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ABSTRACT. Let R be a commutative ring with identity. A
proper submodule N of an R-module M is said to be a 2-absorbing
submodule of M if whenever abm € N for some a,b € R and m € M,
then am € N or bm € N or ab € (N :p M). In [3], the authors
introduced two dual notion of 2-absorbing submodules (that is, 2-
absorbing and strongly 2-absorbing second submodules) of M and
investigated some properties of these classes of modules. In this
paper, we will introduce the concepts of generalized 2-absorbing
and strongly generalized 2-absorbing second submodules of modules
over a commutative ring and obtain some related results.

1. Introduction

Throughout this paper, R will denote a commutative ring with identity
and Z will denote the ring of integers.

Let M be an R-module. A proper submodule P of M is said to be
prime if for any » € R and m € M with rm € P, we have m € P or
r € (P :g M) |14]. A non-zero submodule S of M is said to be second
if for each a € R, the homomorphism S — S is either surjective or zero
[17]. In this case Anng(S) is a prime ideal of R. A proper submodule N
of M is said to be completely irreducible if N = (\;c; Ny, where {N;}ier
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is a family of submodules of M, implies that N = N; for some ¢ € I. It is
easy to see that every submodule of M is an intersection of completely
irreducible submodules of M [15].

Badawi gave a generalization of prime ideals in [9] and said such ideals
2-absorbing ideals. A proper ideal I of R is a 2-absorbing ideal of R if
whenever a,b,c € R and abc € I, then ab € I or ac € I or bc € I. He
proved that [ is a 2-absorbing ideal of R if and only if whenever Iy, I, and
I3 are ideals of R with I1IsI3 C I, then I1lo C 1 or 1113 C I or Io13 C 1.
In [10], the authors introduced the concept of 2-absorbing primary ideal
which is a generalization of primary ideal. A proper ideal I of R is called
a 2-absorbing primary ideal of R if whenever a,b,c € R and abc € I, then
ab e I or ac € /T or be € VT.

The authors in [13] and [16], extended the concept of 2-absorbing
ideals to the concept of 2-absorbing submodules. A proper submodule N
of M is called a 2-absorbing submodule of M if whenever abm € N for
some a,b € R and m € M, then am € N or bm € N or ab € (N :g M).

In [3], the authors introduced two dual notion of 2-absorbing submod-
ules (that is, 2-absorbing and strongly 2-absorbing second submodules)
of M and investigated some properties of these classes of modules. A
non-zero submodule N of M is said to be a 2-absorbing second submodule
of M if whenever a,b € R, L is a completely irreducible submodule of M,
and abN C L, then aN C L or bN C L or ab € Anng(N). A non-zero
submodule N of M is said to be a strongly 2-absorbing second submodule
of M if whenever a,b € R, K is a submodule of M, and abN C K, then
aN C K or bN C K or ab € Anng(N).

The purpose of this paper is to introduce the concepts of generalized
and strongly generalized 2-absorbing second submodules of an R-module
M as generalizations of 2-absorbing and strongly 2-absorbing second
submodules of M respectively, and provide some information concerning
these new classes of modules.

2. Main results

Definition 2.1. We say that a non-zero submodule N of an R-module
M is a generalized 2-absorbing second submodule or G2-absorbing second
submodule of M if whenever a,b € R, L is a completely irreducible sub-
module of M and abN C L, then a € \/(L:g N) or b € \/(L:gr N) or
ab € Anng(N). By a generalized 2-absorbing second module, we mean a
module which is a generalized 2-absorbing second submodule of itself.
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Example 2.2. Clearly every 2-absorbing second submodule is a G2-
absorbing second submodule. But the converse is not true in general as
we will see in the Example 2.8.

We recall that an R-module M is said to be a cocyclic module if
Socr(M) is a large and simple submodule of M [18]. (Here Socr(M)
denotes the sum of all minimal submodules of M.). A submodule L of
M is a completely irreducible submodule of M if and only if M/L is a
cocyclic R-module [15].

Proposition 2.3. Let N be a G2-absorbing second submodule of an
R-module M. Then we have the following.
(a) If L is a completely irreducible submodule of M such that N € L,
then (L :p N) is a 2-absorbing primary ideal of R.
(b) If M is a cocyclic module, then Anng(N) is a 2-absorbing primary
ideal of R.
(c) If Anng(N) is a primary ideal of R, then (L :p N) is a primary
ideal of R for all completely irreducible submodule L of M such
that N Z L.

Proof. (a) Since N ¢ L, we have (L :p N) # R. Let a,b,c € R and
abc € (L :g N). Then abN C (L :ps ¢). Thus a'!N C (L :ps ¢) for some
positive integer ¢ or b* N C (L :ps ¢) for some positive integer s or abN = 0
because by |7, 2.1], (L :ps ¢) is a completely irreducible submodule of M.
Therefore, ac € \/(L :gr N) or bc € \/(L:g N) or abe (L :g N).

(b) Since M is cocyclic, the zero submodule of M is a completely
irreducible submodule of M. Thus the result follows from part (a).

(c) Let a,b € R, L be a completely irreducible submodule of M such
that N ¢ L, and ab € (L :g N). Then a’! N C L for some positive integer
t or b*N C L for some positive integer s or abN = 0. If abN = 0, then by
assumption, a € \/Anng(N) or bN = 0. Thus in any cases we get that,

ac/(L:gN)orbe /(L:gN). O

Lemma 2.4. Let [ be an ideal of R and N be a G2-absorbing second
submodule of M. If a € R, L is a completely irreducible submodule of M,

and JaN C L,thena € \/(L:g N)or I C /(L :g N)or Ia C Anng(N).

Proof. Let a & \/(L :p N) and Ta ¢ Anng(N). Then there exists b € I
such that abN # 0. Now as NN is a G2-absorbing second submodule of M,
baN C L implies that b € /(L :g N). We show that I C /(L :g N). To
see this, let ¢ be an arbitrary element of I. Then (b + ¢)aN C L. Hence,

either b+c € /(L :g N)or (b+c)a € Anng(N). Ifb+c € \/(L :g N), then
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since b € \/(L :g N) we have c € \/(L :r N). If (b+c)a € Anng(N), then
ca € Anng(N), but caN C L. Thus ¢ € /(L :r N). Hence, we conclude

that I C /(L :g N). O

Theorem 2.5. Let I and J be two ideals of R and N be a G2-absorbing
second submodule of M. If L is a completely irreducible submodule of
M and IJN C L, then I C \/(L:g N) or J C \/(L:g N) or IJ C
Anng(N).

Proof. Let I € \/(L:gp N) and J € /(L :gr N). We show that I.J C

Anng(N). Assume that ¢ € I and d € J. By assumption there exists
a € I such that a € \/(L:g N) but aJN C L. Now Lemma 2.4 shows
that aJ C Anng(N) and so (I \ /(L :g N))J C Anng(N). Similarly
there exists b € (J \ /(L :g N)) such that Ib C Anng(N) and also
I(J\ \/(L:g N)) € Anng(N). Thus we have ab € Anng(N), ad €
Anng(N) and ¢b € Anng(N). Asa+c¢ € [ and b+ d € J, we have
(a+c¢)(b+d)N C L. Therefore, a+c€ /(L:g N)orb+d e /(L:g N)
or (a+c¢)(b+d) € Anng(N). If a+c€ /(L :g N), then c & /(L :g N).
Hence ¢ € I\ /(L :r N) which implies that c¢d € Anng(NV). Similarly
if b+d € /(L:g N), we can deduce that ¢d € Anng(N). Finally if
(a +¢)(b+d) € Anng(N), then ab+ ad + cb + cd € Anng(N) so that
cd € Anng(N). Therefore, IJ C Anng(N). O

Theorem 2.6. Let N be a non-zero submodule of an R-module M. The
following statements are equivalent:
(a) If abN C K for some a,b € R and a submodule K of M, then
ac€(K:gN)orbe /(K:gN) orabée Anng(N).
(b) If IJN C K for some ideals I and J of R and submodule K of M,
then I C /(K :g N) or J C /(K :g N) or IJ C Anng(N).

Proof. (a) = (b) The proof is similar to the proof of Theorem 2.5.
(b) = (a) This is clear. O

Definition 2.7. We say that a non-zero submodule N of an R-module
M is a strongly generalized 2-absorbing second submodule or strongly G2-
absorbing second submodule of M if satisfies the equivalent conditions
of Theorem 2.6. By a strongly generalized 2-absorbing second module,
we mean a module which is a strongly generalized 2-absorbing second
submodule of itself.

Example 2.8. Clearly every strongly 2-absorbing second submodule
is a strongly G2-absorbing second submodule. But the converse is not
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true in general. For example, for any prime integer p, let M = Z,~ and
N = (1/p*+Z). Then N is a strongly G2-absorbing second submodule
which is not a strongly 2-absorbing second submodule of M.

This is clear that every strongly G2-absorbing second submodule is a
(GG2-absorbing second submodule. It is natural to ask the following question:

Question 2.9. Let M be an R-module. Is every G2-absorbing second
submodule of M a strongly G2-absorbing second submodule of M?

Theorem 2.10. Let N be a non-zero submodule of an Artinian R-module
M. The following statements are equivalent:
(a) If abN C Ly N Ly for some a,b € R and completely irreducible

submodules L1, Ly of M, then we have a € /(L1 N Ly :g N) or
be/(LiNLy:g N) orab € Anng(N).

(b) N is a strongly G2-absorbing second submodule.

Proof. (a) = (b). Assume that abN C K for some a,b € R, a submodule
K of M, and ab Z Anng(N). Since M is Artinian, there exist completely
irreducible submodules L1, Lo, ..., Ly, of M such that K = N}_,L;. Then
for each L; (1 < ¢ < n) either a € \/(L; :g N) or b € \/(L;i :r N). If
a € +/(Li:r N) for each 1 <i < n, then

a e /(Lo N) = iy (Liin N)
= /(NP1 Li g N) = /(K :zg N).

Similarly, if b € +/(L; :r N)) for each 1 < i < n, then we get that
b € /(K :gr N). Now suppose that there exist 1 < 4,7 < n such that
a ¢ \/(Li:r N)and b & \/(Lj:g N). Then a € \/(Lj:g N) and b €
V/(Li :r N). Since abN C L; N L;, we have either a € \/(L;NL; :r N)
orbe\(LiNLj:gN). If a € \/(L;NL;j:g N), then a € \/(L; :r N)
which is a contradiction. Similarly from b € \/(L; N L; :p N) we get a
contradiction.

(b) = (a). This is clear. O

Proposition 2.11. Let M be an R-module. If either N is a secondary
submodule of M or N is a finite sum of p-secondary submodules of M,
then N is strongly G2-absorbing second submodule.

Proof. The first assertion is clear. Now the second assertion follows from
[11, 3.1.4]. O
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Lemma 2.12. Let M be an R-module, N C K be two submodules of M,
and K be a strongly G2-absorbing second submodule of M. Then K/N
is a strongly G2-absorbing second submodule of M/N.

Proof. This is straightforward. O

Proposition 2.13. Let N be a strongly G2-absorbing second submodule
of an R-module M. Then we have the following.
(a) Anng(N) is a 2-absorbing primary ideal of R.
(b) If K is a submodule of M such that N Z K, then (K :g N) is a
2-absorbing primary ideal of R.

Proof. (a) Let a,b,c € R and abc € Anng(N). Then abN C abN implies
that a'! N C abN for some positive integer t or b*N C abN for some positive
integer s or abN = 0. If abN = 0, then we are done. If a! N C abN, then
(ca)!N C ca'N C cabN = 0. Thus ca € \/Anng(N). In other case, we do
the same.

(b) Let a,b,c € R and abc € (K :g N). Then a'cN C K for some
positive integer ¢ or b°cN C K for some positive integer s or abN = 0. If
aleN C K or b*cN C K, then (ac)!N C K or (bc)*N C K and so we are
done. If abN = 0, then the result follows from part (a). O

An R-module M is said to be a comultiplication module if for every sub-
module N of M there exists an ideal I of R such that N = (0 :ps I), equiv-
alently, for each submodule N of M, we have N = (0 :py Anng(N)) [5].

Corollary 2.14. Let M be a comultiplication R-module. If N is a strongly
G2-absorbing second submodule of M such that \/Anng(/N) = Anng(N),
then NV is a strongly 2-absorbing second submodule of M

Proof. By Proposition 2.13 (a), Ann r(N) is a 2-absorbing primary ideal of

R. Thus \/Anngr(N) = Anng(N) is a 2-absorbing ideal of R by [10, 2.2.].
Now the result follovvs from |3, 3.10]. O

A submodule N of an R-module M is said to be coidempotent if
N = (0 :p7 Anng(N)?). Also, M is said to be fully coidempotent if every
submodule of M is coidempotent [1]|. Clearly, every fully coidempotent
R-module is a comultiplication R-module.

Theorem 2.15. Let R be a Noetherian ring and N be a submodule of a
fully coidempotent R-module M. Then we have the following.
(a) If Anng(N) is a 2-absorbing primary ideal of R, then N is a strongly
G2-absorbing second submodule of M.
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(b) If M is a cocyclic module and N is a G2-absorbing second submodule
of M, then N is a strongly G2-absorbing second submodule of M.

Proof. (a) Let a,b € R, K be a submodule of M, and abN C K. Then we
have Anng(K)abN = 0. Now since R is Noetherian, (Anng(K)a)!N =0
for some positive integer ¢ or (Anng(K)b)* N = 0 for some positive integer
sor abN = 0 by [10, 2.18]|. If abN = 0, we are done. If (Anng(K)a)'N =0
or (Anng(K)b)*N = 0,then (Anng(K))! C Anng(a'N) or (Anng(K))* C
Anng(b°N). Hence, a! N C K or b N C K since M is a fully coidempotent
R-module. Therefore, N is a strongly G2-absorbing second submodule
of M.

(b) By Proposition 2.3, Anng(N) is a 2-absorbing primary ideal of R.
Thus the result follows from part (a). O

The following example shows that Theorem 2.15 (a) is not satisfied in
general.

Example 2.16. By [5, 3.9], the Z-module Z is not a comultiplication
Z-module and so it is not a fully coidempotent Z-module. The submodule
N = pZ of Z, where p is a prime number, is not strongly G2-absorbing
second submodule. But Anny(pZ) = 0 is a 2-absorbing primary ideal of R.

For a submodule N of an R-module M the second radical (or second
socle) of N is defined as the sum of all second submodules of M contained
in V and it is denoted by sec(IN) (or soc(N)). In case N does not contain
any second submodule, the second radical of N is defined to be (0) (see

[12] and [2]).

Proposition 2.17. Let M be a finitely generated comultiplication R-
module. If N is a strongly G2-absorbing second submodule of M, then
sec(N) is a strongly 2-absorbing second submodule of M.

Proof. Let N be a strongly G2-absorbing second submodule of M. By
Proposition 2.13 (a), AnnR(N) is a 2-absorbing primary ideal of R.
Thus by [10 2 2], \/AnnR is a 2-absorbing ideal of R. By [6, 2.12],

Annpg(sec(N)) = /Anng(N Therefore Annpg(sec(N)) is a 2-absorbing
ideal of R. Now the result follows from [3, 3.10]. O

A non-zero submodule N of an R-module M is a strongly 2-absorbing
secondary submodule of M if whenever a,b € R, K is a submodule of M and
abN C K, then a(sec(IN)) C K or b(sec(N)) C K or ab € Anng(N) [4].
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Theorem 2.18. Let M be a comultiplication R-module and N be a
strongly G2-absorbing second submodule of M. Then N 1is a strongly
2-absorbing secondary submodule of M.

Proof. Let a,b € R, K be a submodule of M, and abN C K. Then
we have a!N C K for some positive integer ¢t or b*N C K for some
positive integer s or abN = 0. If abN = 0, then we are done. Suppose
that a!N C K for some positive integer t. As M is a comultiplication
R-module, K = (0 :p; I) for some ideal I of R. Thus Ia!N = 0. This

implies that Ta C \/Anng(N). Thus
sec(N) C (0 :a7 /Anng(N)) C (0:p7 Ia) = (K :u a).
Hence a(sec(N)) C K, as needed. O

Example 2.19. The submodule N = pZ of the Z-module M = Z, where
p is a prime number, is not a strongly G2-absorbing second submodule. But
as sec(pZ) = 0, we have N is a strongly 2-absorbing secondary submodule
of M.

Theorem 2.20. Let f : M — M be a monomorphism of R-modules.
Then we have the following.
(a) If N is a strongly G2-absorbing second submodule of M, then f(N)
1s a strongly G2-absorbing second submodule of M.
(b) IfN s a strongly G2-absorbing second submodule ofM and N C
f(M), then f~1(N ) is a strongly G2-absorbing second submodule of
M.

Proof. (a) Since N # 0 and f is a monomorphism, we have f(N) # 0. Let
a,b € R, K be a submodule of M, and abf(N) C K. Then abN C f~(K).
As N is strongly G2- absorbing second submodule, a’! N C f~1(K < ) for some
positive integer t or N C f~1(K ) for some positive integer s or abN = 0.
Therefore,

a' f(N)C f(f 1K) = f(M)NK C K
PF(N) C f(fTHK)) = fF(M)NK C K
or abf(IN) = 0, as needed.

() If f7Y(N) =0, then f(M )mN FFHN)) = £(0) = 0. Thus
N =0, a contradiction. Therefore, f~ YN )75 0. Now let a,b € R, K be a

submodule of M, and abf~'(N) C K. Then
abN = ab(f(M) N N) = abf(f~'(N)) < f(K).
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As N is strongly G2-absorbing second submodule, a'!N C f (K) for some
positive integer t or LN C f(K) for some positive integer s or abN = 0.
Therefore, a' f~1(N) € f~1(f(K)) = K or b*f"{(N) C fH(f(K)) = K
or abf 1 (N) = 0 as desired. O

Corollary 2.21. Let M be an R-module and N C K be two submodules
of M. Then N is a strongly G2-absorbing second submodule of K if and
only if N is a strongly G2-absorbing second submodule of M.

Proof. This follows from Theorem 2.20 by using the natural monomor-
phism K — M. O

Let N be a submodule of an R-module M. Then Corollary 2.21 shows
that N is a strongly G2-absorbing second submodule of M if and only if
N is a strongly G2-absorbing second module.

Let R; be a commutative ring with identity and M; be an R;-module,
fori =1,2. Let R = R1 X Ry. Then M = My x M> is an R-module and
each submodule of M is in the form of N = Ny x Ny for some submodules
N1 of M1 and N2 of Mg.

Lemma 2.22. Let R = Ry X Ry and M = M; x My. Then M; is a
fully coidempotent R;-module, for ¢ = 1,2 if and only if M is a fully
coidempotent R-module.

Proof. First suppose that M is a fully coidempotent R-module and N
is a submodule of an Ri-module M;. Then N = Ny x 0 is a submodule
of M. Thus N = (0 :py Anng(N)?) = (0 :p7;, Anng, (N7)?) x 0. Hence
Ny = (0 :p, Anng, (N7)?). Therefore, M; is a fully coidempotent Rj-
module. Similarly, My is a fully coidempotent Ro-module. Conversely, let
N be a submodule of M. Then N = Ny x Ny for some submodules Ny of
M and Ny of My. By assumption, N; = (0 :p, Anng, (N;)?) for i = 1,2.
So

N = (O My Anan (N1)2> X (0 My AnnRQ(NQ)Q) = (0 ‘M ADHR(N)2),
as requested. O

Theorem 2.23. Let R = Ry X R be a Noetherian ring and M = M x Ma,
where My is a fully coidempotent Ry-module and Ms is a fully coidempotent
Ro-module. Then we have the following.
(a) A non-zero submodule Ky of My is a strongly G2-absorbing second
submodule if and only if N = K1 x 0 is a strongly G2-absorbing
second submodule of M.
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(b) A non-zero submodule Ko of Ms is a strongly G2-absorbing second
submodule if and only if N = 0 x Ko is a strongly G2-absorbing
second submodule of M.

(¢) If K1 is a secondary submodule of My and Ko is a secondary sub-
module of Mo, then N = K1 x Ky is a strongly G2-absorbing second
submodule of M.

Proof. (a) Let Kj be a strongly G2-absorbing second submodule of Mj.
Then Anng, (K7) is a 2-absorbing primary ideal of R; by Proposition
2.13. Now since Anng(N) = Anng, (K1) X Ro, we have Anng(N) is a
2-absorbing primary ideal of R by [10, 2.23|. Thus the result follows from
Theorem 2.15 (a). Conversely, let N = K; x 0 be a strongly G2-absorbing
second submodule of M. Then Anng(/N) = Anng, (K1) X Ry is a primary
ideal of R by Proposition 2.13. Thus Anng, (K7) is a primary ideal of Ry
by [10, 2.23]. Thus by Theorem 2.15 (a), K; is a strongly G2-absorbing
second submodule of Mj.

(b) This is proved similar to the part (a).

(c) Let K; be a secondary submodule of M; and K5 be a secondary
submodule of Ms. Then Anng, (K7) and Anng, (K3) are primary ideals of
Ry and Ra, respectively. Now since Anng(N) = Anng, (K1) X Anng, (K>2),
we have Anng(N) is a 2-absorbing primary ideal of R by [10, 2.23|. Thus
the result follows from Theorem 2.15 (a). O

Theorem 2.24. Let R = Ry X Ry be a Noetherian decomposable ring
and M = My x My be a fully coidempotent R-module, where My is an
Ri-module and Moy is an Ro-module. Suppose that N = Ny X Na is a
non-zero submodule of M. Then the following conditions are equivalent:
(a) N is a strongly G2-absorbing second submodule of M ;
(b) FEither Ny =0 and N3 is a strongly G2-absorbing second submodule
of My or No = 0 and Ny is a strongly G2-absorbing second submodule
of My or N1, No are secondary submodules of My, Ma, respectively.

Proof. (a) = (b). Let N = Nj x N3 be a strongly G2-absorbing second
submodule of M. Then Anng(N) = Anng, (N;) x Anng,(N2) is a 2-
absorbing primary ideal of R by Proposition 2.13. By [10, 2.23], we have
Anng, (N1) = Ry and Annpg,(N2) is a 2-absorbing primary ideal of Ry or
Annpg,(N2) = Ry and Anng, (N7) is a 2-absorbing primary ideal of R; or
Annp, (N7) and Anng,(N2) are primary ideals of Ry and Rs, respectively.
Suppose that Anng, (N1) = Ry and Anng,(N2) is a 2-absorbing primary
ideal of Ro. Then N; = 0 and Ny is a strongly G2-absorbing second
submodule of My by Theorem 2.15 (a) and Lemma 2.22. Similarly if
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Annpg,(N2) = Ry and Anng, (V1) is a 2-absorbing primary ideal of R;.
Then No = 0 and Nj is a strongly G2-absorbing second submodule of Mj.
If the last case hold, then as My (resp. M) is a comultiplication Rj-(resp.
Ry-) module, Ny (resp. N2) is a secondary submodule of M (resp. Ma)
by [4, 2.25].

(b) = (a). This can be proved easily by using Theorem 2.23. O
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