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Abstract. It is proved that nonabelian finite simple groups

S with maxπ(S) = 37 are uniquely determined by their order and

degree pattern in the class of all finite groups.

Introduction

Throughout this note, all the groups under consideration are finite, and
simple groups are nonabelian. Given a group G, the spectrum ω(G) of G
is the set of orders of elements in G. Clearly, the spectrum ω(G) is closed
and partially ordered by the divisibility relation, and hence is uniquely
determined by the set µ(G) of its elements which are maximal under
the divisibility relation. One of the most well-known graphs associated
with G is the prime graph (or Gruenberg-Kegel graph) denoted by GK(G).
The vertices of GK(G) are the prime divisors of |G| and two distinct
vertices p and q are joined by an edge (written by p ∼ q) if pq ∈ ω(G). If
p1 < p2 < · · · < pk are all prime divisors of |G|, then we set

D(G) = (dG(p1), dG(p2), . . . , dG(pk)) ,
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where dG(pi) denotes the degree of pi in the prime graph GK(G). We
call this k-tuple D(G) the degree pattern of G. In addition, we denote by
OD(G) the set of pairwise non-isomorphic finite groups with the same
order and degree pattern as G, and put h(G) = |OD(G)|. Since there
are only finitely many isomorphism types of finite groups of order |G|,
1 6 h(G) < ∞. Now, we have the following definition.

Definition 1. A group G is said to be k-fold OD-characterizable if
h(G) = k. As usual, a 1-fold OD-characterizable group is simply called
OD-characterizable, and it is called quasi OD-characterizable if it is k-fold
OD-characterizable for some k > 1.

Notice that the OD-characterizability for simple groups L2(q) was
proved in [6,15]. The OD-characterizability problem for alternating groups
An of degree n (5 6 n 6 100) was investigated in [3] as well.

Given a prime p, Sp stands for the set of nonabelian finite simple
groups S such that p ∈ π(S) ⊆ {2, 3, 5, . . . , p}. Based on calculations in
the computer algebra system GAP, the sets Sp for which p < 103 are
determined in [14]. According to these results (see also [3]), if S ∈ S37,
then S is isomorphic to one of the following simple groups:

L2(37), U3(11), L2(31
2), S4(31),

2G2(27), U3(27),

L2(11
3), G2(11), U4(31), A37, A38, A39, A40.

On the other hand, it has already been proved that the following simple
groups are OD-characterizable: L2(37), L2(31

2), L2(11
3) [15], U3(11) [6],

2G2(27) [6], A37, A38, A39, A40 [3]. So, in this note we will concentrate
on the OD-characterizability problem for the rest of the groups, and the
following is our main result.

Theorem A. The simple groups S4(31), U3(27), G2(11) and U4(31) are
OD-characterizable.

Combining Theorem A and the above-envisaged results, we obtain the
following corollary.

Corollary B. All simple groups in S37 are OD-characterizable.

We introduce much more notation and definitions (notation used
without further explanation is standard). Given a group G, we denote
by t(G) the maximal number of prime divisors of G that are pairwise
nonadjacent in GK(G), and by t(r,G) the maximal number of prime
divisors of G containing r that are pairwise nonadjacent in GK(G). Denote
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by s(G) the number of connected components of GK(G) and by GKi(G),
i = 1, 2, . . . , s(G), the ith connected component of GK(G). We also denote
by πi = πi(G), i = 1, 2, . . . , s(G), the set of vertices of ith connected
component GKi(G). If G is a group of even order, then we put 2 ∈ π1(G).
It is now easy to see that the order of a group G can be expressed as
a product of some coprime natural numbers mi = mi(G), i = 1, 2, . . . , s(G),
with π(mi) = πi, where π(mi) signifies the set of all prime divisors of mi.
The numbers m1,m2, . . . ,ms(G) are called the order components of G.

The sequel of this note is organized as follows. In Section 2, we recall
some basic results, especially, on the spectra of certain finite simple groups,
and they will help us find their degree patterns. Section 3 is devoted to
the proof of our main result (Theorem A). Finally, we in Section 4 give
a discussion of the relationship between two groups with the same order
and degree pattern.

1. Preliminaries

Before proving our main result, we give several lemmas which will be
required to determine the degree pattern of the groups under consideration.

Lemma 1 ([5]). Let q = pn, where p 6= 3 is a prime. Then, we have

µ(S4(q)) =
{

(q2 + 1)/2, (q2 − 1)/2, p(q + 1), p(q − 1)
}

.

In particular, µ(S4(31)) = {480, 481, 930, 992}.

Lemma 2 ([12]). If q is a power of an odd prime p, then we have:

µ(U3(q)) =







{

q2 − q + 1, q2 − 1, p(q + 1)
}

if q 6≡ −1 (mod 3),
{

q2−q+1
3 , q

2
−1
3 , p(q+1)

3 , q + 1
}

if q ≡ −1 (mod 3).

In particular, µ(U3(27)) = {84, 703, 728}.

Lemma 3 ([10]). If q is a power of a prime p > 5, then we have:

µ(G2(q)) =
{

p(q − 1), p(q + 1), q2 − 1, q2 − q + 1, q2 + q + 1
}

.

In particular, µ(G2(11)) = {110, 111, 120, 132, 133}.

Lemma 4 ([13]). Let q be a power of an odd prime p. Denote d =
gcd(4, q+1). Then µ(U4(q)) contains the following (and only the following)
numbers:
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(1) (q − 1)(q2 + 1)/d, (q3 + 1)/d, p(q2 − 1)/d, q2 − 1;
(2) p(q + 1), if and only if d = 4;
(3) 9, if and only if p = 3.

In particular, µ(U4(31)) = {992, 960, 7215, 7440, 7448}.

Using Lemmas 1–4 and [14, Table 1], the required results concerning
some simple groups in S37 are collected in Table 1.

Table 1. The orders and degree patterns of some simple groups in S37.

S |S| D(S)

S4(31) 212 · 32 · 52 · 13 · 314 · 37 (3, 3, 3, 1, 3, 1),

U3(27) 25 · 39 · 72 · 13 · 19 · 37 (3, 2, 3, 2, 1, 1)

G2(11) 26 · 33 · 52 · 7 · 116 · 19 · 37 (3, 4, 3, 1, 3, 1, 1)

U4(31) 216 · 32 · 52 · 72 · 13 · 19 · 316 · 37 (5, 5, 5, 2, 3, 2, 3, 3)

Lemma 5 ([9]). Let G be a finite group with t(G) > 3 and t(2, G) > 2, and
let K be the maximal normal solvable subgroup of G. Then the quotient
group G/K is an almost simple group, i.e., there exists a non-abelian
simple group P such that P 6 G/K 6 Aut(P ).

Lemma 6 ([3]). Let S be a simple group in
⋃

56p697Sp. Then, we have
π(Out(S)) ⊆ {2, 3, 5}.

2. Proof of Theorem A

Before beginning the proof, we draw the prime graphs of the groups
S4(31), U3(27), G2(11) and U4(31) in Figure 1.
Proof of Theorem A. Suppose first that S is one of the simple groups
U3(27), G2(11) or U4(31). Let G be a finite group such that |G| = |S| and
D(G) = D(S). We have to prove that G ∼= S. In all these cases we will
prove that t(G) > 3 and t(2, G) > 2. Therefore, it follows from Lemma 5
that there exists a simple group P such that P 6 G/K 6 Aut(P ), where
K is the maximal normal solvable subgroup of G. In addition, we will
prove that P ∼= S, which implies that K = 1 and since |G| = |S|, G is
isomorphic to S, as required. We handle every case singly.
(a) S = U3(27). Let G be a finite group such that

|G| = |U3(27)| = 25 · 39 · 72 · 13 · 19 · 37,
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Figure 1. The prime graphs of some simple groups in S37.

and

D(G) = D(U3(27)) = (3, 2, 3, 2, 1, 1).

We now consider two cases 19 ∼ 37 and 19 ≁ 37, separately.

(a.1) Assume first that 19 ∼ 37. In this case we immediately have that
GK(G) = GK(U3(27)), and the hypothesis that |G| = |U3(27)| yields G
and U3(27) having the same set of order components. Now, by the Main
Theorem in [2], G is isomorphic to U3(27), as required.

(a.2) Assume next that 19 ≁ 37. In this situation, there exists a prime
p ∈ π(G) \ {19, 37} such that {p, 19, 37} is an independent set, since
otherwise we get dG(19) > 2 or dG(37) > 2, which is impossible. This
shows that t(G) > 3. Moreover, since dG(2) = 3 and |π(G)| = 6, t(2, G) >
2. Thus by Lemma 5 there exists a simple group P such that P 6

G/K 6 Aut(P ), where K is the maximal normal solvable subgroup of
G. Let π = {7, 13, 19, 37}. We claim that K is a π′-group. First of all, if
{19, 37} ⊆ π(K), then a Hall {19, 37}-subgroup of K is an abelian group
of order 19 · 37, and hence 19 ∼ 37, which is a contradiction. Now, assume
that {p, q} = {19, 37} and p does not divide the order of K while q ∈ π(K).
Let Q be a Sylow q-subgroup of K. By Frattini argument G = KNG(Q).
Then, the normalizer NG(Q) contains an element of order p, say x. Now,
Q〈x〉 is an abelian group of order pq, and so p ∼ q, again a contradiction.
This shows that π(K) ∩ {19, 37} = ∅. With the similar arguments, we
can verify that if 13 ∈ π(K), then 13 is adjacent to each of the three
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vertices 7, 19, and 37, and this forces dG(13) > 3, which contradicts the
hypothesis. Finally, if 7 ∈ π(K), then again 7 is adjacent to each of the
three vertices 13, 19, and 37. Note, however, that the degree sequence of
the subgraph GK(G)\{7} would be 3, 2, 1, which is impossible. Therefore,
K is a π′-group. Since both K and Out(P ) are π′-groups (Lemma 6), |P |
is divisible by 72 · 13 · 19 · 37. Considering the orders of simple groups in
S37, we conclude that P is isomorphic to U3(27). Therefore, K = 1 and
G is isomorphic to U3(27). But then GK(G) = GK(U3(27)) and 19 ∼ 37,
which is impossible.

The proof of the other cases is quite similar to the proof in the previous
case, so we avoid here full explanation of all details.
(b) S = G2(11). Assume that G is a finite group such that

|G| = |G2(11)| = 26 · 33 · 52 · 7 · 116 · 19 · 37,

and
D(G) = D(G2(11)) = (3, 4, 3, 1, 3, 1, 1).

We will consider two cases 7 ∼ 19 and 7 ≁ 19, separately.
(b.1) First, suppose that 7 ∼ 19. In this case, it follows from the

equality D(G) = D(G2(11)) that the prime graphs of G and S coincide.
Thus, the hypothesis that |G| = |G2(11)| yields G and G2(11) having the
same set of order components. Now, by the Main Theorem in [7], G is
isomorphic to S, as required.

(b.2) Next, suppose that 7 ≁ 19. In this case, on the one hand there
exists a prime p ∈ π(G) \ {7, 19} such that {p, 7, 19} is an independent
set, and so t(G) > 3. On the other hand, since dG(2) = 3 and |π(G)| = 6,
t(2, G) = 3. Thus, by Lemma 5, there exists a simple group P such that
P 6 G/K 6 Aut(P ), where K is the maximal normal solvable subgroup
of G. Using similar arguments to those in the previous case, one can show
that K is a {7, 19, 37}′-group and G is isomorphic to G2(11). But then 7
is adjacent to 19 in GK(G), which is a contradiction.
(c) S = U4(31). Assume that G is a finite group such that

|G| = |U4(31)| = 216 · 32 · 52 · 72 · 13 · 19 · 316 · 37,

and
D(G) = D(U4(31)) = (5, 5, 5, 2, 3, 2, 3, 3).

First of all, we show that t(G) > 3. To this end, we will consider separately
the two cases: 7 ∼ 19 and 7 ≁ 19. If 7 is adjacent to 19 and to another
vertex, say p, then the induced graph on π(G) \ {7, 19, p} is not complete,
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because we have only three vertices with degree > 4. Therefore, there
are at least two nonadjacent vertices r and s in π(G) \ {7, 19, p}. This
shows that {7, r, s} is an independent set in GK(G) and so t(G) > 3. If
7 and 19 are nonadjacent, then since dG(7) = dG(19) = 2 there exists
a vertex which is not adjacent to either of these two vertices, and again
we conclude that t(G) > 3. Moreover, since dG(2) = 5 and |π(G)| = 8,
t(2, G) > 2. Thus by Lemma 5 there exists a simple group P such that
P 6 G/K 6 Aut(P ), where K is the maximal normal solvable subgroup
of G. In addition, K is a {7, 19, 37}′-group. Indeed, as before, if 7 ∈ π(K)
or 19 ∈ π(K), this would yield degG(7) > 3 or degG(19) > 3, which is not
the case. Finally, if 37 ∈ π(K), then we obtain degG(37) > 4, and thus
we have a contradiction. Since both K and Out(P ) are {7, 19, 37}′-groups
(Lemma 6), |P | is divisible by 72 · 19 · 37. Considering the orders of simple
groups in S37 yields P isomorphic to U4(31). But then K = 1 and G is
isomorphic to U4(31), because |G| = |U4(31)|.

Next we concentrate on the simple group S4(31).
(d) S = S4(31). Suppose that G is a finite group such that

|G| = |S4(31)| = 212 · 32 · 52 · 13 · 314 · 37,

and

D(G) = D(S4(31)) = (3, 3, 3, 1, 3, 1).

We distinguish two cases separately.
(d.1) Assume first that 13 ∼ 37. In this case we immediately have

that GK(G) = GK(S4(31)), and since |G| = |S4(31)| we conclude that G
and S4(31) have the same set of order components. Now, by the Main
Theorem in [1], G is isomorphic to S4(31), as required.

(d.2) Assume next that 13 ≁ 37. Let {p1, p2, p3, p4} = {2, 3, 5, 31}. The
prime graph GK(G) is depicted in Figure 2. Clearly, t(G) > 3, and since
dG(2) = 3 and |π(G)| = 6, t(2, G) > 2.
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Figure 2. The prime graph of G.

Thus by Lemma 5 there exists a simple group P such that P 6

G/K 6 Aut(P ), where K is the maximal normal solvable subgroup of
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G. As before, one can show that K is a {13, 31, 37}′-group. Since K
and Out(P ) are {13, 31, 37}′-groups (Lemma 6), thus |P | is divisible by
13 · 314 · 37. Considering the orders of simple groups in S37 yields that
P is isomorphic to S4(31). But then K = 1 and G is isomorphic to
S4(31), because |G| = |S4(31)|. Therefore GK(G) = GK(S4(31)) which is
disconnected, a contradiction.

This completes the proof of theorem.

Some remarks

Given a finite group M , suppose that G is a finite group with (1)
|G| = |M | and (2) D(G) = D(M). In most cases, it follows from the
above conditions that they have the same order components. We denote
by OC(G) the set of order components of G. The group M is said to
be characterizable by order component if, for every finite group G, the
equality OC(G) = OC(M) implies the group isomorphism G ∼= M . It has
already been shown that many simple groups are characterizable by order
component (for instance, see [1,2,7]). Therefore, when under the conditions
|G| = |M | and D(G) = D(M) we can conclude that OC(G) = OC(M),
and M is characterizable by order component, it follows that M is OD-
characterizable too. However, in the case when the prime graph of M
is connected, the group M is not necessarily characterizable by order
component, but it may be OD-characterizable. For instance, as we have
seen in Theorem A, the simple group U4(31) is OD-characterizable, however
all nilpotent groups (especially, abelian groups) of order |U4(31)| have the
same order component, that is |U4(31)|, which means that U4(31) is not
characterizable by order component.

Given a nonnegative integer n, we set

Dn(G) = {p ∈ π(G) | dG(p) = n}.

Since GK(G) is a simple graph, Dn(G) = ∅ for all n > |π(G)|. Some
information on the prime graph of G is obtained from Dn(G) for some n.
For instance, since dG(p) = 0 if and only if {p} is a connected component
of GK(G), we conclude that |D0(G)| 6 s(G) 6 6 (see [11]). On the other
hand, if Dn−1(G) 6= ∅, where n = |π(G)|, GK(G) is connected, that is
s(G) = 1. Some examples of such groups are the symmetric groups Sm,
for which m− lm > 2, and alternating groups Am, for which m− lm > 3,
where lm is the largest prime less than m. In [8, Theorem B], Suzuki
proved that if L is a finite simple group such that GK(L) is disconnected,
then the connected component GKi(L), i > 2, is a clique (we recall that
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a clique is a set of vertices each pair of which is connected by an edge).
As a matter of fact, this is true for all finite groups not only for finite
simple groups. Hence, the prime graph of an arbitrary finite group G has
the following form:

GK(G) =

s
⊕

i=1

GKi(G) = GK1(G)⊕Kn2
⊕ · · · ⊕Kns

,

where ni = |πi(G)| (2 6 i 6 s) and s = s(G). Thus, we conclude that
|Dni−1(G)| > ni, (2 6 i 6 s). The sets πi(G), i = 1, 2, . . . , s(G), for finite
simple groups G are listed in [4] and [11]. Under the conditions (1) and
(2), if there exists a vertex p ∈ D0(M), then πi(M) = {p} = πj(G) for
some i, j. This restriction helps us to determine the structure of G.
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