© Algebra and Discrete Mathematics Volume **29** (2020). Number 2, pp. 161–172 DOI:10.12958/adm585

Generalized 2-absorbing and strongly generalized 2-absorbing second submodules

H. Ansari-Toroghy, F. Farshadifar^{*}, and S. Maleki-Roudposhti

Communicated by D. Simson

ABSTRACT. Let R be a commutative ring with identity. A proper submodule N of an R-module M is said to be a 2-absorbing submodule of M if whenever $abm \in N$ for some $a, b \in R$ and $m \in M$, then $am \in N$ or $bm \in N$ or $ab \in (N :_R M)$. In [3], the authors introduced two dual notion of 2-absorbing submodules (that is, 2-absorbing and strongly 2-absorbing second submodules) of M and investigated some properties of these classes of modules. In this paper, we will introduce the concepts of generalized 2-absorbing and strongly generalized 2-absorbing second submodules of modules over a commutative ring and obtain some related results.

1. Introduction

Throughout this paper, R will denote a commutative ring with identity and \mathbb{Z} will denote the ring of integers.

Let M be an R-module. A proper submodule P of M is said to be prime if for any $r \in R$ and $m \in M$ with $rm \in P$, we have $m \in P$ or $r \in (P :_R M)$ [14]. A non-zero submodule S of M is said to be second if for each $a \in R$, the homomorphism $S \xrightarrow{a} S$ is either surjective or zero [17]. In this case $\operatorname{Ann}_R(S)$ is a prime ideal of R. A proper submodule Nof M is said to be completely irreducible if $N = \bigcap_{i \in I} N_i$, where $\{N_i\}_{i \in I}$

^{*}The corresponding author.

²⁰¹⁰ MSC: 13C13, 13C99.

Key words and phrases: second, generalized 2-absorbing second.

is a family of submodules of M, implies that $N = N_i$ for some $i \in I$. It is easy to see that every submodule of M is an intersection of completely irreducible submodules of M [15].

Badawi gave a generalization of prime ideals in [9] and said such ideals 2-absorbing ideals. A proper ideal I of R is a 2-absorbing ideal of R if whenever $a, b, c \in R$ and $abc \in I$, then $ab \in I$ or $ac \in I$ or $bc \in I$. He proved that I is a 2-absorbing ideal of R if and only if whenever I_1, I_2 , and I_3 are ideals of R with $I_1I_2I_3 \subseteq I$, then $I_1I_2 \subseteq I$ or $I_1I_3 \subseteq I$ or $I_2I_3 \subseteq I$. In [10], the authors introduced the concept of 2-absorbing primary ideal which is a generalization of primary ideal. A proper ideal I of R is called a 2-absorbing primary ideal of R if whenever $a, b, c \in R$ and $abc \in I$, then $ab \in I$ or $ac \in \sqrt{I}$ or $bc \in \sqrt{I}$.

The authors in [13] and [16], extended the concept of 2-absorbing ideals to the concept of 2-absorbing submodules. A proper submodule N of M is called a 2-absorbing submodule of M if whenever $abm \in N$ for some $a, b \in R$ and $m \in M$, then $am \in N$ or $bm \in N$ or $ab \in (N :_R M)$.

In [3], the authors introduced two dual notion of 2-absorbing submodules (that is, 2-absorbing and strongly 2-absorbing second submodules) of M and investigated some properties of these classes of modules. A non-zero submodule N of M is said to be a 2-absorbing second submodule of M if whenever $a, b \in R, L$ is a completely irreducible submodule of M, and $abN \subseteq L$, then $aN \subseteq L$ or $bN \subseteq L$ or $ab \in Ann_R(N)$. A non-zero submodule N of M is said to be a strongly 2-absorbing second submodule of M if whenever $a, b \in R, K$ is a submodule of M, and $abN \subseteq K$, then $aN \subseteq K$ or $bN \subseteq K$ or $ab \in Ann_R(N)$.

The purpose of this paper is to introduce the concepts of generalized and strongly generalized 2-absorbing second submodules of an R-module M as generalizations of 2-absorbing and strongly 2-absorbing second submodules of M respectively, and provide some information concerning these new classes of modules.

2. Main results

Definition 2.1. We say that a non-zero submodule N of an R-module M is a generalized 2-absorbing second submodule or G2-absorbing second submodule of M if whenever $a, b \in R$, L is a completely irreducible submodule of M and $abN \subseteq L$, then $a \in \sqrt{(L:_R N)}$ or $b \in \sqrt{(L:_R N)}$ or $ab \in \operatorname{Ann}_R(N)$. By a generalized 2-absorbing second module, we mean a module which is a generalized 2-absorbing second submodule of itself.

Example 2.2. Clearly every 2-absorbing second submodule is a G2-absorbing second submodule. But the converse is not true in general as we will see in the Example 2.8.

We recall that an R-module M is said to be a *cocyclic module* if $Soc_R(M)$ is a large and simple submodule of M [18]. (Here $Soc_R(M)$ denotes the sum of all minimal submodules of M.). A submodule L of M is a completely irreducible submodule of M if and only if M/L is a cocyclic R-module [15].

Proposition 2.3. Let N be a G2-absorbing second submodule of an R-module M. Then we have the following.

- (a) If L is a completely irreducible submodule of M such that $N \not\subseteq L$, then $(L:_R N)$ is a 2-absorbing primary ideal of R.
- (b) If M is a cocyclic module, then $\operatorname{Ann}_R(N)$ is a 2-absorbing primary ideal of R.
- (c) If $\operatorname{Ann}_R(N)$ is a primary ideal of R, then $(L:_R N)$ is a primary ideal of R for all completely irreducible submodule L of M such that $N \not\subseteq L$.

Proof. (a) Since $N \not\subseteq L$, we have $(L :_R N) \neq R$. Let $a, b, c \in R$ and $abc \in (L :_R N)$. Then $abN \subseteq (L :_M c)$. Thus $a^tN \subseteq (L :_M c)$ for some positive integer t or $b^sN \subseteq (L :_M c)$ for some positive integer s or abN = 0 because by [7, 2.1], $(L :_M c)$ is a completely irreducible submodule of M. Therefore, $ac \in \sqrt{(L :_R N)}$ or $bc \in \sqrt{(L :_R N)}$ or $ab \in (L :_R N)$.

(b) Since M is cocyclic, the zero submodule of M is a completely irreducible submodule of M. Thus the result follows from part (a).

(c) Let $a, b \in R$, L be a completely irreducible submodule of M such that $N \not\subseteq L$, and $ab \in (L:_R N)$. Then $a^t N \subseteq L$ for some positive integer t or $b^s N \subseteq L$ for some positive integer s or abN = 0. If abN = 0, then by assumption, $a \in \sqrt{\operatorname{Ann}_R(N)}$ or bN = 0. Thus in any cases we get that, $a \in \sqrt{(L:_R N)}$ or $b \in \sqrt{(L:_R N)}$.

Lemma 2.4. Let *I* be an ideal of *R* and *N* be a *G*2-absorbing second submodule of *M*. If $a \in R$, *L* is a completely irreducible submodule of *M*, and $IaN \subseteq L$, then $a \in \sqrt{(L:_RN)}$ or $I \subseteq \sqrt{(L:_RN)}$ or $Ia \subseteq \operatorname{Ann}_R(N)$.

Proof. Let $a \notin \sqrt{(L:_R N)}$ and $Ia \notin \operatorname{Ann}_R(N)$. Then there exists $b \in I$ such that $abN \neq 0$. Now as N is a G2-absorbing second submodule of M, $baN \subseteq L$ implies that $b \in \sqrt{(L:_R N)}$. We show that $I \subseteq \sqrt{(L:_R N)}$. To see this, let c be an arbitrary element of I. Then $(b+c)aN \subseteq L$. Hence, either $b+c \in \sqrt{(L:_R N)}$ or $(b+c)a \in \operatorname{Ann}_R(N)$. If $b+c \in \sqrt{(L:_R N)}$, then

since $b \in \sqrt{(L:_R N)}$ we have $c \in \sqrt{(L:_R N)}$. If $(b+c)a \in \operatorname{Ann}_R(N)$, then $ca \notin \operatorname{Ann}_R(N)$, but $caN \subseteq L$. Thus $c \in \sqrt{(L:_R N)}$. Hence, we conclude that $I \subseteq \sqrt{(L:_R N)}$.

Theorem 2.5. Let I and J be two ideals of R and N be a G2-absorbing second submodule of M. If L is a completely irreducible submodule of M and $IJN \subseteq L$, then $I \subseteq \sqrt{(L:_R N)}$ or $J \subseteq \sqrt{(L:_R N)}$ or $IJ \subseteq$ Ann_R(N).

Proof. Let $I \not\subseteq \sqrt{(L:_R N)}$ and $J \not\subseteq \sqrt{(L:_R N)}$. We show that $IJ \subseteq$ Ann_R(N). Assume that $c \in I$ and $d \in J$. By assumption there exists $a \in I$ such that $a \notin \sqrt{(L:_R N)}$ but $aJN \subseteq L$. Now Lemma 2.4 shows that $aJ \subseteq$ Ann_R(N) and so $(I \setminus \sqrt{(L:_R N)})J \subseteq$ Ann_R(N). Similarly there exists $b \in (J \setminus \sqrt{(L:_R N)})$ such that $Ib \subseteq$ Ann_R(N) and also $I(J \setminus \sqrt{(L:_R N)}) \subseteq$ Ann_R(N). Thus we have $ab \in$ Ann_R(N) and also $I(J \setminus \sqrt{(L:_R N)}) \subseteq$ Ann_R(N). As $a + c \in I$ and $b + d \in J$, we have $(a + c)(b + d)N \subseteq L$. Therefore, $a + c \in \sqrt{(L:_R N)}$ or $b + d \in \sqrt{(L:_R N)}$ or $(a + c)(b + d) \in$ Ann_R(N). If $a + c \in \sqrt{(L:_R N)}$, then $c \notin \sqrt{(L:_R N)}$. Hence $c \in I \setminus \sqrt{(L:_R N)}$ which implies that $cd \in$ Ann_R(N). Similarly if $b + d \in \sqrt{(L:_R N)}$, we can deduce that $cd \in$ Ann_R(N). Finally if $(a + c)(b + d) \in$ Ann_R(N), then $ab + ad + cb + cd \in$ Ann_R(N) so that $cd \in$ Ann_R(N). Therefore, $IJ \subseteq$ Ann_R(N). □

Theorem 2.6. Let N be a non-zero submodule of an R-module M. The following statements are equivalent:

- (a) If $abN \subseteq K$ for some $a, b \in R$ and a submodule K of M, then $a \in \sqrt{(K:_R N)}$ or $b \in \sqrt{(K:_R N)}$ or $ab \in \operatorname{Ann}_R(N)$.
- (b) If $IJN \subseteq K$ for some ideals I and J of R and submodule K of M, then $I \subseteq \sqrt{(K:_R N)}$ or $J \subseteq \sqrt{(K:_R N)}$ or $IJ \subseteq \operatorname{Ann}_R(N)$.

Proof. $(a) \Rightarrow (b)$ The proof is similar to the proof of Theorem 2.5. $(b) \Rightarrow (a)$ This is clear.

Definition 2.7. We say that a non-zero submodule N of an R-module M is a strongly generalized 2-absorbing second submodule or strongly G2absorbing second submodule of M if satisfies the equivalent conditions of Theorem 2.6. By a strongly generalized 2-absorbing second module, we mean a module which is a strongly generalized 2-absorbing second submodule of itself.

Example 2.8. Clearly every strongly 2-absorbing second submodule is a strongly G2-absorbing second submodule. But the converse is not

true in general. For example, for any prime integer p, let $M = \mathbb{Z}_{p^{\infty}}$ and $N = \langle 1/p^3 + \mathbb{Z} \rangle$. Then N is a strongly G2-absorbing second submodule which is not a strongly 2-absorbing second submodule of M.

This is clear that every strongly G2-absorbing second submodule is a G2-absorbing second submodule. It is natural to ask the following question:

Question 2.9. Let M be an R-module. Is every G2-absorbing second submodule of M a strongly G2-absorbing second submodule of M?

Theorem 2.10. Let N be a non-zero submodule of an Artinian R-module M. The following statements are equivalent:

- (a) If $abN \subseteq L_1 \cap L_2$ for some $a, b \in R$ and completely irreducible submodules L_1, L_2 of M, then we have $a \in \sqrt{(L_1 \cap L_2 :_R N)}$ or $b \in \sqrt{(L_1 \cap L_2 :_R N)}$ or $ab \in \operatorname{Ann}_R(N)$.
- (b) N is a strongly G2-absorbing second submodule.

Proof. $(a) \Rightarrow (b)$. Assume that $abN \subseteq K$ for some $a, b \in R$, a submodule K of M, and $ab \not\subseteq \operatorname{Ann}_R(N)$. Since M is Artinian, there exist completely irreducible submodules L_1, L_2, \ldots, L_n of M such that $K = \bigcap_{i=1}^n L_i$. Then for each L_i $(1 \leq i \leq n)$ either $a \in \sqrt{(L_i :_R N)}$ or $b \in \sqrt{(L_i :_R N)}$. If $a \in \sqrt{(L_i :_R N)}$ for each $1 \leq i \leq n$, then

$$a \in \bigcap_{i=1}^{n} \sqrt{(L_i :_R N)} = \sqrt{\bigcap_{i=1}^{n} (L_i :_R N)} = \sqrt{(\bigcap_{i=1}^{n} L_i :_R N)} = \sqrt{(K :_R N)}.$$

Similarly, if $b \in \sqrt{(L_i :_R N)}$ for each $1 \leq i \leq n$, then we get that $b \in \sqrt{(K :_R N)}$. Now suppose that there exist $1 \leq i, j \leq n$ such that $a \notin \sqrt{(L_i :_R N)}$ and $b \notin \sqrt{(L_j :_R N)}$. Then $a \in \sqrt{(L_j :_R N)}$ and $b \in \sqrt{(L_i :_R N)}$. Since $abN \subseteq L_i \cap L_j$, we have either $a \in \sqrt{(L_i \cap L_j :_R N)}$ or $b \in \sqrt{(L_i \cap L_j :_R N)}$. If $a \in \sqrt{(L_i \cap L_j :_R N)}$, then $a \in \sqrt{(L_i \cap L_j :_R N)}$ which is a contradiction. Similarly from $b \in \sqrt{(L_i \cap L_j :_R N)}$ we get a contradiction.

 $(b) \Rightarrow (a)$. This is clear.

Proposition 2.11. Let M be an R-module. If either N is a secondary submodule of M or N is a finite sum of p-secondary submodules of M, then N is strongly G2-absorbing second submodule.

Proof. The first assertion is clear. Now the second assertion follows from [11, 3.1.4].

Lemma 2.12. Let M be an R-module, $N \subseteq K$ be two submodules of M, and K be a strongly G2-absorbing second submodule of M. Then K/N is a strongly G2-absorbing second submodule of M/N.

Proof. This is straightforward.

Proposition 2.13. Let N be a strongly G2-absorbing second submodule of an R-module M. Then we have the following.

- (a) $\operatorname{Ann}_R(N)$ is a 2-absorbing primary ideal of R.
- (b) If K is a submodule of M such that $N \not\subseteq K$, then $(K :_R N)$ is a 2-absorbing primary ideal of R.

Proof. (a) Let $a, b, c \in R$ and $abc \in \operatorname{Ann}_R(N)$. Then $abN \subseteq abN$ implies that $a^tN \subseteq abN$ for some positive integer t or $b^sN \subseteq abN$ for some positive integer s or abN = 0. If abN = 0, then we are done. If $a^tN \subseteq abN$, then $(ca)^tN \subseteq ca^tN \subseteq cabN = 0$. Thus $ca \in \sqrt{\operatorname{Ann}_R(N)}$. In other case, we do the same.

(b) Let $a, b, c \in R$ and $abc \in (K :_R N)$. Then $a^t cN \subseteq K$ for some positive integer t or $b^s cN \subseteq K$ for some positive integer s or abN = 0. If $a^t cN \subseteq K$ or $b^s cN \subseteq K$, then $(ac)^t N \subseteq K$ or $(bc)^s N \subseteq K$ and so we are done. If abN = 0, then the result follows from part (a).

An *R*-module *M* is said to be a *comultiplication module* if for every submodule *N* of *M* there exists an ideal *I* of *R* such that $N = (0:_M I)$, equivalently, for each submodule *N* of *M*, we have $N = (0:_M \operatorname{Ann}_R(N))$ [5].

Corollary 2.14. Let M be a comultiplication R-module. If N is a strongly G2-absorbing second submodule of M such that $\sqrt{\operatorname{Ann}_R(N)} = \operatorname{Ann}_R(N)$, then N is a strongly 2-absorbing second submodule of M.

Proof. By Proposition 2.13 (a), $\operatorname{Ann}_R(N)$ is a 2-absorbing primary ideal of R. Thus $\sqrt{\operatorname{Ann}_R(N)} = \operatorname{Ann}_R(N)$ is a 2-absorbing ideal of R by [10, 2.2.]. Now the result follows from [3, 3.10].

A submodule N of an R-module M is said to be *coidempotent* if $N = (0:_M \operatorname{Ann}_R(N)^2)$. Also, M is said to be *fully coidempotent* if every submodule of M is coidempotent [1]. Clearly, every fully coidempotent R-module is a comultiplication R-module.

Theorem 2.15. Let R be a Noetherian ring and N be a submodule of a fully coidempotent R-module M. Then we have the following.

(a) If $\operatorname{Ann}_R(N)$ is a 2-absorbing primary ideal of R, then N is a strongly G2-absorbing second submodule of M.

 (b) If M is a cocyclic module and N is a G2-absorbing second submodule of M, then N is a strongly G2-absorbing second submodule of M.

Proof. (a) Let $a, b \in R$, K be a submodule of M, and $abN \subseteq K$. Then we have $\operatorname{Ann}_R(K)abN = 0$. Now since R is Noetherian, $(\operatorname{Ann}_R(K)a)^t N = 0$ for some positive integer t or $(\operatorname{Ann}_R(K)b)^s N = 0$ for some positive integer s or abN = 0 by [10, 2.18]. If abN = 0, we are done. If $(\operatorname{Ann}_R(K)a)^t N = 0$ or $(\operatorname{Ann}_R(K)b)^s N = 0$, then $(\operatorname{Ann}_R(K))^t \subseteq \operatorname{Ann}_R(a^t N)$ or $(\operatorname{Ann}_R(K))^s \subseteq \operatorname{Ann}_R(b^s N)$. Hence, $a^t N \subseteq K$ or $b^s N \subseteq K$ since M is a fully coidempotent R-module. Therefore, N is a strongly G2-absorbing second submodule of M.

(b) By Proposition 2.3, $\operatorname{Ann}_R(N)$ is a 2-absorbing primary ideal of R. Thus the result follows from part (a).

The following example shows that Theorem 2.15 (a) is not satisfied in general.

Example 2.16. By [5, 3.9], the \mathbb{Z} -module \mathbb{Z} is not a comultiplication \mathbb{Z} -module and so it is not a fully coidempotent \mathbb{Z} -module. The submodule $N = p\mathbb{Z}$ of \mathbb{Z} , where p is a prime number, is not strongly *G*2-absorbing second submodule. But $\operatorname{Ann}_{\mathbb{Z}}(p\mathbb{Z}) = 0$ is a 2-absorbing primary ideal of R.

For a submodule N of an R-module M the second radical (or second socle) of N is defined as the sum of all second submodules of M contained in N and it is denoted by $\sec(N)$ (or $\sec(N)$). In case N does not contain any second submodule, the second radical of N is defined to be (0) (see [12] and [2]).

Proposition 2.17. Let M be a finitely generated comultiplication R-module. If N is a strongly G2-absorbing second submodule of M, then $\sec(N)$ is a strongly 2-absorbing second submodule of M.

Proof. Let N be a strongly G2-absorbing second submodule of M. By Proposition 2.13 (a), $\operatorname{Ann}_R(N)$ is a 2-absorbing primary ideal of R. Thus by [10, 2.2], $\sqrt{\operatorname{Ann}_R(N)}$ is a 2-absorbing ideal of R. By [6, 2.12], $\operatorname{Ann}_R(\operatorname{sec}(N)) = \sqrt{\operatorname{Ann}_R(N)}$. Therefore, $\operatorname{Ann}_R(\operatorname{sec}(N))$ is a 2-absorbing ideal of R. Now the result follows from [3, 3.10].

A non-zero submodule N of an R-module M is a strongly 2-absorbing secondary submodule of M if whenever $a, b \in R, K$ is a submodule of M and $abN \subseteq K$, then $a(\sec(N)) \subseteq K$ or $b(\sec(N)) \subseteq K$ or $ab \in \operatorname{Ann}_R(N)$ [4]. **Theorem 2.18.** Let M be a comultiplication R-module and N be a strongly G2-absorbing second submodule of M. Then N is a strongly 2-absorbing secondary submodule of M.

Proof. Let $a, b \in R$, K be a submodule of M, and $abN \subseteq K$. Then we have $a^tN \subseteq K$ for some positive integer t or $b^sN \subseteq K$ for some positive integer s or abN = 0. If abN = 0, then we are done. Suppose that $a^tN \subseteq K$ for some positive integer t. As M is a comultiplication R-module, $K = (0 :_M I)$ for some ideal I of R. Thus $Ia^tN = 0$. This implies that $Ia \subseteq \sqrt{\operatorname{Ann}_R(N)}$. Thus

$$\operatorname{sec}(N) \subseteq (0:_M \sqrt{\operatorname{Ann}_R(N)}) \subseteq (0:_M Ia) = (K:_M a).$$

Hence $a(\sec(N)) \subseteq K$, as needed.

Example 2.19. The submodule $N = p\mathbb{Z}$ of the \mathbb{Z} -module $M = \mathbb{Z}$, where p is a prime number, is not a strongly G2-absorbing second submodule. But as $\sec(p\mathbb{Z}) = 0$, we have N is a strongly 2-absorbing secondary submodule of M.

Theorem 2.20. Let $f : M \to M$ be a monomorphism of *R*-modules. Then we have the following.

- (a) If N is a strongly G2-absorbing second submodule of M, then f(N) is a strongly G2-absorbing second submodule of \hat{M} .
- (b) If N is a strongly G2-absorbing second submodule of M and N ⊆ f(M), then f⁻¹(N) is a strongly G2-absorbing second submodule of M.

Proof. (a) Since $N \neq 0$ and f is a monomorphism, we have $f(N) \neq 0$. Let $a, b \in R, \check{K}$ be a submodule of \check{M} , and $abf(N) \subseteq \check{K}$. Then $abN \subseteq f^{-1}(\check{K})$. As N is strongly G2-absorbing second submodule, $a^tN \subseteq f^{-1}(\check{K})$ for some positive integer t or $b^sN \subseteq f^{-1}(\check{K})$ for some positive integer s or abN = 0. Therefore,

$$a^t f(N) \subseteq f(f^{-1}(\acute{K})) = f(M) \cap \acute{K} \subseteq \acute{K}$$

or

$$b^s f(N) \subseteq f(f^{-1}(\acute{K})) = f(M) \cap \acute{K} \subseteq \acute{K}$$

or abf(N) = 0, as needed.

(b) If $f^{-1}(\hat{N}) = 0$, then $f(M) \cap \hat{N} = f(f^{-1}(\hat{N})) = f(0) = 0$. Thus $\hat{N} = 0$, a contradiction. Therefore, $f^{-1}(\hat{N}) \neq 0$. Now let $a, b \in R$, K be a submodule of M, and $abf^{-1}(\hat{N}) \subseteq K$. Then

$$ab\dot{N} = ab(f(M) \cap \dot{N}) = abf(f^{-1}(\dot{N})) \subseteq f(K).$$

As \hat{N} is strongly G2-absorbing second submodule, $a^t \hat{N} \subseteq f(K)$ for some positive integer t or $b^s \hat{N} \subseteq f(K)$ for some positive integer s or $ab\hat{N} = 0$. Therefore, $a^t f^{-1}(\hat{N}) \subseteq f^{-1}(f(K)) = K$ or $b^s f^{-1}(\hat{N}) \subseteq f^{-1}(f(K)) = K$ or $abf^{-1}(\hat{N}) = 0$ as desired. \Box

Corollary 2.21. Let M be an R-module and $N \subseteq K$ be two submodules of M. Then N is a strongly G2-absorbing second submodule of K if and only if N is a strongly G2-absorbing second submodule of M.

Proof. This follows from Theorem 2.20 by using the natural monomorphism $K \to M$.

Let N be a submodule of an R-module M. Then Corollary 2.21 shows that N is a strongly G2-absorbing second submodule of M if and only if N is a strongly G2-absorbing second module.

Let R_i be a commutative ring with identity and M_i be an R_i -module, for i = 1, 2. Let $R = R_1 \times R_2$. Then $M = M_1 \times M_2$ is an R-module and each submodule of M is in the form of $N = N_1 \times N_2$ for some submodules N_1 of M_1 and N_2 of M_2 .

Lemma 2.22. Let $R = R_1 \times R_2$ and $M = M_1 \times M_2$. Then M_i is a fully coidempotent R_i -module, for i = 1, 2 if and only if M is a fully coidempotent R-module.

Proof. First suppose that M is a fully coidempotent R-module and N_1 is a submodule of an R_1 -module M_1 . Then $N = N_1 \times 0$ is a submodule of M. Thus $N = (0 :_M \operatorname{Ann}_R(N)^2) = (0 :_{M_1} \operatorname{Ann}_{R_1}(N_1)^2) \times 0$. Hence $N_1 = (0 :_{M_1} \operatorname{Ann}_{R_1}(N_1)^2)$. Therefore, M_1 is a fully coidempotent R_1 -module. Similarly, M_2 is a fully coidempotent R_2 -module. Conversely, let N be a submodule of M. Then $N = N_1 \times N_2$ for some submodules N_1 of M_1 and N_2 of M_2 . By assumption, $N_i = (0 :_{M_i} \operatorname{Ann}_{R_i}(N_i)^2)$ for i = 1, 2. So

$$N = (0:_{M_1} \operatorname{Ann}_{R_1}(N_1)^2) \times (0:_{M_2} \operatorname{Ann}_{R_2}(N_2)^2) = (0:_M \operatorname{Ann}_R(N)^2),$$

as requested.

Theorem 2.23. Let $R = R_1 \times R_2$ be a Noetherian ring and $M = M_1 \times M_2$, where M_1 is a fully coidempotent R_1 -module and M_2 is a fully coidempotent R_2 -module. Then we have the following.

(a) A non-zero submodule K_1 of M_1 is a strongly G2-absorbing second submodule if and only if $N = K_1 \times 0$ is a strongly G2-absorbing second submodule of M.

- (b) A non-zero submodule K₂ of M₂ is a strongly G2-absorbing second submodule if and only if N = 0 × K₂ is a strongly G2-absorbing second submodule of M.
- (c) If K_1 is a secondary submodule of M_1 and K_2 is a secondary submodule of M_2 , then $N = K_1 \times K_2$ is a strongly G2-absorbing second submodule of M.

Proof. (a) Let K_1 be a strongly G2-absorbing second submodule of M_1 . Then $\operatorname{Ann}_{R_1}(K_1)$ is a 2-absorbing primary ideal of R_1 by Proposition 2.13. Now since $\operatorname{Ann}_R(N) = \operatorname{Ann}_{R_1}(K_1) \times R_2$, we have $\operatorname{Ann}_R(N)$ is a 2-absorbing primary ideal of R by [10, 2.23]. Thus the result follows from Theorem 2.15 (a). Conversely, let $N = K_1 \times 0$ be a strongly G2-absorbing second submodule of M. Then $\operatorname{Ann}_R(N) = \operatorname{Ann}_{R_1}(K_1) \times R_2$ is a primary ideal of R by Proposition 2.13. Thus $\operatorname{Ann}_{R_1}(K_1)$ is a primary ideal of R_1 by [10, 2.23]. Thus by Theorem 2.15 (a), K_1 is a strongly G2-absorbing second submodule of M_1 .

(b) This is proved similar to the part (a).

(c) Let K_1 be a secondary submodule of M_1 and K_2 be a secondary submodule of M_2 . Then $\operatorname{Ann}_{R_1}(K_1)$ and $\operatorname{Ann}_{R_2}(K_2)$ are primary ideals of R_1 and R_2 , respectively. Now since $\operatorname{Ann}_R(N) = \operatorname{Ann}_{R_1}(K_1) \times \operatorname{Ann}_{R_2}(K_2)$, we have $\operatorname{Ann}_R(N)$ is a 2-absorbing primary ideal of R by [10, 2.23]. Thus the result follows from Theorem 2.15 (a).

Theorem 2.24. Let $R = R_1 \times R_2$ be a Noetherian decomposable ring and $M = M_1 \times M_2$ be a fully coidempotent R-module, where M_1 is an R_1 -module and M_2 is an R_2 -module. Suppose that $N = N_1 \times N_2$ is a non-zero submodule of M. Then the following conditions are equivalent:

- (a) N is a strongly G2-absorbing second submodule of M;
- (b) Either N₁ = 0 and N₂ is a strongly G2-absorbing second submodule of M₂ or N₂ = 0 and N₁ is a strongly G2-absorbing second submodule of M₁ or N₁, N₂ are secondary submodules of M₁, M₂, respectively.

Proof. (a) \Rightarrow (b). Let $N = N_1 \times N_2$ be a strongly G2-absorbing second submodule of M. Then $\operatorname{Ann}_R(N) = \operatorname{Ann}_{R_1}(N_1) \times \operatorname{Ann}_{R_2}(N_2)$ is a 2absorbing primary ideal of R by Proposition 2.13. By [10, 2.23], we have $\operatorname{Ann}_{R_1}(N_1) = R_1$ and $\operatorname{Ann}_{R_2}(N_2)$ is a 2-absorbing primary ideal of R_2 or $\operatorname{Ann}_{R_2}(N_2) = R_2$ and $\operatorname{Ann}_{R_1}(N_1)$ is a 2-absorbing primary ideal of R_1 or $\operatorname{Ann}_{R_1}(N_1)$ and $\operatorname{Ann}_{R_2}(N_2)$ are primary ideals of R_1 and R_2 , respectively. Suppose that $\operatorname{Ann}_{R_1}(N_1) = R_1$ and $\operatorname{Ann}_{R_2}(N_2)$ is a 2-absorbing primary ideal of R_2 . Then $N_1 = 0$ and N_2 is a strongly G2-absorbing second submodule of M_2 by Theorem 2.15 (a) and Lemma 2.22. Similarly if Ann_{R_2}(N_2) = R_2 and Ann_{R_1}(N_1) is a 2-absorbing primary ideal of R_1 . Then $N_2 = 0$ and N_1 is a strongly G2-absorbing second submodule of M_1 . If the last case hold, then as M_1 (resp. M_2) is a comultiplication R_1 -(resp. R_2 -) module, N_1 (resp. N_2) is a secondary submodule of M_1 (resp. M_2) by [4, 2.25].

 $(b) \Rightarrow (a)$. This can be proved easily by using Theorem 2.23.

References

- Ansari-Toroghy H., Farshadifar F., Fully idempotent and coidempotent modules, Bull. Iranian Math., Soc. 38 (4), (2012), 987-1005.
- [2] Ansari-Toroghy H., Farshadifar F., On the dual notion of prime submodules, Algebra Colloq., 19 (Spec 1), (2012), 1109-1116.
- [3] Ansari-Toroghy H., Farshadifar F., Some generalizations of second submodules, Palestin J. Math., 8 (2), (2019), 159–168.
- [4] Ansari-Toroghy H., Farshadifar F., 2-absorbing and strongly 2-absorbing secondary submodules of modules, Le Matematiche, 72 (11), (2017), 123-135.
- [5] Ansari-Toroghy H., Farshadifar F., The dual notion of multiplication modules, Taiwanese J. Math., 11 (4), (2007), 1189–1201.
- [6] Ansari-Toroghy H., Farshadifar F., On the dual notion of prime radicals of submodules, Asian Eur. J. Math., 6 (2), (2013), 1350024 (11 pages).
- [7] Ansari-Toroghy H., Farshadifar F., Pourmortazavi S. S., On the P-interiors of submodules of Artinian modules, Hacet. J. Math. Stat., 45(3), (2016), 675-682.
- [8] Ansari-Toroghy H., Farshadifar F., Pourmortazavi S.S., Khaliphe F. On secondary modules, Int. J. Algebra, 6 (16), (2012), 769-774.
- [9] Badawi A., On 2-absorbing ideals of commutative rings, Bull. Austral. Math. Soc. 75, (2007), 417-429.
- [10] Badawi A., Tekir U., Yetkin E., On 2-absorbing primary ideals in commutative rings, Bull. Korean Math, Soc. 51 (4), (2014), 1163-1173.
- [11] Baig M., Primary Decomposition and Secondary Representation of Modules over a Commutative Ring, Thesis, Georgia State University, (2009).
- [12] Ceken S., Alkan M., Smith P. F., The dual notion of the prime radical of a module, J. Algebra, **392**, (2013), 265-275.
- [13] Darani A. Y., Soheilnia F., 2-absorbing and weakly 2-absorbing submoduels, Thai J. Math., 9 (3), (2011), 577–584.
- [14] Dauns J., Prime submodules, J. Reine Angew. Math., 298, (1978), 156–181.
- [15] Fuchs L., Heinzer W., Olberding B., Commutative ideal theory without finiteness conditions: Irreducibility in the quotient filed, in : Abelian Groups, Rings, Modules, and Homological Algebra, Lect. Notes Pure Appl. Math., 249, (2006), 121–145.
- [16] Payrovi Sh., Babaei S., On 2-absorbing submodules, Algebra Collq., 19, (2012), 913-920.
- [17] Yassemi S., The dual notion of prime submodules, Arch. Math. (Brno), 37, (2001), 273–278.
- [18] Yassemi S., The dual notion of the cyclic modules, Kobe. J. Math., 15, (1998), 41–46.

CONTACT INFORMATION

H. Ansari-Toroghy,	Department of Pure Mathematics, Faculty of
S. Maleki-	Mathematical Sciences, University of Guilan,
$\operatorname{Roudposhti}$	P.O. Box 41335-19141, Rasht, Iran
	E-Mail(s): ansari@guilan.ac.ir,
	Sepidehmaleki.r@gmail.com
F. Farshadifar	Department of Mathematics, Farhangian University, Tehran, Iran <i>E-Mail(s)</i> : f.farshadifar@cfu.ac.ir

Received by the editors: 06.12.2017.