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Abstract. We prove that every commutative non-associative

nilalgebra of dimension ≤ 7, over a field of characteristic zero or

sufficiently large is solvable.

Introduction

Throughout this paper the term algebra is understood to be a commu-
tative not necessarily associative algebra. We will use the notations and
terminology of [6] and [7]. Let A be an (commutative nonassociative) al-
gebra over a field F . We define inductively the following powers, A1 = A

and A
s =

∑

i+j=sA
i
A
j for all positive integers s ≥ 2. We shall say that

A is nilpotent if there is a positive integer s such that A
s = (0). The

least such number is called the index of nilpotency of the algebra A. The
algebra A is called nilalgebra if given a ∈ A we have that alg(a), the
subalgebra of A generated by a, is nilpontent. The (principal) powers of
an element a in A are defined recursively by a1 = a and ai+1 = aai for all
integers i ≥ 1. The algebra A is called left-nilalgebra if for every a in A

there exists an integer k = k(a) such that ak = 0. The smallest positive
integer k which this property is the index. Obviously, every nilalgebra
is left-nilalgebra. For any element a in A, the linear mapping La of A

defined by x → ax is called multiplication operator of A. An Engel al-
gebra is an algebra in which every multiplication operator is nilpotent in
the sense that for every a ∈ A there exists a positive integer j such that
Lj
a = 0.
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An important question is that of the existence of simple nilalgebras in
the class of finite-dimensional algebras. We have the following Shestakov’s
Conjecture: there exists an example of commutative finite-dimensional
simple nilalgebras. In [6] we proved that every nilagebra A of dimension
≤ 6 over a field of characteristic 6= 2, 3, 5 is solvable and hence A

2 &
A. For power-associative nilalgebras of dimension ≤ 8 over a field of
characteristic 6= 2, 3, 5, we have shown in [8] that they are solvable, and
hence there is no simple algebra in this subclass. See also [4] and [6] for
power-associative nilalgebras of dimension ≤ 7.

We show now the process of linearization of identities, which is an
important tool in the theory of varieties of algebras. See [9], [12] and
[13] for more information. Let P be the free commutative nonassociative
polynomial ring in two generators x and y over a field F . For every
α1, . . . , αr ∈ P , the operator linearization δ[α1, . . . , αr] can be defined as
follows: if p(x, y) is a monomial in P , then δ[α1, . . . , αr]p(x, y) is obtained
by making all the possible replacements of r of the k identical arguments x
by α1, . . . , αr and summing the resulting terms if x−degree of p(x, y) is ≥
r, and is equal to zero in other cases. Some examples of this operator are
δ[y](x2(xy)) = 2(xy)2+x2y2, δ[x2, y](x2) = 2x2y and δ[y, xy2, x](x2) = 0.
For simplicity, δ[α : r] will denote δ[α1, . . . , αr], where α1 = · · · = αr = α.
We observe that if p(x) is a polynomial in P , then p(x + y) = p(x) +
∑

∞

j=1 δ[y : j]p(x), where δ[y : j]p(x) is the sum of all the terms of p(x+y)
which have degree j with respect to y.

The following known results are a basic tool in our investigation. See
[2], [3] and [7].

Lemma 1. Let A be a commutative left-nilalgebra of index ≤ 4 over
a field F of characteristic different form 2 or 3. Then A satisfies the
identities

x2x3 = −x(x2x2), x3x3 = (x2)3 = x(x(x2x2)), (1)

x3y = −x(x2y)− 2x(x(xy)), (2)

A is a nilalgebra of index ≤ 7 and every monomial in P of x-degree
≥ 10 and y-degree 1 is an identity in A. Furthermore, for every a ∈ A

the associative algebra Aa generated by all Lc with c ∈ alg(a) is in fact
generated by La and La2.

For simplicity, we will denote by L and U the multiplication operators,
Lx and Lx2 respectively, where x is an element in A.

Lemma 2. [7] Let A be a commutative algebra over a field of character-
istic 6= 2 or 3 satisfying the identities x4 = 0 and x(x2x2) = 0. Then A



Jo
u
rn

al
 A

lg
eb

ra
 D

is
cr

et
e 

M
at

h
.18 On Commutative nilalgebras

satisfies the following multiplication identities:

Lx2x2 = −4LUL, UU = −2ULL+ 2LUL+ 4L4, (3)

Table i, Multiplication identities of degree 5,
ULU LUL

2
L

3
U L

5

UUL 0 2 0 0

LUU 0 −2 −2 −4

L
2
UL 0 0 −1 −4

UL
3

0 0 0 2

Table ii, Multiplication identities of degree 6,
ULLU L

4
U L

6

UUU −2 4 8

UULL 0 0 4

ULUL −1 2 4

LUUL 0 2 0

LULU 0 0 4

ULLU L
4
U L

6

LLUU 0 −4 −4

UL
4

0 0 2

LUL
3

0 0 2

L
2
UL

2
0 1 0

L
3
UL 0 −1 −4

Furthermore, every monomial in P of x-degree ≥ 7 and y-degree 1 is
an identity in A and the algebra generated by Lx and Lx2 is spanned,
as vector space, by L,U, L2, UL, LU,L3, UL2, LUL,L2U,L4, ULU,LUL2,
L3U , L5, UL2U , L4U , L6.

Lemma 3. [7] Let A be a commutative algebra over a field of charac-
teristic 6= 2, 3 or 5, satisfying the identities x4 = 0 and x(x(x2x2)) = 0.
Then A satisfies the following multiplication identities:

LUU = −2LUL2 − 2L3U − 4L5, (4)

LUL3 = −
1

2

(

L2UL2 + L3UL
)

, (5)

L4UL = −3L5U − 16L7, (6)

L2ULU = −L3UL2 + 5L5U + 28L7, (7)

UL4U = −
1

2
L2UL2U + 24L6U + 62L8, (8)

L2UL2U = 48L6U + 156L8, (9)

L6U = −2L8. (10)

Furthermore, every monomial in P of x-degree ≥ 9 and y-degree 1 is an
identity in A.

We now study (commutative nonassociative) nilalgebras of dimension
≤ 7, over a field F of characteristic zero or sufficiently large. We will show
that nilalgebras over F with dimension ≤ 7, are solvable. An algebra A

is called solvable if there exists a positive integer t such that A
[t] = (0),
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where we define inductively A
[1] = A and A

[j+1] = A
[j]
A
[j] for all positive

integers j.

Let A be a finite-dimensional nilgalgebra over F . We will denote
by deg(A), the degree of A, the smallest number m such that for every
a ∈ A, the subalgebra alg(a) of A generated by a has dim(alg(a)) ≤ m. If
deg(A) ≤ 2, then A satisfies the identity x3 = 0 and hence this algebra is
Jordan. It is well-known that any finite-dimensional Jordan nilalgebra is
nilpotent. Therefore A is nilpotent if deg(A) ≤ 2. Because any nilpotent
algebra is solvable, we have that A is solvable if deg(A) ≤ 2.

The following lemma, proved in [6], is an immediate consequence of
a result of [10] and [11] for linear spaces of nilpotent matrices.

Lemma 4. Let A be a nilalgebra over the field F . Then A
2
A
2 ⊂ B for

every subalgebra B of codimension ≤ 2.

By above lemma, if deg(A) ≥ dim(A)− 2, then A
2
A
2 is nilpotent and

hence A is solvable. Summarizing, A is solvable in the following cases:
(i) dim(A) ≤ 5; (ii) dim(A) = 6 and deg(A) 6= 3; (iii) dim(A) = 7 and
deg(A) 6= 3 or 4. Thus, for dim(A) ≤ 7, it remains to be shows that A is
solvable if deg(A) = 3 or 4.

The following lemma is clear from Lemma 1. For any subset S of A
we denote by 〈S〉 the vector space spanned by S.

Lemma 5. Let A be an algebra over F satisfying the identity x4 = 0.
Consider an element a in A. (i) If a(a(a2a2)) 6= 0, then dim(alg(a)) = 6;
(ii) If a(a(a2a2)) = 0 and a(a2a2) 6= 0, then dim(alg(a)) = 5.

Proof. By Lemma 1 we observe that A is a nilalgebra of nilindex ≤ 7 and
alg(a) = 〈a, a2, a3, a2a2, a(a2a2), a(a(a2a2))〉. Assume a(a(a2a2)) 6= 0.
We will prove that a, a2, a3, a2a2, a(a2a2), a(a(a2a2)) are linearly inde-
pendent. Let λ1a+ λ2a

2 + λ3a
3 + λ4a

2a2 + λ5a(a
2a2) + λ6a(a(a

2a2)) =
0. Then 0 = L2

aLa2La(0) = L2
aLa2La(λ1a + λ2a

2 + λ3a
3 + λ4a

2a2 +
λ5a(a

2a2) + λ6a(a(a
2a2))) = λ1a(a(a

2a2)) and hence λ1 = 0. Anal-
ogously, 0 = L2

aLa2(0) = L2
aLa2(λ2a

2 + λ3a
3 + λ4a

2a2 + λ5a(a
2a2) +

λ6a(a(a
2a2))) = λ2a(a(a

2a2)) so that λ2 = 0. Next, 0 = LaLa2(0) =
LaLa2(λ3a

3 + λ4a
2a2 + λ5a(a

2a2) + λ6a(a(a
2a2))) = −λ3a(a(a

2a2)) so
that λ3 = 0. And analogously we can prove that λ4 = λ5 = λ6 = 0. The
case (ii) is similar.

Corollary 1. Let A be an algebra over F satisfying the identity x4 = 0.
Assume deg(A) = 3 or 4 and let a be an element in A. Then alg(a) =
〈a, a2, a3, a2a2〉 and 〈a3, a2a2〉 · alg(a) = 0.
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1. The case degree(A)=3

Now we will study nilalgebras of degree 3. In this section A will be a
nilalgebra of degree 3 and dimension ≤ 7 over the field F . Consider a
an element in A. Because A is nilalgebra, there exists a positive integer
t such that at = 0. We can assume that at = 0 and at−1 6= 0. Clearly,
the elements a, a2, . . . , at−1 are linearly independent, and hence t ≤ 4,
since deg(A) = 3. Consequently, the algebra A satisfies the identity
x4 = 0. By Corollary 1, the sequence a3, a2a2 is linearly dependent and A

satisfies the identities x(x2x2) = 0, x2x3 = 0. Consequently, A satisfies
multiplication identities (3), Tables i and ii and Lemma 2.

Lemma 6. Let A be a nilalgebra over the field F with dimension ≤ 7
and degree 3. Then L6 = 0 is a multiplication identity in A.

Proof. Assume that there exist a, b ∈ A such that L6
a(b) 6= 0. Then the

sequence Ψ = {Li
a(b) : i = 0, 1, . . . , 6} is a basis of A. On the other hand,

we note that from Table ii and (3) we have

L6
a(b) =

1

2
a(a2(a(a(ab)))) = −

1

8
(a2a2)(a(ab)),

so that a2a2 6= 0. Because Ψ is a basis and a(a2a2) = 0, we get that

a2a2 = λL6
a(b),

for any 0 6= λ ∈ F . Combining above relations we get that

a2a2 = (a2a2)[(−λ/8)a(ab)],

but this is impossible because A is an Engel algebra. Therefore L6
a = 0

for all a ∈ A.

We may use (2) combined with (3) to yield

Lx2x2L− 4Lx3L2 = 8L5. (11)

We shall use this formula now.

Lemma 7. Let A be a nilalgebra over the field F with dimension ≤ 7
and degree 3. Then L5 = 0 is a multiplication identity in A.

Proof. Assume that there exist a, b ∈ A such that L5
a(b) 6= 0. By identity

(11) we have that either a3 6= 0 or a2a2 6= 0. The proof now splits into
two cases.

Case 1. If a2a2 6= 0, then a3 = βa2a2 for any β ∈ F and using
(11) we obtain 8L5

a = La2a2La − 4βLa2a2L
2
a. Multiplying this relation
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from the right side with La yields La2a2L
2
a = 0, so that La3L

2
a = 0 and

La2a2La = 8L5
a. Now, it is easy to prove that Ψ = {a2a2, Li

a(b) : i =
0, 1, . . . , 5} is linearly independent and hence a basis of A. Let a2 =
λa2a2 +

∑5
i=0 µiL

i
a(b). Multiplying by a, 2 times, we get 0 = µ0L

2
a(b) +

µ1L
3
a(b) + µ2L

4
a(b) + µ3L

5
a(b), so that µ0 = µ1 = µ2 = µ3 = 0. Now,

multiplying with a2, we get a2a2 = λ(a2)3+µ4La2L
4
a(b)+µ5La2L

5
a(b) = 0,

but this is impossible.
Case 2. If a2a2 = 0, then La3L

2
a = −2L5

a. Now, it is easy to prove
that Φ = {a3, Li

a(b) : i = 0, 1, . . . , 5} is linearly independent and hence a
basis of A. Let a = λa3 +

∑5
i=0 µiL

i
a(b). Multiplying by a, 3 times, we

get 0 = µ0L
3
a(b) + µ1L

4
a(b) + µ2L

5
a(b), so that µ0 = µ1 = µ2 = 0. Next,

multiplying by a two time, we have a3 = µ3L
5
a(b), but this is impossible

because Φ is a basis.

Lemma 8. Let A be a nilalgebra over the field F with dimension ≤ 7
and degree 3. Then every monomial in P of x-degree ≥ 6 and y-degree 1
is an identity in A.

Proof. By Lemma 2 and Lemma 6 we only need to prove that L4U = 0
and UL2U = 0 are multiplication identities in A. Using identity (3),
Table ii and relation 0 = δ[x2]{x(x(x(x(xy))))} we have that 0 = UL4 +
LUL3+L2UL2+L3UL+L4U = L2UL2+L3UL+L4U = L4U . Now, from
Lemma 2, multiplication identities L6 = 0 and L4U = 0, and identity
(11), we see that

ULLU = −ULUL =
1

4
ULx2x2 = ULx3L.

Let a ∈ A. If a2a2 = 0, if follows immediately that La2L
2
aLa2 = 0. If

a2a2 6= 0, then there exists λ ∈ F such that a3 = λa2a2. Therefore,
La2L

2
aLa2 = La2La3La = λLa2La2a2La = 0. This proves the lemma.

Using identity (2), Lemma 2 and Lemma 7, we can prove easily the
following multiplication identities

L3U = −L2UL = −L2Lx3 = LLx3L =
1

4
LLx2x2 ,

LUL2 = −Lx3L2 = −
1

4
Lx2x2L,

for nilalgebras of dimension ≤ 7 and degree 3 over the field F . We shall
use these formulas now.

Lemma 9. Let A be a nilalgebra over the field F with dimension ≤ 7 and
degree 3. Then L3U = 0 and LUL2 = 0 are multiplications identities in
A.
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Proof. Let a be an element in A. If a2a2 = 0 then, from above identities
we obtain immediately that L3

aLa2 = (1/4)LaLa2a2 = 0 and LaLa2L
2
a =

−(1/4)La2a2La = 0. If a2a2 6= 0 then there exists λ ∈ F such that
a3 = λa2a2. This means that La3 = λLa2a2 . Then we have L3

aLa2 =
L2
aLa3 = λL2

aLa2a2 = 0 and LaLa2L
2
a = −La3L

2
a = λLa2a2L

2
a = 0 by

Lemma 8. This proves the lemma.

Lemma 10. Let A be a nilalgebra over the field F with dimension ≤ 7
and degree 3. Then LUL = 0 is a multiplication identity in A.

Proof. We will assume the contrary, there exist two elements a, b ∈ A

such that a(a2(ab)) 6= 0. We know by (3) that

a(a2(ab)) = −(1/4)(a2a2)b.

Therefore, a2a2 6= 0 and also the sequence {a2a2, a(a2(ab))} is linearly
independent, because Lb is nilpotent. For any λ ∈ F we have that
a3 = λa2a2. Obviously, this forces La3 = λLa2a2 . From identity (2) and
above lemma, we have immediately that LaLa2La = −La3La − 2L4

a =
−λLa2a2La − 2L4

a = 4λLaLa2L
2
a − 2L4

a = −2L4
a, that is

LaLa2La = −2L4
a. (12)

We will now prove that Ψ = {b, ab, a2(ab), a(a2(ab)), a, a2, a2a2} is a basis
of A. Let λ1b+λ2ab+λ3a

2(ab)+λ4a(a
2(ab))+µ1a+µ2a

2+µ3a
2a2 = 0,

with λi, µj ∈ F . Multiplying with a, a2 and a successively, we get λ1 = 0.
Multiplying with a2 and a successively, we have λ2 = 0. Multiplying with
a and a2 successively, we obtain µ1 = 0, so that

λ3a
2(ab) + λ4a(a

2(ab)) + µ2a
2 + µ3a

2a2 = 0.

Multiplying with a it follows that λ3 = 0 since a2a2, a(a2(ab)) are linearly
independent and a3 ∈ 〈a2a2〉. Multiplying with a2 we have µ2 = 0. Now,
relation λ4a(a

2(ab))+µ3a
2a2 = 0 forces λ4 = µ3 = 0. Therefore, we have

proved that the sequence Ψ is linearly independent. Since dim(A) ≤ 7,
it follows that Ψ is a basis of A.

On the other hand, because Ψ is a basis of A, we have a representation
a(ab) = α1b+α2ab+α3a

2(ab)+α4a(a
2(ab))+α5a+α6a

2+α7a
2a2, with

αi ∈ F . Using the operators LaLa2La, LaLa2 , La2La and LaLa, we prove
that α1 = 0, α2 = 0, α5 = 0 and a(a(a(ab))) = 0 respectively, but this is
impossible since by identity (12) we have that 2a(a(a(ab))) = −a(a2(ab))
and by hypothesis this element is diferent form zero. This proves the
lemma.
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It was proved in [8] the following result for power-associative nilalge-
bras.

Lemma 11. Every commutative power-associative nilalgebra of dimen-
sion ≤ 8 over a field of characteristic 6= 2, 3 or 5 is solvable.

Theorem 1. Let A be a nilalgebra over the field F with dimension ≤ 7
and degree 3. Then, the algebra A is solvable.

Proof. By Lemma 10 we have that a2a2 belong to the annihilator of
the algebra A, for every a ∈ A. This means that the linear subspace
J = 〈a2a2 : a ∈ A〉 is an ideal of A and AJ = 0. Thus, A/J is a
commutative power-associative nilalgebra of dimension ≤ 7, and hence
solvable. This implies that A is solvable.

2. The case degree(A) = 4 and x(x(xx))=0

For any subalgebra B of an algebra A, the set st(B) = {x ∈ A : xB ⊂ B}
is called stabilizer of B in A. For every element a ∈ st(B), we can define
a linear transformation La on the quotient vector space A = A/B as
follows,

La(x+B) = ax+B,

for all x ∈ A. We will now denote by MB the linear space {La : a ∈ st(B)}
and by NB the linear subspace {Lb : b ∈ B}. Evidently, we have that
NB ⊂ MB.

The following result will be useful. Items (iv), (v), (vi) and (vii) follow
immediately from (i)-(iii) proved in [6].

Lemma 12. Let V be a vector space of dimension 3 over a field F of
characteristic 6= 2 and let M be a vector space of nilpotent linear endo-
morphisms in EndF (V ). Then dimM ≤ 3 and either M

3 = 0 or: (i)
dimM = 2; (ii) for every nonzero f ∈ M we have that rank(f) = 2; (iii)
if M = 〈f1, f2〉, then there exists a basis φ of V and 0 6= λ ∈ F such that
the matrices (using columns) of f1 and λf2 with respect to φ are





0 0 0
1 0 0
0 −1 0



 ,





0 1 0
0 0 1
0 0 0





respectively; (iv) if f, g and fg are all in M, then f = 0 or g = 0; (v) if
f, g, h and f(g + fh) are all in M and f 6= 0, then g = 0 and h ∈ 〈f〉;
(vi) if f, g, h ∈ M and f(f + gh) = 0, then f = 0; (vii) if f, g ∈ M and
f2g2 = 0, then the sequence {f, g} is linearly dependent.
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Let A be a nilalgebra over the field F with degree 4 and dimension ≤ 7
satisfying the identity x4 = 0. From Lemma 4, A is solvable if dim(A) ≤
6, so that throughout this section we will assume that A has dimension
7. By Corollary 1, the algebra A satisfies the identities x(x2x2) = 0
and x2x3 = 0. Now we may take an element b in A such that B, the
subalgebra of A generated by b, has dimension 4. By Corollary 1, we
have

B = 〈b, b2, b3, b2b2〉,

and

〈b3, b2b2〉B = (0). (13)

If dimNB = 0, then B is an ideal of A and hence A is solvable because
A/B is solvable. If MB is nilpotent, then there exists a ∈ A but not in
B such that

f(a+B) = 0 +B, (14)

for all f ∈ MB. There exists a smallest integer m, 1 ≤ m ≤ 3, such that
Mm

B
= (0). If m = 1 take a ∈ A but not in B; if m > 1, take 0 6= g ∈

Mm−1
B

and a+B in g(A/B) with a+B 6= 0+B. Then (14) is satisfied.
Since a ∈ st(B) we have that La ∈ MB. Then relation (14) implies that
0 +B = La(a +B) and hence a2 ⊂ B. Let B

′ = 〈b, b2, b3, b2b2, a〉. We
have that B

′ is a subalgebra of A with codimension 2. Using Lemma 4
we get that A

2
A
2 ⊂ B

′ so that A is solvable.
We now consider the case NB 6= (0) and M3

B
6= (0). Then MB satisfies

(i)-(vii) of Lemma 12. By Lemma 1 we have that NB is nilpotent, so
that Lemma 12 forces dim(NB) = 1 since NB ⊂ MB and MB is not
nilpotent. Let 0 6= h ∈ NB. Then Lbi = αih for any αi ∈ F and for
i = 1, 2, 3. From identities (3) and (2) we have Lb2b2 = −4α2

1α2h
3 = 0

and α3h = Lb3 = −α1α2h
2 − 2α3

1h
3 = −α1α2h

2 so that Lb3 = 0 since

h3 = 0. Next (3) forces Lb2
2
= −2α2

1α2h
3 + 2α2

1α2h
3 + 4α4

1h
4 = 0.

Therefore Lb2 = 0 since Lb2 ∈ MB and from Lemma 12 every nonzero
element in MB is nilpotent of index 3. Thus, we have proved that

B
2
A = 〈b2, b3, b2b2〉A ⊂ B.

This yields NB = 〈Lb〉. Because NB  MB and dim(MB) = 2, we can
take a ∈ st(B), but not in B such that MB = 〈Lb, La〉. By Lemma 12
there exists a basis Φ = {v1 +B, v2 +B, v3 +B} of A/B such that the
matrices of Lb and La with respect to Φ are respectively





0 0 0
1 0 0
0 −1 0



 and
1

λ





0 1 0
0 0 1
0 0 0




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for any 0 6= λ ∈ F . This means that v3+B = αa+B, v2+B = αa2+B

and v1 +B = αa3 +B for any α ∈ F , α 6= 0. We can assume, without
lost of generality, that λ = 1 and α = 1. Now, by equation (3) and (13)
we have (b2b2)a = −4b(b2(ba)) ⊂ b(b2B) = (0), so that

(b2b2)a = 0.

On the other hand, ab can be expressed as a linear combination of
b, b2, b3, b2b2. Let ab = µ1b+µ2b

2+µ3b
3+µ4b

4b2. Then cb = µ1b+µ4b
2b2,

where c = a − µ2b − µ3b
2. Therefore c(cb) = µ1cb + µ4c(b

2b2) = µ1cb.
Since A is an Engel algebra, Lc is nilpotent and hence either µ1 = 0 or
cb = 0. This implies

ab ∈ B
2.

Using relation (3) we have that b2(b2a) = −2b2(b(ba)) + 2b(b2(ba)) +
4b(b(b(ba))) = 0. This forces

b2a ∈ B
3.

Finally, using (2) and (3) we have

(b2b2)a2 = −4b(b2(ba2)) ∈ 〈b(b2(−a+B))〉 = 〈b(b2a)〉 = 0,

(b2b2)a3 = −a(a2(b2b2))− 2a(a(a(b2b2))) = 0,

and hence b2b2 ∈ ann(A). Let J = 〈b2b2 : b ∈ A, dim(alg(b)) = 4〉. Then
A/J is a commutative nilalgebra of dimension ≤ 6 and degree ≤ 3, so
that solvable. This implies that A is solvable.

3. The case degree(A) = 4

Let A be a nilalgebra with degree 4. If a ∈ A, then there exists an integer
t such that at 6= 0 and at+1 = 0 so that the elements a, a2, . . . , at are
linearly independent. Since deg(A) = 4, we have that t ≤ 4 and hence A

satisfies the identity
x5 = 0.

Now we will see that A is a nilalgebra of index ≤ 9. Let B be a subalgebra
of A generated by a single element and let k1 be the index of B as left-
nilalgebra, that is k1 is the smallest integer such that xk1 = 0 for all
x ∈ B. Evidently, dimB ≤ 4 and k1 ≤ 5. If k1 ≤ 3, then B is a Jordan
algebra and hence nilpotent with B

k1 = 0. If k1 = 4, then by Lemma
1 and Lemma 5, we have that p(x) = 0 is an identity in B for every
monomial p(x) of degree ≥ 5. Finally, if k1 = 5, then there exists b ∈ B

such that B = 〈b, b2, b3, b4〉. Now, because B is nilpotent, we have that

b2b2 ∈ 〈b3, b4〉, b2b3, b3b3 ∈ 〈b4〉, b4B = (0).
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Thus, B3,B4 ⊂ 〈b3, b4〉, B5 ⊂ 〈b4〉 and B
t = 0 for all t ≥ 9. It has the

following consequences.

Lemma 13. The algebra A satisfies the identities

xi(xj(xtx2)) = 0, i, j, t ≥ 1,

and p(x) = 0 for every monomial p(x) ∈ P of degree ≥ 9.

Linearizing the above identities we have the following multiplication
identities (in order to simplify, we will write L3 instead of Lx3 and L4

instead of Lx4):

L4 + LL3 + L2U + 2L4 = 0, (15)

Lx2x3 + 2LL3L+ LUU + 2LUL2 = 0, (16)

2L4L
2 + L4U + L3L3 + L3LU + 2L3L

3 = 0, (17)

Lx3x3 + 2LL3U + 4LL3L
2 = 0, (18)

U3 + 2UUL2 + 2UL3L+ 2Lx2x3L = 0, (19)

L4(L3 + LU + 2L3) = 0. (20)

Lemma 14. [9] Every nilalgebra of bounded index over F is an Engel
algebra.

We have proved that the index of a nilalgebra of degree 4 is ≤ 9. We
then apply Lemma 14 to obtain

Corollary 2. Every nilalgebra of degree 4 over F is an Engel algebra.

Theorem 2. Let A be a nilalgebra over the field F . If dim(A) ≤ 7, then
A is solvable.

Proof. We already prove that A is solvable if either deg(A) 6= 4 or x4 = 0
is an identity. Thus, it remains to prove that A is solvable if dim(A) = 7,
deg(A) = 4 and x4 = 0 is not an identity in A.

Let A be a nilalgebra of dimension 7 and degree 4 such that there
exists b ∈ A with b4 6= 0. Let B be the subalgebra of A generated by
b. Because A has degree 4, we have B = 〈b, b2, b3, b4〉 and b5 = 0. As
in Section 3, if MB is nilpotent, then the algebra A is solvable. Also,
the algebra is solvable if NB = 0. Thus, we can assume that MB is not
nilpotent and dimNB ≥ 1. By Lemma 12, we have that dim(MB) = 2.
From (15) we have

Lb4 = −LbLb3 − Lb
2
Lb2 = −Lb(Lb3 + LbLb2) ∈ NB.
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Combining above relation and (v) of Lemma 12 we get that Lb4 = 0. Now
(17) implies Lb3(Lb3 + LbLb2) = 0 and by (vi) of Lemma 12 we get that
Lb3 = 0. This means that

B
3
A ⊂ B, (21)

and NB = 〈Lb, Lb2〉. Now relation (19) for x = b forces 0 = Lb2
3
+

2Lb2
2
Lb

2
+ 2Lb2Lb3Lb + 2Lb2b3Lb = 2Lb2

2
Lb

2
and hence using (vii) of

Lemma 12 we have that
dim(NB) = 1. (22)

We can assume, without loss of generality, that

Lb 6= 0, (23)

since if Lb = 0, then Lb2 6= 0 and we can take 0 6= λ ∈ F such that
(b+ λb2)4 = b4 + λ[b(b2b2) + b2b3] + λ2(b2)3 6= 0. Because dim(NB) = 1,
there exists α ∈ F such that Lb2 = αLb. As in Section 3 there exists
a ∈ A such that MB = 〈Lb, La〉, Φ = {a3 +B, a2 +B, a+B} is a basis
of A/B and the matrices of Lb and La with respect to Φ are respectively




0 0 0

1 0 0

0 −1 0



 and




0 1 0

0 0 1

0 0 0



 . This means that

ba3 − a2, b2a3 − αa2, ba2 + a, b2a2 + αa, ba, b2a, a4 ∈ B. (24)

By (24) we have that ba ∈ B so that ba = λ1b + λ2b
2 + λ3b

3 + λ4b
4,

with λi ∈ F . Therefore [a− λ2b− λ3b
3 − λ4b

3]b = λ1b. This implies that
λ1 = 0 and hence

ba ∈ B
2, (25)

since every multiplication operator on A is nilpotent. Let j be a positive
integer. From (15) and (21) we get

b4aj = −b(b3aj)− b(b(b2aj))− 2b(b(b(baj))) ∈ B
2, (26)

so that
b4A ⊂ B

2. (27)

By (20) we see that 0 = b4(b3a3 + b(b2a3) + 2b(b(ba3))) = b4(b(b2a3)) =
−αb4a and now using identity (17) we have 2b4(b(ba3)) + b4(b2a3) +
b3(b3a3) + b3(b(b2a3)) + 2b3(b(b(ba3))) = 0 and hence −2b4a + α(b4a2 −
b3a) = −b3(b3a3) ∈ 〈b4〉. Therefore

b4a = 0, α(b4a2 − b3a) ∈ 〈b4〉, (28)

since A is an Engel algebra and αb4a = 0.
The proof now splits into two cases:
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Case 1. The relation x3x3 = 0 is not an identity in A. In this case,
we can assume without loss of generality that

b4 6= 0, and b3b3 6= 0. (29)

Let b1 be an element in A such that b31b
3
1 6= 0 and B the subalgebra of A

generated by b1. Then {b1, b
2
1, b

3
1, b

3
1b

3
1} is a basis of B and products satisfy

the following properties, b21b
2
1 ∈ 〈b31, b

3
1b

3
1〉, b

3
1B ⊂ 〈b31b

3
1〉 and (b31b

3
1)B =

(0), because B is nilpotent. By Corollary 1 we have that x4 = 0 is
not an identity in B. Thus, there exists an element b in B of the form
λ1b1 + λ2b

2
1 + λ3b

3
1 + λ4b

3
1b

3
1 such that b4 6= 0 and also we can assume

that Lb 6= 0. Evidently, we have λ1 6= 0. Now b2 ∈ λ2
1b

2
1 + 〈b31, b

3
1b

3
1〉, b

3 ∈
λ3
1b

3
1+ 〈b31b

3
1〉 and b3b3 = λ6

1b
3
1b

3
1 6= 0. Then (29) is satisfied. Evidently, we

have b3b3 = γb4 for any 0 6= γ ∈ F . Combining (18) and (28) it follows
0 = (b3b3)a2 + 2b(b3(b2a2)) + 4b(b3(b(ba2))) = (b3b3)a2 − 2αb(b3a) =
γb4a2 − 2αb(b4a2). Thus b4b2 = (2α/γ)b(b4a2). Since A is an Engel
algebra it follows that

b4a2 = 0.

Combining this identity with (28) we have that

αb3a ∈ 〈b4〉. (30)

Now, relation (16) with x = b for the element a2 implies 2b(b3a) +
αb(b2a) ∈ 〈b4〉. Combining this relation with (30) we see that b(b3a) ∈
〈b4〉, so that b3a ∈ 〈b3, b4〉. Therefore

b3a ∈ 〈b4〉,

since A is an Engel algebra. Next, we put x = b in (15) to obtain
0 = b4a+ bb3a+ b(b(b2a)) + 2b(b(b(ba))) = b(b(b2a)), and hence

b2a ∈ 〈b3, b4〉.

Now, by Lemma 13 we know that x(x2x3) = 0 is an identity in A and
hence 0 = (1/48)δ[b : 4, a : 2]{x(x2x3)} = b(b2(ba2)) + 2b(b2(a(ba))) +
4b((ba)(b(ba))) + 2a(b2(b(ba))) + 2b((ba)(b2a)) + a(b2(b2a)) + b(a2b3) +
2a((ba)b3), forces b(b3a2) ∈ 〈b4〉 so that

b3a2 ∈ 〈b4〉.

Finally, (18) implies 0 = (b3b3)a3 + 2b(b3(b2a3)) + 4b(b3(b(ba3))) =
(b3b3)a3+2b(b3(αa2−2a)) = (b3b3)a3. Therefore we must have b4a3 = 0.
Consequently, we have proved, in this case, that b4 ∈ ann(A). Let J =
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〈c4 : c3c3 6= 0, c ∈ A〉. Then A = A/J is a nilalgebra of dimension ≤ 6
and hence solvable. This forces the solvability of A.

Case 2. The relation x3x3 = 0 is an identity in A. Linearizing this
identity we have that A satisfies the identity

x3(x2y) + 2x3(x(xy)) = 0.

Taking x = b and y = a2 it follows immediately that αb3a ∈ 〈b4〉 and for
x = b and y = a3 this identity forces αb3a2 − 2b3a ∈ 〈b4〉. Therefore

b3a ∈ 〈b4〉.

Next, (15) forces 0 = b4a+ b(b3a) + b(b(b2a)) + 2b(b(b(ba))) = b(b(b2a)),
so that

b2a ∈ 〈b3, b4〉.

Now, taking the identity δ[b : 4, a : 3]{x4x3} = 0 we have

−b4a3 =
[

b3a+ b(b2a) + 2b(b(ba))
]

·
[

ba2 + 2a(ab)
]

+
[

b(ba2) + 2b(a(ba)) + 2a(b(ba)) + a(ab2)
]

·
[

b2a+ 2b(ba)
]

+
[

ba3 + a(a2b) + 2a(a(ab))
]

·
[

b3
]

∈ 〈b4〉 ·
〈

a, b, b2, b3, b4〉+B · 〈b3, b4〉+B · 〈b3〉 ⊂ 〈b4〉

since by (24) we have that ba3 + a(a2b) ∈ B. This means that

b4a3 = 0,

because La3 is nilpotent. From δ[b : 3, a : 2]x5 = 0 we get −b(b(ba2)) =
a(ab3)+a(b(ab2))+2a(b(b(ba)))+b(a(ab2))+2b(a(b(ba)))+2b(b(a(ba))) =
0. This means that

b(ba2) ∈ 〈b4〉.

Finally, from δ[b : 4, a : 2]{x4x2} = 0 it follows that

−b4a2 =
[

b3a+ b(b2a) + 2b(b(ba))
]

·
[

2ba
]

+
[

b(ba2) + 2b(a(ba)) + 2a(b(ba)) + a(ab2)
]

·
[

b2
]

∈ 〈b4〉 · 〈b2, b3, b4〉+ 〈b4〉 · 〈b2〉 = (0).

Therefore b4 ∈ ann(A) and as in the case 1, this implies the solvability of
A.
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