an F-projector of a group G, then:
(a) V covers every m-central chief factor of G.
(b) Every chief factor of G covered of the subgroup V is m-central.

Lemma 2 ([10, Theorem 15.7]). Let F be a saturated formation and G
be a group having σ(F)-soluble F-residual. Then G has F-projectors and
any two of them are conjugate.

2. The proof of Theorem

First we prove

Lemma 3. Let F be a saturated formation of all soluble π-groups. Then
the following statements hold:

(1) The class Lπ(F) is a formation.
(2) Eπ′Lπ(F) = Lπ(F).

Proof. (1) If π = ∅, then L∅(F) = Sπ; if π = P, then LP(F) = F. We
have saturated formations Sπ and F, and hence the result. Now suppose
∅ ⊂ π ⊂ P. Since a formation F is saturated, by [3, IV, 4.3] we have
Char(F) = σ(F).

Since σ(F) ⊆ π, a π-soluble group G is σ(F)-soluble. Consequently,
the subgroup GF of G is σ(F)-soluble.

Let G ∈ Lπ(F), let K ⊳ G and let F be an F-projector of G. Then
there exists a Hall π-subgroup Gπ of G such that Gπ ⊆ F .

By [10, Lemma 15.2] and [10, Lemma 15.1], we see that GπK/K is a
Hall π-subgroup of G/K and FK/K is an F-projector of G/K. Therefore
G/K ∈ Lπ(F).

Let K1 and K2 be normal subgroups of G such that K1∩K2 = 1 and
let G/K1 ∈ Lπ(F) and G/K2 ∈ Lπ(F). Then GπK1/K1 ⊆ FK1/K1 and
GπK2/K2 ⊆ FK2/K2, where GπK1/K1 is a Hall π-subgroup of G/K1
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and GπK2/K2 is a Hall π-subgroup of G/K2, FK1/K1 is an F-projector
of G/K1 and FK2/K2 is an F-projector of G/K2.

Therefore GπK1 ⊆ FK1 and GπK2 ⊆ FK2. Hence GπK1 ∩GπK2 ⊆
FK1∩FK2. By [18, Lemma 1.4] and [10, Theorem 15.2] we have Gπ(K1∩
K2) ⊆ F (K1 ∩K2), i.e., Gπ ⊆ F . Thus G ∈ Lπ(F). This proves (1).

(2) Inclusion Lπ(F) ⊆ Eπ′Lπ(F) is obvious. We show that Eπ′Lπ(F) ⊆
Lπ(F). Let G ∈ Eπ′Lπ(F). Then GLπ(F) ∈ Eπ′ and G/GLπ(F) ∈ Lπ(F).

Let Gπ be a Hall π-subgroup of G and let F be an F-projector of G.
By [10, Lemma 15.2] and [10, Lemma 15.1], we see, GπG

Lπ(F)/GLπ(F) is
a Hall π-subgroup of G/GLπ(F) and FGLπ(F)/GLπ(F) is an F-projector of
G/GLπ(F). Therefore

GπG
Lπ(F)/GLπ(F) ⊆ F xGLπ(F)/GLπ(F).

By [10, Lemma 15.1], F xGLπ(F)/GLπ(F) is an F-projector of G/GLπ(F),
where x ∈ G/GLπ(F). Consequently,

|G/GLπ(F) : F xGLπ(F)/GLπ(F)| =
|G|

|F xGLπ(F)|
=

|G||F ∩GLπ(F)|

|F ||GLπ(F)|
=

|G|

|F ||GLπ(F)|

is a π′-number. Since |GLπ(F)| is a π′-number, |G : F | is a π′-number.
Thus a Hall π-subgroup Gπ of G is contained in the F-projector F of G.
Hence G ∈ Lπ(F). The lemma is proved.

The following theorem shows that if F is a saturated formation, then
the formation Lπ(F) is saturated.

Theorem. Let F = LF (F ) be the formation of all soluble π-groups. Then
Lπ(F) = LF (f) for a local satellite f such that

f(p) =

{

(F

։

F (p)), if p ∈ π,
Sπ, if p ∈ π′.

Proof. If π = ∅, then L∅(F) = Sπ; if π = P, then LP(F) = F. We have
saturated formations Sπ and F, and hence the result.

Now suppose ∅ ⊂ π ⊂ P. Since a formation F is saturated, by [3, IV,
4.3] we have Char(F) = σ(F).

So a π-soluble group G is σ(F)-soluble. Consequently, the subgroup
GF of G is σ(F)-soluble.

By Lemma 1 we have F = LF (m), where m is a local satellite of F
such that m(p) = F

։

F (p) for all p ∈ P.
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We show LF (f) ⊆ Lπ(F). Suppose LF (f) * Lπ(F). Let G be a
group of minimal order in LF (f)\Lπ(F). Then G is a monolithic group
and K = GLπ(F) is the socle of G. We have |G/K| < |G|, so by induction,
G/K ∈ Lπ(F). If T is an F-projector of G and Gπ is a Hall π-subgroup
of G, then by the definition Lπ(F), we have GπK/K ⊆ TK/K. Hence
GπK ⊆ TK. Since G is π-soluble, K is either a p-group, where p ∈ π or
a normal π′-subgroup.

Let K be a p-group, where p ∈ π. Since G ∈ LF (f),

G/CG(K) ∈ f(p) = (F

։

F (p)).

By Lemma 1, an F-projector T covers K, i.e., K ⊆ T . Therefore
T = TK ⊇ GπK ⊇ Gπ. It follows that G ∈ Lπ(F), a contradiction.

Now let K ∈ Eπ′ . Lemma 3 implies G ∈ Eπ′Lπ(F) = Lπ(F), a
contradiction.

We prove the converse inclusion, i.e., Lπ(F) ⊆ LF (f). Suppose
Lπ(F) * LF (f). Let H be a group of minimal order in Lπ(F)\LF (f).
Then H is a monolithic group and R = HLF (f) is the socle of H. Since H
is π-soluble, R is either a p-group, where p ∈ π or a normal π′-subgroup.

Let R be a π′-subgroup. By induction, H/R ∈ LF (f). Consequently,
all factors of the chief series H ⊃ . . . ⊃ R are f -central. By assumption,
H/CH(R) ∈ Sπ = f(p). Hence H ∈ LF (f), a contradiction.

Now let R be a p-group, where p ∈ π. If Hπ is a Hall π-subgroup
of H and V is an F-projector of H, then by Chunihin’s Theorem [19],
we have R ⊆ Hπ. Since H ∈ Lπ(F), Hπ ⊆ V . Consequently, R ⊆ V ,
i.e., V covers R. Lemma 1 implies that R is m-central chief factor of
H. By induction, H/R ∈ LF (f). Consequently, H ∈ LF (f). This final
contradiction completes the proof.
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