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Abstract. It is shown that two classes of groupoids satisfying

certain one-sided quasigroup conditions, namely the classes of one-

sided torsion groupoids and of one-sided finite exponent groupoids,

are complete lattices, both isomorphic to the lattice of Steinitz

numbers with the divisibility relation.

1. Introduction

Recall that Steiner quasigroups can be defined as groupoids which are
idempotent commutative and satisfy xy2 = x where xy2 denotes the term
(xy)y. So-called ‘power conditions’ (like (∗n) and (m∗) in Section 1.2) are
quite often applied in group and groupoid theory (see for example [4]).
Groupoids satisfying at least one of (∗n) and (m∗) are one-sided quasi-
groups (the terminology is briefly recalled in Section 1.1). In [6] it is
shown among other things that the varieties of groupoids defined by (∗n)
(as well as by (m∗)) form a lattice isomorphic to the lattice of positive
integers with the divisibility relation (see [6, Theorem 13], recalled in
this paper as Theorem 4). By a slight generalization of conditions (∗n)
and (m∗) (see (∗s) and (∗ts) below) we obtain a collection of new classes of
groupoids which are also one-sided quasigroups. To describe the algebraic
structure formed by these classes we compare it to the lattice structure
which arises from an idea of E. Steinitz (see [13, p. 250]). This idea —
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recalled briefly in Section 1.3 — allows us to treat the lattice of positive
integers with the divisibility relation as a sublattice of a certain com-
plete lattice. Today this idea is known as Steinitz numbers ([2, 12]) (or
supernatural or surnatural numbers ([11])). These numbers have found
applications in various parts of algebra, especially in field theory, group
theory and some related areas. Examples of such applications can be
found in [2, 7, 9, 10, 11, 12]. In the present paper it is proved that the
classes of one-sided torsion groupoids and of one-sided finite exponent
groupoids (the definitions are recalled in Section 1.2) form lattices both
isomorphic to the lattice of Steinitz numbers with the divisibility relation.
This main result is presented in Section 2 (Theorem 7).

Parts of the results of this paper were announced without proof at the
AAA 76 – 76th International Workshop on General Algebra (Linz 2008).

1.1. Main notation and notions

The paper is closely connected with [5] and [6], so similar terminology and
notation is used. For convenience of the reader we repeat some material
from [5] and [6] without proofs, making our presentation self-contained.
All undefined notions and notations are standard and can be found in [3]
or [8]. Some basic notions specific to quasigroup theory are analogous to
those introduced in [1].

We also use the following notations and terminology:

• N denotes the set of nonnegative integers, Nk
def
= N− {0, . . . , k − 1}.

• If n,m ∈ N1, then n | m means that n divides m.

• If A ⊆ CnCnCn is a set of cardinal numbers, then lcm(A) and gcd(A)
denote the least common multiple and the greatest common divisor
of the set A respectively.

• If A and B are sets, then AB def
= {f | f : B −→ A} denotes the set of

all maps from B to A.

By a groupoid is meant a pair G = (G, · ) with universe (base set) G

and binary operation

· : G×G −→ G ((x, y) 7→ xy).

In the following, the symbol G stands for groupoids only.

Recall that in groupoid theory, by a right (resp. left) quasigroup we
mean a groupoid G such that for all a, b ∈ G the equation xa = b (resp.
ax = b) has a unique solution. By a quasigroup we mean a groupoid which
is a right and left quasigroup simultaneously. For a groupoid G = (G, · )

we have the dual groupoid G← = (G, ◦ ) where x ◦ y
def
= yx. Clearly
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(G←)← = G. Let t be a term over a language appropriate for groupoid
theory. Let G be a groupoid. Then the interpretation tG

←

is named the
dual sentence to the interpretation tG. Thus, if a groupoid G is a right
quasigroup then its dual groupoid is a left quasigroup and vice versa.
This duality establishes a symmetrical correspondence between ‘right’
and ‘left’ versions of statements (to every theorem in the right version
corresponds its dual left version and vice versa). Therefore, for concise-
ness we formulate almost all statements below in one (right) version only.
The term ‘one-sided finite exponent groupoid’ will mean a finite right
exponent groupoid or a finite left exponent groupoid (the definitions are
recalled in Section 1.2). The term ‘one-sided torsion groupoid’ is under-
stood analogously.

1.2. Classes of groupoids with right (left) quasigroup proper-
ties

Let us recall some idea presented in [6].

The family of ‘power’ terms {xyn | n ∈ N1} is inductively defined as
follows:

xy1 = xy, xyn = (xyn−1)y,

and similarly for {nyx | n ∈ N1}. With these families of terms there are
naturally associated some families of identities. For n,m ∈ N1 we have
the following ‘power’ identities:

xyn = x, (∗n)
myx = x. (m∗)

Let Qn (resp. mQ) denote the variety of groupoids defined by the

identity (∗n) (resp. (m∗)). Moreover mQn
def
= mQ ∩Qn. The elements of

Qn will be called groupoids of right exponent n. Let Q
def
= {Qn | n ∈ N1}.

Set Q∗
def
=

⋃

Q. A groupoid G is said to be of finite right exponent if
G ∈ Q∗. The varieties Qn (n ∈ N1) and the class Q∗ were studied in [6].

Lemma 1. ([6, Lemma 1])Let G be a groupoid, and a, b ∈ G.

(i) If abn = a and k ∈ N1, then abkn = a.

(ii) If abn = a and abm = a, then abgcd(m,n) = a.

(iii) If abn = a and kba = a, then ablcm(k,n) = a and lcm(k,n)ba = a.

Proposition 2. ([6, Proposition 2]) For n, k ∈ N1 the following state-

ments hold:

(i) Qn ⊆ Qkn;
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(ii) Qk ∪ Qn ⊆ Qm, where m = lcm(k, n);

(iii) Qk ∩ Qn = Qd, where d = gcd(k, n);

(iv) kQn ⊆ mQm, where m = lcm(k, n).

Proposition 3. ([6, Proposition 9])

(i) If G satisfies (∗n) for some n ∈ N1, then G is a right quasigroup.

(ii) If G satisfies both (∗n) and (m∗) for some n,m ∈ N1, then G is a

quasigroup.

Theorem 4. ([6, Theorem 13]) The lattice Q∗ = (Q, ∧,∨) is isomorphic

to N1 = (N1, gcd, lcm).

The following formulas can be seen as a natural generalization of the
identities (∗n) (cf. [6]):

∀x, y ∃n ∈ N1 xyn = x. (∗t)

We call G right-torsion if the formula (∗t) is satisfied in G. The class
of right-torsion groupoids is denoted by T ∗.

Denote by QG∗ (resp. ∗QG) the class of right (resp. left) quasigroups.

Proposition 5. ([6, Proposition 14]) Q∗ ( T ∗ ( QG∗.

Clearly neither Q∗ nor T ∗ is a variety.

1.3. Steinitz numbers

We recall briefly an idea of extension of positive integers introduced by
E. Steinitz. The construction and notation we propose are presented in
the form suitable for our further considerations.

Let P be the set of prime numbers. There exists a 1-1 map

α : N1 −→ S◦ (n 7→ α(n)), (1)

where

S◦ = {x | x ∈ NP and |{p | xp 6= 0}| < ℵ0},

i.e. S◦ is the set of maps from P to N which are zero almost everywhere.
The mapping α(n) is defined as the infinite sequence

α(n) = 2α(n)23α(n)35α(n)5 . . . pα(n)p . . .
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which corresponds to the unique prime factorization of n. Thus we can
write slightly informal equalities

n =
∏

p∈P, α(n)p 6=0

pα(n)p = α(n) = 2α(n)23α(n)35α(n)5 . . . pα(n)p . . . (2)

identifying these formally different objects.
Let us consider the following two lattices:

• N1 = (N1, |), the lattice of positive integers with the divisibility rela-
tion,

• S◦ = (S◦,≤) where ≤ denotes the product relation, i.e. for a, b ∈ S◦

we have a ≤ b if and only if ap ≤ bp for every p ∈ P.

It is clear that

n | m ⇐⇒ α(n) ≤ α(m), (3)

so that

α : N1
iso
−→ S

◦, (4)

i.e. α is an isomorphism of lattices.

Using the traditional intuitive and slightly informal notation and ap-
plying the identification (2) we write

n = α(n) =
∏

p∈P

pα(n)p (5)

where in the formal symbol
∏

p∈P p
α(n)p almost all factors are equal to 1.

Using this notation we can write

gcd(n,m) = min{α(n), α(m)} =
∏

p∈N

pmin{α(n)p,α(m)p}, (6)

lcm(n,m) = max{α(n), α(m)} =
∏

p∈N

pmax{α(n)p,α(m)p}. (7)

Let N̄ = N ∪ {ω} be an extension of N by adding a new element ω.
We extend the standard relation ≤ by defining n ≤ ω for all n ∈ N̄. Thus
N̄ = (N̄,≤) is a bounded chain. Define S = N̄P. Then S is called the
set of Steinitz numbers. Thus S = (S,≤) with the product relation ≤ is
a complete (and evidently bounded) lattice called the lattice of Steinitz

numbers. It is clear that S◦ is a sublattice of S. For Steinitz numbers
we introduce the notation analogous to (5). If s ∈ S then we write

s =
∏

p∈P

psp (8)
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where sp ∈ N̄ and it is not assumed that almost all factors are equal to
1. On S one can define the divisibility relation | as follows. For r, s ∈ S,

s | r
def
⇐⇒ s ≤ r.

Thus the map α is an embedding of the lattice N1 into S = (S, |) (see
(4)). Statements (9) and (10) below can be seen as the analogues of (6)
and (7) respectively for Steinitz numbers. Let A ⊆ S and A 6= ∅. Then

gcd(A) = min{s | s ∈ A} =
∏

p∈N

pmin{sp|s∈A}, (9)

lcm(A) = max{s | s ∈ A} =
∏

p∈N

pmax{sp|s∈A}. (10)

S as a relational system determines the algebra Sa = (S, gcd, lcm, 1, ω)
of type (2, 2, 0, 0) which is a bounded lattice in algebraic interpretation.

Some examples

The positive integer 30 can be interpreted as the Steinitz number 213151

(factors equal to 1, i.e. of the form p0, are omitted). Numbers like 2ω3151

or
∏

p∈N p have no interpretation as positive integers. For every n ∈ N

we have 2n3151 | 2ω3151. Moreover, ω =
∏

p∈N pω and 1 =
∏

p∈N p0 are
the maximum and minimum in S respectively.

2. Classes of groupoids with one-sided quasigroup condi-

tions

The notion of Steinitz numbers allows us to present the classes of finite
one-sided exponent groupoids and of one-sided torsion groupoids as col-
lections of subclasses satisfying so-called bounded conditions.

Let s ∈ S. The following formulas can be seen as a generalization of
the identities (∗n) for Steinitz numbers:

∃n ∈ N1 ∀x, y n | s, xyn = x. (∗s)

Thus G satisfies (∗s) if and only if there exists n ∈ N1 such that n | s
and G satisfies (∗n). Let Qs̄ be the class of groupoids satisfying (∗s).
The members of Qs̄ will be called s-bounded right exponent groupoids.
Clearly (for example by Proposition 2(i)), if m ∈ N1 then Qm = Qm̄.
This identity allows us to simplify notation by omitting the bar over s

in Qs̄. In this terminology (clearly Q∗ = Qω), the class of finite right
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exponent groupoids is the class of ω-bounded right exponent groupoids,
and the variety Q1 (i.e. the variety 000∗ of left-zero groupoids) is the class
of 1-bounded right exponent groupoids. Clearly if s ∈ S then

Qs =
⋃

n∈N1, n|s

Qn. (11)

As a generalization of the condition (∗t) we have:

∀x, y ∃n ∈ N1 n | s, xyn = x. (∗ts)

Let Ts be the class of all groupoids satisfying (∗ts). The elements of
Ts will be called s-bounded right torsion groupoids.

Proposition 6.

(i) If m ∈ N1, then Qm = Tm.

(ii) Let s1, s2 ∈ S be such that s1 | s2. Then Qs1 ⊆ Qs2 and Ts1 ⊆ Ts2 .

(iii) If s ∈ S, then Qs ⊆ Ts. If s ∈ S and s is not a positive integer,

then Qs ( Ts.

Proof. (i) By the definitions of Qm and Tm, clearly Qm ⊆ Tm. Let
G ∈ Tm. Then for every a, b ∈ G there exists n ∈ N such that n | m and
abn = a. By Lemma 1 we see that for every a, b ∈ G the equality abm = a

is satisfied. Hence the identity xym = x is satisfied in G and G ∈ Qm.

(ii) This is an easy consequence of the definition of Qs and Ts for
s ∈ S.

(iii) It is clear that Qs ⊆ Ts. Assume that s is not a positive integer.
To prove that Qs 6= Ts we use a construction similar to the one in [6,
Example 8]. By assumption, s is a Steinitz number that is not a positive
integer. Thus s =

∏

p∈P p
sp and there are two mutually not necessarily

exclusive possibilities:

(a) There exists p ∈ P such that sp = ω,

(b) The set {sp | sp 6= 0} is not finite.

In case (a), fix p ∈ P such that sp = ω. Let f = (fn)n∈N1
be a family

of permutations of N1 such that

fn
def
= (1 . . . np) ∪ idNnp+1

i.e. fn is a cyclic permutation of {1, . . . , np} and the identity elsewhere.
Let Nf = (N1, ·f ) with a ·f b = fb(a). In the following we omit the
symbol ·f in products. Evidently the groupoid Nf satisfies condition
(∗tpω). Thus Nf ∈ Tpω . It is clear that pω | s. Therefore Tpω ⊆ Ts by
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(ii). Hence Nf ∈ Ts. Suppose that Nf satisfies condition (∗s). Then
Nf satisfies the identity xym = x for some m ∈ N1 such that m | s.
Evidently α(m)p < ω. Let b > α(m)p. Then bp > α(m)p. Therefore
1bbp = 1 (by the construction of Nf ) and 1bm = 1 (by the assumption
that Nf satisfies the identity xym = x). From Lemma 1 (ii) we have
1 = 1bgcd(bp,m) = 1bα(m)p , a contradiction. Hence Nf ∈ Ts −Qs̄.

In case (b), there exists an infinite sequence p̄ = (p1, p2 . . .) of prime
numbers such that spn ≥ 1 for every n ∈ N1. Let f = (fn)n∈N1

be a
family of permutations of N1 such that

fn
def
=

{

(1 . . . pi) ∪ idNpi+1
if n = pi for some i ∈ N1,

idN1
otherwise.

As in the previous item, let Nf = (N1, ·f ) with a ·f b = fb(a). Thus
Nf ∈ Ts′ where s′ =

∏

p∈P p
α(s′)p is such that

α(s′)p =

{

1 if p = pi for some i ∈ N1,

0 otherwise.

We have Nf ∈ Ts, because Nf ∈ Ts′ and s′ | s (see (ii)). Suppose that
Nf satisfies condition (∗s). Then Nf satisfies the identity xym = x for
some m ∈ N1 such that m | s. Let pi be a prime number appearing in the
sequence p̄ and not appearing in the prime decomposition of m. We have

1ppii = 1 and 1pmi = 1. Therefore 1 = 1p
gcd(pi,m)
i = 1pi by Lemma 1 (ii),

a contradiction. Thus Nf ∈ Ts −Qs̄.

Let Q̄
def
= {Qs | s ∈ S} and T̄

def
= {Ts | s ∈ S}. We have Q∗ = Qω =

⋃

Q̄ and T ∗ = Tω =
⋃

T̄ .

Theorem 7. Q̄∗ = (Q̄,⊆) and T̄∗ = (T̄ ,⊆) are complete lattices, both

isomorphic to the lattice of Steinitz numbers S = (S, |).

Proof. Let us consider the relational system Q̄∗ = (Q̄,⊆) and the com-
plete lattice S = (S, |). Let us take the map

ϕQ : S −→ Q̄ (x 7→ ϕQ(x)
def
= Qx).

We will prove that ϕQ : S
iso
−→ Q̄∗ (i.e. ϕQ is an isomorphism of

relational systems). The proof of this fact is divided into two steps:

(a) ϕQ is a bijection,

(b) ϕQ and ϕ−1Q are homomorphisms of relational systems.
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To prove (a), let s1, s2 ∈ S, s1 6= s2. Without loss of generality we
can assume that there exists a prime number p such that s1,p < s2,p.
Thus there exists a positive integer s′2,p such that s1,p < s′2,p ≤ s2,p. Let
Nf = (N1, ·f ) with

fn
def
=

{

(1 . . . s′2,p) ∪ idN
s′
2,p

+1
if n = p,

idN1
otherwise.

Thus Nf ∈ Qs2 −Qs1 . Therefore ϕQ(s1) = Qs1 6= Qs2 = ϕQ(s2). It
is obvious that ϕQ is a surjection.

To prove (b), let s1, s2 ∈ S with s1 | s2. By Proposition 6 (ii),
ϕQ(s1) = Qs1 ⊆ Qs2 = ϕQ(s2). Now assume that Qs1 ⊆ Qs2 and
suppose that s1 ∤ s2. Then s2,p < s1,p for some prime number p. Thus
there exists a positive integer s′1,p such that s2,p < s′1,p ≤ s1,p. Let
Nf = (N1, ·f ) with

fn
def
=

{

(1 . . . s′1,p) ∪ idN
s′
1,p

+1
if n = p,

idN1
otherwise.

Thus Nf ∈ Qs1 −Qs2 , a contradiction.

Using similar arguments one can prove that

ϕT : S −→ T̄ (x 7→ ϕT (x)
def
= Tx)

is an isomorphism of the relational systems S and T̄∗.

The complete lattices Q̄∗, T̄∗ as relational systems determine the alge-
bras Q̄∗a = (Q̄,∧,∨,000∗,Q∗) and T̄∗a = (T̄ ,∧,∨,000∗, T ∗) respectively, both
of type (2, 2, 0, 0); these are bounded lattices in algebraic interpretation.
As an immediate consequence of Theorem 7 we obtain the following corol-
lary:

Corollary 8. Q̄∗a ≃ T̄∗a ≃ Sa.
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