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ABSTRACT. We prove that every commutative non-associative
nilalgebra of dimension < 7, over a field of characteristic zero or
sufficiently large is solvable.

Introduction

Throughout this paper the term algebra is understood to be a commu-
tative not necessarily associative algebra. We will use the notations and
terminology of [6] and [7]. Let 2 be an (commutative nonassociative) al-
gebra over a field F. We define inductively the following powers, 2A' =
and A* =", tjms A for all positive integers s > 2. We shall say that
2 is nilpotent if there is a positive integer s such that 2A* = (0). The
least such number is called the index of nilpotency of the algebra 2. The
algebra 2 is called nilalgebra if given a € 2 we have that alg(a), the
subalgebra of 2 generated by a, is nilpontent. The (principal) powers of
an element @ in 2 are defined recursively by a! = a and a'*! = aa’ for all
integers ¢ > 1. The algebra 2( is called left-nilalgebra if for every a in 2
there exists an integer k = k(a) such that a* = 0. The smallest positive
integer k& which this property is the index. Obviously, every nilalgebra
is left-nilalgebra. For any element a in 2, the linear mapping L, of 2
defined by x — ax is called multiplication operator of A. An Engel al-
gebra is an algebra in which every multiplication operator is nilpotent in
the sense that for every a € % there exists a positive integer j such that
L) =0.
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An important question is that of the existence of simple nilalgebras in
the class of finite-dimensional algebras. We have the following Shestakov’s
Conjecture: there exists an example of commutative finite-dimensional
simple nilalgebras. In [6] we proved that every nilagebra 2 of dimension
< 6 over a field of characteristic # 2,3,5 is solvable and hence > &
2. For power-associative nilalgebras of dimension < 8 over a field of
characteristic # 2, 3,5, we have shown in [8] that they are solvable, and
hence there is no simple algebra in this subclass. See also [4] and [6] for
power-associative nilalgebras of dimension < 7.

We show now the process of linearization of identities, which is an
important tool in the theory of varieties of algebras. See [9], [12] and
[13] for more information. Let P be the free commutative nonassociative
polynomial ring in two generators x and y over a field F'. For every
a1, ...,ap € P, the operator linearization dayq, . .., a,] can be defined as
follows: if p(z,y) is a monomial in P, then §[a, ..., a,|p(x,y) is obtained
by making all the possible replacements of r of the k identical arguments x
by a1, ..., a, and summing the resulting terms if x—degree of p(z,y) is >
r, and is equal to zero in other cases. Some examples of this operator are
S[yl(2* (zy)) = 2(zy)*+2?y?, 8[z%, yl(2?) = 2207y and 6[y, zy?, z](2?) = 0.
For simplicity, o[« : 7] will denote d[ay, ..., a,], where a; = -+ = a, = .
We observe that if p(z) is a polynomial in P, then p(x + y) = p(x) +
> 5210y = jlp(z), where 6[y : j]p(z) is the sum of all the terms of p(z +y)
which have degree j with respect to y.

The following known results are a basic tool in our investigation. See
[2], [3] and [7].

Lemma 1. Let 2 be a commutative left-nilalgebra of index < 4 over
a field F' of characteristic different form 2 or 3. Then 2 satisfies the
identities

22 = —x(2?2?), 2323 = (2?)® = z(x(2%2?)), (1)

2’y = —a(z?y) - 2z(z(zy)), (2)

A is a nilalgebra of index < 7 and every monomial in P of x-degree
> 10 and y-degree 1 is an identity in A. Furthermore, for every a € A
the associative algebra U, generated by all L. with ¢ € alg(a) is in fact
generated by Ly and L,2.

For simplicity, we will denote by L and U the multiplication operators,
L, and L,2 respectively, where z is an element in 2L

Lemma 2. [7] Let 2 be a commutative algebra over a field of character-
istic # 2 or 3 satisfying the identities x* = 0 and z(2%x?) = 0. Then A
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satisfies the following multiplication identities:

Ly2,2 = —4LUL, UU = —2ULL + 2LUL + 4L*, (3)

Table i, Multiplication identities of degree 5,
ULU LUL? L’U °

UUL 0 2 0 0
LUU 0 -2 -2 —4
L*UL 0 0 -1 —4
UL3 0 0 0 2

Table ii, Multiplication identities of degree 6,

ULLU L*U L° ULLU L*U I°
UuU -2 4 8 LLUU 0 -4 —4
UULL 0 0 4 UL* 0 0 2
ULUL -1 2 4 LUL? 0 0 2
LUUL 0 2 0 L*UL? 0 1 0
LULU 0 0 4 L*UL 0 -1 —4

Furthermore, every monomial in P of x-degree > 7 and y-degree 1 is
an identity in A and the algebra generated by L, and L,2 is spanned,
as vector space, by L,U, L>, UL, LU, L3, UL? LUL, L*U, L*,ULU, LU L?,
L3U, L°, UL?U, LU, LS.

Lemma 3. [7] Let 2 be a commutative algebra over a field of charac-
teristic # 2,3 or 5, satisfying the identities z* = 0 and x(x(x?2?)) = 0.
Then A satisfies the following multiplication identities:

LUU = —2LUL*-2L3%U —4I°, (4)
1
LUL? = —§(L2UL2 + L3UL), (5)
L'UL = —3L°U —16L", (6)
L*ULU = —L3UL?+5L°U + 28L7, (7)
1
UL'U = —§L2UL2U + 245U + 628, (8)
L*UL?U = 48L°U + 156L8, (9)
LU = —2I® (10)

Furthermore, every monomial in P of x-degree > 9 and y-degree 1 is an
identity in 2.

We now study (commutative nonassociative) nilalgebras of dimension
< 7, over a field F of characteristic zero or sufficiently large. We will show
that nilalgebras over F' with dimension < 7, are solvable. An algebra 2l
is called solvable if there exists a positive integer ¢ such that A = (0),
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where we define inductively A1 = 921 and AL+ = AUIAL] for all positive
integers j.

Let 2 be a finite-dimensional nilgalgebra over F. We will denote
by deg(2l), the degree of 2, the smallest number m such that for every
a € AU, the subalgebra alg(a) of A generated by a has dim(alg(a)) < m. If
deg(A) < 2, then 2 satisfies the identity 23 = 0 and hence this algebra is
Jordan. It is well-known that any finite-dimensional Jordan nilalgebra is
nilpotent. Therefore 2 is nilpotent if deg(2) < 2. Because any nilpotent
algebra is solvable, we have that 2 is solvable if deg(2A) < 2.

The following lemma, proved in [6], is an immediate consequence of
a result of [10] and [11] for linear spaces of nilpotent matrices.

Lemma 4. Let 2 be a nilalgebra over the field F. Then 2A*A? C B for
every subalgebra B of codimension < 2.

By above lemma, if deg(®4) > dim(2) — 2, then A?A? is nilpotent and
hence 2 is solvable. Summarizing, 2 is solvable in the following cases:
(i) dim(A) < 5; (i) dim(2A) = 6 and deg(A) # 3; (iii) dim(>A) = 7 and
deg(2A) # 3 or 4. Thus, for dim(A) < 7, it remains to be shows that 2 is
solvable if deg(2) = 3 or 4.

The following lemma is clear from Lemma 1. For any subset S of 2
we denote by (S) the vector space spanned by S.

Lemma 5. Let 2 be an algebra over F satisfying the identity x* = 0.
Consider an element a in 2. (i) If a(a(a?a?®)) # 0, then dim(alg(a)) = 6;
(ii) If a(a(a®a®)) = 0 and a(a®a?) # 0, then dim(alg(a)) = 5.

Proof. By Lemma 1 we observe that 2l is a nilalgebra of nilindex < 7 and
alg(a) = (a,a?, a® a?a? a(a?a?),a(a(a’a?))). Assume a(a(a’a?)) # 0.
We will prove that a,a?,a?, a%a?, a(aa?), a(a(a?a?)) are linearly inde-
pendent. Let Aja + Axa® + Aza® + M\a2a? + Asa(a?a?) + Nga(a(a?a?)) =
0. Then 0 = L2L,2L,(0) = L2L2Lo(Ma + Aoa® + Aza® + Mga?a® +
Asa(a?a?) + Nga(a(a®a?))) = Mia(a(a®a®)) and hence \; = 0. Anal-
ogously, 0 = L2L,2(0) = L2L,2(M2a? + A3a® + \ga?a® + \sa(a®a?) +
Xea(a(a®a?))) = Aa(a(aa?)) so that Ay = 0. Next, 0 = LyL,2(0) =
LoLg2(M3a3 + Mga?a® + Nsa(a®a?) + Nsa(a(a®a?))) = —Asza(a(aa?)) so
that A3 = 0. And analogously we can prove that \y = A5 = A\¢ = 0. The
case (ii) is similar. O

Corollary 1. Let 2 be an algebra over F satisfying the identity x* = 0.

Assume deg(A) = 3 or 4 and let a be an element in A. Then alg(a) =

(a,a?, a3, a?a®) and (a3, a?a?) - alg(a) = 0.
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1. The case degree(A)=3

Now we will study nilalgebras of degree 3. In this section 2 will be a
nilalgebra of degree 3 and dimension < 7 over the field F. Consider a
an element in 2. Because 2 is nilalgebra, there exists a positive integer
t such that a’ = 0. We can assume that a’ = 0 and a’~! # 0. Clearly,
the elements a,a?,...,a’”! are linearly independent, and hence ¢ < 4,
since deg(2) = 3. Consequently, the algebra 2 satisfies the identity
z* = 0. By Corollary 1, the sequence a3, a?a? is linearly dependent and 2
satisfies the identities z(2222?) = 0, 22% = 0. Consequently, 2 satisfies

multiplication identities (3), Tables i and ii and Lemma 2.

Lemma 6. Let 2 be a nilalgebra over the field F' with dimension < 7
and degree 3. Then LS = 0 is a multiplication identity in 2.

Proof. Assume that there exist a,b € 2 such that L%(b) # 0. Then the
sequence ¥ = {Li(b): i=0,1,...,6} is a basis of . On the other hand,
we note that from Table ii and (3) we have

L9(6) = yala*(a(a(abh)))) = —(a%a?) (alab))

so that a%a® # 0. Because W is a basis and a(a?a?) = 0, we get that
a?a® = \LS(b),
for any 0 # A € F. Combining above relations we get that
a2a? = (a?)[(=\/8)a(abd)],

but this is impossible because 24 is an Engel algebra. Therefore LS = 0
for all a € 2. O

We may use (2) combined with (3) to yield
L2, L —4L,sL? = 8L°. (11)
We shall use this formula now.

Lemma 7. Let A be a nilalgebra over the field F' with dimension < 7
and degree 3. Then L = 0 is a multiplication identity in 2A.

Proof. Assume that there exist a,b € 2 such that L2(b) # 0. By identity
(11) we have that either a® # 0 or a?a® # 0. The proof now splits into
two cases.

Case 1. If a®a® # 0, then a® = Ba%a® for any B € F and using
(11) we obtain 8L3 = Lg2,2Lq — 48L42,2L2. Multiplying this relation
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from the right side with L, yields L,2,2L2 = 0, so that L L2 = 0 and
Ly2g2La = 8L). Now, it is easy to prove that ¥ = {a?a? L. (b): i =
0,1,...,5} is linearly independent and hence a basis of 2. Let a® =
Aa’a? + E?:o pi L (b). Multiplying by a, 2 times, we get 0 = L2 (b) +
L3 (b) + paLy(b) + psLy(b), so that po = p = pp = pz = 0. Now,
multiplying with a2, we get a?a? = A(a?)?+paLy2 L2 (b)+psLa2 L2 (b) = 0,
but this is impossible.

Case 2. If a®a® = 0, then L,L2 = —2L3. Now, it is easy to prove
that ® = {a3, LL(b) : i =0,1,...,5} is linearly independent and hence a
basis of 2. Let a = \a® + Z?:o wi LL(b). Multiplying by a, 3 times, we
get 0 = poL3(b) + uy1 LA(b) + paL3(b), so that g = 1 = pa = 0. Next,
multiplying by a two time, we have a® = u3L3(b), but this is impossible
because ® is a basis. O

Lemma 8. Let 2 be a nilalgebra over the field F with dimension < 7
and degree 3. Then every monomial in P of x-degree > 6 and y-degree 1
1s an identity in 2.

Proof. By Lemma 2 and Lemma 6 we only need to prove that L*U = 0
and UL?U = 0 are multiplication identities in 2. Using identity (3),
Table ii and relation 0 = 6[z%]{z(z(z(z(zy))))} we have that 0 = UL* +
LULHL2U L+ L3U L+ LU = LPUL*+ L3U L+L*U = L*U. Now, from
Lemma 2, multiplication identities L = 0 and L*U = 0, and identity
(11), we see that

ULLU = ~ULUL = iUszxQ = UL,sL.

Let a € A. If a?a® = 0, if follows immediately that L,L2L,> = 0. If
a’a® # 0, then there exists A € F such that a® = Aa?a®. Therefore,
Lp2L?L,> = Ly2LysLa = ALg2Ly2,2La = 0. This proves the lemma. [

Using identity (2), Lemma 2 and Lemma 7, we can prove easily the
following multiplication identities

1
LU = ~L*UL = —L?L,;s = LLsL = ZLLMQ,

1
LUL? = —LsL* = —1La2a L,

for nilalgebras of dimension < 7 and degree 3 over the field F. We shall
use these formulas now.

Lemma 9. Let 2 be a nilalgebra over the field F' with dimension < 7 and
degree 3. Then L3U = 0 and LUL? = 0 are multiplications identities in
A
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Proof. Let a be an element in 2. If a?a® = 0 then, from above identities
we obtain immediately that L3L,2 = (1/4)LoLg242 = 0 and L, L2 L2 =
—(1/4)Ly242Ly = 0. If a?a® # 0 then there exists A € F such that
a® = Xa%a®. This means that L,s = ALg2,2. Then we have L3L,» =
L2Lys = AL2L,2,2 = 0 and LyL2L? = —L,sL? = ALg2,2L? = 0 by
Lemma 8. This proves the lemma. O

Lemma 10. Let A be a nilalgebra over the field F' with dimension < 7
and degree 3. Then LUL = 0 is a multiplication identity in 2.

Proof. We will assume the contrary, there exist two elements a,b € 2
such that a(a?(ab)) # 0. We know by (3) that

a(a®(ab)) = —(1/4)(a*a®)b.

Therefore, a?a? # 0 and also the sequence {a?a?, a(a?(ab))} is linearly
independent, because L; is nilpotent. For any A € F we have that
a® = Xa?a®. Obviously, this forces L,s = AL,2,2. From identity (2) and
above lemma, we have immediately that L,L,2L, = —L,3Lq — 2Lﬁ =
~ALg2,2Lq — 20% = ANL L2 L2 — 2L} = —2[2, that is

LoLy2L, = —2L% (12)

We will now prove that ¥ = {b, ab, a®(ab), a(a?(ab)), a, a?, a®a?} is a basis
of A. Let A\b+ Aaab+ Aza(ab) 4+ Mga(a?(ab)) + pra+ paa’® + pza?a® = 0,
with A;, pj € F'. Multiplying with a, a? and a successively, we get A\; = 0.
Multiplying with a? and a successively, we have Ay = 0. Multiplying with
a and a® successively, we obtain p; = 0, so that

Aza?(ab) + Ma(a®(ab)) + pza® + pza’a® = 0.
Multiplying with a it follows that A3 = 0 since a%a?, a(a?(ab)) are linearly
independent and a® € (a?a?). Multiplying with a? we have us = 0. Now,
relation A\ja(a®(ab))+ pzaa® = 0 forces Ay = 3 = 0. Therefore, we have
proved that the sequence W is linearly independent. Since dim(2() < 7,
it follows that W is a basis of 2.

On the other hand, because V¥ is a basis of 2, we have a representation
a(ab) = a1b+ azab+ aza?(ab) + aga(a?(ab)) + asa + aga® + araa?, with
a; € F. Using the operators LyL,2Lq, LoL,2, Ly2Lg and LgLg, we prove
that a1 =0, ag = 0, a5 = 0 and a(a(a(ab))) = 0 respectively, but this is
impossible since by identity (12) we have that 2a(a(a(ab))) = —a(a?(ab))
and by hypothesis this element is diferent form zero. This proves the
lemma. O
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It was proved in [8] the following result for power-associative nilalge-
bras.

Lemma 11. FEvery commutative power-associative nilalgebra of dimen-
sion < 8 over a field of characteristic # 2,3 or 5 is solvable.

Theorem 1. Let A be a nilalgebra over the field F' with dimension <7
and degree 3. Then, the algebra A is solvable.

Proof. By Lemma 10 we have that a?a® belong to the annihilator of
the algebra 2, for every a € 21. This means that the linear subspace
J = {(a%a®:a € A) is an ideal of A and AJ = 0. Thus, A/J is a
commutative power-associative nilalgebra of dimension < 7, and hence
solvable. This implies that 2l is solvable. O

2. The case degree(A) = 4 and x(x(xx))=0

For any subalgebra B of an algebra 2, the set st(B8) = {z € A : =B C B}
is called stabilizer of B in A. For every element a € st(8), we can define
a linear transformation L, on the quotient vector space 2A = 2A/B as
follows,

Lo(z +B) = ax + B,

for all z € 2A. We will now denote by My the linear space {L,: a € st(B)}
and by Ny the linear subspace {L,: b € B}. Evidently, we have that
Ny C Mgy.

The following result will be useful. Items (iv), (v), (vi) and (vii) follow
immediately from (i)-(iii) proved in [6].

Lemma 12. Let V be a vector space of dimension 3 over a field F' of
characteristic # 2 and let M be a vector space of nilpotent linear endo-
morphisms in Endg(V). Then dim 9 < 3 and either M3 = 0 or: (i)
dim M = 2; (i3) for every nonzero f € M we have that rank(f) = 2; (iii)
if M = (f1, f2), then there exists a basis ¢ of V and 0 # X\ € F' such that
the matrices (using columns) of f1 and Afy with respect to ¢ are

0 0 O 010

1 0 0], 00 1

0 -1 0 0 00

respectively; (iv) if f,g and fg are all in M, then f =0 or g =0; (v) if
fyg,h and f(g+ fh) are all in M and f # 0, then g = 0 and h € (f);
(vi) if f,g,h € M and f(f + gh) =0, then f =0; (vii) if f,g € M and
f?9? =0, then the sequence {f, g} is linearly dependent.
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Let 2L be a nilalgebra over the field F’ with degree 4 and dimension < 7
satisfying the identity 2% = 0. From Lemma 4, 2l is solvable if dim(2) <
6, so that throughout this section we will assume that 2 has dimension
7. By Corollary 1, the algebra 2 satisfies the identities x(x?z%) = 0
and 2223 = 0. Now we may take an element b in 2 such that 98, the
subalgebra of 2 generated by b, has dimension 4. By Corollary 1, we
have

B = (b,b%, b3, b%b?),

and
(b3, 6°6*)B = (0). (13)

If dim Nog = 0, then 9B is an ideal of 21 and hence 2 is solvable because
A/ is solvable. If My is nilpotent, then there exists a € 2 but not in
% such that

fla+B) =0+, (14)

for all f € Mg. There exists a smallest integer m, 1 < m < 3, such that
Mg = (0). If m =1 take a € A but not in B; if m > 1, take 0 # g €
Mg_l and a+ B in g(A/B) with a +B # 0+ B. Then (14) is satisfied.
Since a € st(*B) we have that L, € Msy. Then relation (14) implies that
0+ B = Ly(a+ B) and hence a®> C B. Let B’ = (b,b?, 1%, b%b?,a). We
have that B’ is a subalgebra of 2 with codimension 2. Using Lemma 4
we get that A?A? C B’ so that A is solvable.

We now consider the case Ngg # (0) and M3, # (0). Then Mgy satisfies
(i)-(vii) of Lemma 12. By Lemma 1 we have that Ny is nilpotent, so
that Lemma 12 forces dim(Ng) = 1 since Ny C My and Mgy is not
nilpotent. Let 0 # h € Ng. Then L, = a;h for any a; € F and for
i = 1,2,3. From identities (3) and (2) we have Lz = —4a2ash® = 0
and ash = Liba = —ajanh? — 2a:1”h3 = —ajash? so that LT;, = 0 since
h3 = 0. Next (3) forces LT,22 = —2a2ah?® + 202 a9h® + 4atht = 0.
Therefore Ly = 0 since L2 € Mg and from Lemma 12 every nonzero
element in Mgy is nilpotent of index 3. Thus, we have proved that

B2A = (02,3, 6%0%) A C B.

This yields Nz = (Lp). Because Ny & My and dim(Mgyg) = 2, we can
take a € st(B), but not in B such that My = (Ly, L,). By Lemma 12
there exists a basis @ = {v; + B, vo + B,v3 + B} of A/B such that the
matrices of Ly and L, with respect to ® are respectively

0 0 010
1

0 O and XOOl

0 0 00

0
1
0 -1



J. C. G. FERNANDEZ 25

for any 0 #£ X € F. This means that v3+ B = aa+B, v2 +B = aa®+ B
and v; + B = aa’® + B for any a € F, a # 0. We can assume, without
lost of generality, that A = 1 and o = 1. Now, by equation (3) and (13)
we have (b?b?)a = —4b(b*(ba)) C b(b*B) = (0), so that

(b*b*)a = 0.

On the other hand, ab can be expressed as a linear combination of
b, b%, b3, b%b%. Let ab = u1b+u262+u3b3+,u4b4b2. Then cb = u1b+u4b2b2,
where ¢ = a — pgb — ps3b®. Therefore c(ch) = puich+ pac(b?b?) = pich.
Since 2 is an Engel algebra, L. is nilpotent and hence either u; = 0 or
cb = 0. This implies

ab € B2

Using relation (3) we have that b?(b%a) = —2b%(b(ba)) + 2b(b*(ba)) +
4b(b(b(ba))) = 0. This forces

b*a € B°.
Finally, using (2) and (3) we have

(b*b?)a? = —4b(b*(ba?)) € (b(b?(—a + B))) = (b(b?a)) = 0,
V*0*)a® = —a(a®(b*b?)) — 2a(a(a(b?V?))) =0,

and hence 2% € ann(2A). Let J = (b?b? : b € 2, dim(alg(h)) = 4). Then
2A/J is a commutative nilalgebra of dimension < 6 and degree < 3, so
that solvable. This implies that 2{ is solvable.

3. The case degree(A) = 4

Let 2 be a nilalgebra with degree 4. If a € 2, then there exists an integer
t such that a® # 0 and a!™' = 0 so that the elements a,a?,...,a’ are
linearly independent. Since deg(2l) = 4, we have that ¢ < 4 and hence 2
satisfies the identity

0 =0.

Now we will see that 2 is a nilalgebra of index < 9. Let 25 be a subalgebra
of 2 generated by a single element and let k1 be the index of 9B as left-
nilalgebra, that is k; is the smallest integer such that z*1 = 0 for all
x € 5. Evidently, dimB < 4 and k1 < 5. If k&1 < 3, then B is a Jordan
algebra and hence nilpotent with 8% = 0. If k; = 4, then by Lemma
1 and Lemma 5, we have that p(z) = 0 is an identity in B for every
monomial p(z) of degree > 5. Finally, if k; = 5, then there exists b € B
such that B = (b,b%,b3,b*). Now, because B is nilpotent, we have that

B2 € (b, bY),  b26%,6%0° € (bY), b1 = (0).
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Thus, B3, 8% c (b3,b%), B° C (b*) and B = 0 for all ¢t > 9. It has the
following consequences.

Lemma 13. The algebra 24 satisfies the identities
22! (a'e?) =0, i, t>1,
and p(x) = 0 for every monomial p(x) € P of degree > 9.

Linearizing the above identities we have the following multiplication
identities (in order to simplify, we will write L3 instead of L, s and Ly
instead of L_4):

Ly+ LLsz + L?U + 2L =0, (
Lyogs +2LL3L + LUU + 2LUL* =0, (
QL4L? + L4U + L3Ls + LsLU +2L3L% =0, (
L343 +2LL3U 4+ 4L L3 L? = 0, (18
U +2UUL? + 2UL3L + 2L,2,5L = 0, (
Ly(L3 + LU +2L3%) = 0. (

Lemma 14. [9] Every nilalgebra of bounded index over F is an Engel
algebra.

We have proved that the index of a nilalgebra of degree 4 is < 9. We
then apply Lemma 14 to obtain

Corollary 2. Fvery nilalgebra of degree 4 over F' is an Engel algebra.

Theorem 2. Let 2 be a nilalgebra over the field F. If dim(A) < 7, then
2 is solvable.

Proof. We already prove that 2l is solvable if either deg(2) # 4 or 2* = 0
is an identity. Thus, it remains to prove that 2l is solvable if dim(2() =7,
deg(2A) = 4 and 2* = 0 is not an identity in 2.

Let 21 be a nilalgebra of dimension 7 and degree 4 such that there
exists b € A with b* # 0. Let B be the subalgebra of 2 generated by
b. Because 2 has degree 4, we have B = (b,b%,b3,b%) and b° = 0. As
in Section 3, if Mg is nilpotent, then the algebra 2l is solvable. Also,
the algebra is solvable if Nggs = 0. Thus, we can assume that Mgy is not
nilpotent and dim Ny > 1. By Lemma 12, we have that dim(Mg) = 2.
From (15) we have

Tyt = —LoLys — Ly Lyz = —Ly(Lys + LyLyz) € Nag.
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Combining above relation and (v) of Lemma 12 we get that Lys = 0. Now
(17) implies Lys(Lys + LyLyz) = 0 and by (vi) of Lemma 12 we get that

Lys = 0. This means that
B3 C B, (21)

and Ny = (Lp, Ly2). Now relation (19) for z = b forces 0 = LT,23 +
9Ty Ly + 2Ly Ly Ly + 2Lyeps Ly = 2Ly Ly and hence using (vii) of
Lemma 12 we have that

dim(Np) = 1. (22)

We can assume, without loss of generality, that
I, #0, (23)

since if Ly = 0, then Ly # 0 and we can take 0 # A\ € F such that
(b+ Ab?)* = bt + A[b(b%?) + b2b3] + N2(b?)3 # 0. Because dim(Ng) = 1,
there exists o € F such that L2 = aly. As in Section 3 there exists
a € A such that My = (L, La), ® = {a + B, a? + B, a + B} is a basis
of A/ and the matrlces of Ly, and L, with respect to ® are respectively

0 0 0 1 0
1 0 0 and 0
0O -1 0 O 0 0

ba® — a?, b%a® — ad®, ba® +a, b*a® + aa, ba, b*a, a* € B. (24)

. This means that

By (24) we have that ba € B so that ba = A\b + Aob? + A\3b3 + )\4b4,
with \; € F. Therefore [a — Aob — A3b® — A\4b3]b = A1b. This implies that
A1 = 0 and hence

ba € B2, (25)

since every multiplication operator on 2l is nilpotent. Let j be a positive
integer. From (15) and (21) we get

bla? = —b(b3a’) — b(b(b*a’)) — 2b(b(b(ba))) € B2, (26)
so that
bial c B2 (27)
By (20) we see that 0 = b*(b%a® + b(b?a®) + 2b(b(ba?))) = b (b(b*a®)) =
y (20)
—ab*a and now using identity (17) we have 2b%(b(ba®)) + b4(b2 5 +
b3 (b3a3) + b3 (b(b%a®)) + 2b3(b(b(ba?))) = 0 and hence —2b*a + a(b*a® —
bda) = —b3(b%a®) € (b*). Therefore
bta =0, a(bta® — b3a) € (b, (28)

since 2 is an Engel algebra and ab*a = 0.
The proof now splits into two cases:
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Case 1. The relation 323 = 0 is not an identity in 2A. In this case,

we can assume without loss of generality that
b1 £0, and b6 #0. (29)

Let by be an element in 2 such that b3b3 # 0 and B the subalgebra of 2
generated by by. Then {by, b%, bil”, b‘;’b‘;’} is a basis of 28 and products satisfy
the following properties, b2b2 € (b3, b363), b3B C (b3b3) and (b3b3)B =
(0), because 9B is nilpotent. By Corollary 1 we have that z* = 0 is
not an identity in 8. Thus, there exists an element b in B of the form
A1y + Aob? + Agbd + M\gb3b3 such that b* # 0 and also we can assume
that Ly, # 0. Evidently, we have A\; # 0. Now b2 € A\}b] + (b3, b3b3), b3 €
303+ (b363) and b3b3 = AB3b3 # 0. Then (29) is satisfied. Evidently, we
have b33 = ~b* for any 0 # v € F. Combining (18) and (28) it follows
0 = (B3%)a? + 2b(b3(b%a?)) + 4b(b3(b(ba?))) = (b3b%)a® — 2ab(b%a) =
ybta? — 2ab(b*a?). Thus b*? = (2a/7)b(b*a?). Since A is an Engel
algebra it follows that
bla® = 0.

Combining this identity with (28) we have that
ab®a € (b%). (30)

Now, relation (16) with = b for the element a? implies 2b(b%a) +
ab(b?a) € (b*). Combining this relation with (30) we see that b(b3a) €
(b%), so that b3a € (b, b*). Therefore

bda € (b"),

since 2 is an Engel algebra. Next, we put x = b in (15) to obtain
0 = b*a + bb3a + b(b(b%a)) + 2b(b(b(ba))) = b(b(b%a)), and hence

va € (b3,b1).

Now, by Lemma 13 we know that z(z2x3) = 0 is an identity in 2 and
hence 0 = (1/48)d[b : 4,a : 2]{z(2%23)} = b(b*(ba?)) + 2b(b?(a(ba))) +
4b((ba)(b(ba))) + 2a(b?(b(ba))) + 2b((ba)(b?a)) + a(b?(b%a)) + b(a?b3) +
2a((ba)b?), forces b(b*a?) € (b*) so that

bda® € (b1).
Finally, (18) implies 0 = (b%63)a® + 2b(b3(b%a?)) + 4b(b3(b(ba?®))) =

(b36%)a3 +2b(b3(aa® —2a)) = (b3b3)a®. Therefore we must have b*a® = 0.
Consequently, we have proved, in this case, that b* € ann(2). Let J =
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(c*: 3 #0,c€). Then A = A/J is a nilalgebra of dimension < 6
and hence solvable. This forces the solvability of 2.

Case 2. The relation x32% = 0 is an identity in . Linearizing this

identity we have that 2 satisfies the identity

23 (2?y) + 223 (z(xy)) = 0.

Taking x = b and y = a? it follows immediately that ab3a € (b?) and for
x = b and y = a® this identity forces ab?a? — 2b3a € (b*). Therefore

bda € (b*).

Next, (15) forces 0 = bta + b(b3a) + b(b(b*a)) + 2b(b(b(ba))) = b(b(b?a)),
so that

b’a € (b, b%).
Now, taking the identity 6[b : 4,a : 3]{x*z3} = 0 we have

[b3a+b b2a) +2b( (ba))] - [ba® + 2a(ab)] +

[b(ba?) + 2b(a(ba)) + 2a(b(ba)) + a(ab®)] - [b*a + 2b(ba)] +
[ba + a(a’b) +2a( )] [ ]

(b

(ab)
€ (") (a,b, 0%, 0%, b") +B - (v°, b1 + B - (%) C (B*)

since by (24) we have that ba® + a(a?b) € B. This means that

bra® =0,

because L,s is nilpotent. From d[b : 3,a : 2]a® = 0 we get —b(b(ba?))
a(ab®)+a(b(ab?))+2a(b(b(ba)))+b(a(ab?))+2b(a(b(ba)))+2b(b(a(ba)))
0. This means that

b(ba?) € (b*).

Finally, from §[b: 4,a : 2]{z*22} = 0 it follows that
—bla® = [bPa+b(b%a) + 2b(b(ba))] - [2ba] +

[b(ba?) + 2b(a(ba)) + 2a(b(ba)) + a(ab®)] - [v?]
(b - (07,07, 0%) + (") - (0°) = (0).

m

Therefore b* € ann(2l) and as in the case 1, this implies the solvability of
2. O
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