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Abstract. Let R be a commutative ring with identity. A
proper submodule N of an R-module M is said to be a 2-absorbing

submodule of M if whenever abm ∈ N for some a, b ∈ R and m ∈ M ,
then am ∈ N or bm ∈ N or ab ∈ (N :R M). In [3], the authors
introduced two dual notion of 2-absorbing submodules (that is, 2-

absorbing and strongly 2-absorbing second submodules) of M and
investigated some properties of these classes of modules. In this
paper, we will introduce the concepts of generalized 2-absorbing
and strongly generalized 2-absorbing second submodules of modules
over a commutative ring and obtain some related results.

1. Introduction

Throughout this paper, R will denote a commutative ring with identity
and Z will denote the ring of integers.

Let M be an R-module. A proper submodule P of M is said to be
prime if for any r ∈ R and m ∈ M with rm ∈ P , we have m ∈ P or
r ∈ (P :R M) [14]. A non-zero submodule S of M is said to be second

if for each a ∈ R, the homomorphism S
a→ S is either surjective or zero

[17]. In this case AnnR(S) is a prime ideal of R. A proper submodule N
of M is said to be completely irreducible if N =

⋂

i∈I Ni, where {Ni}i∈I
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is a family of submodules of M , implies that N = Ni for some i ∈ I. It is
easy to see that every submodule of M is an intersection of completely
irreducible submodules of M [15].

Badawi gave a generalization of prime ideals in [9] and said such ideals
2-absorbing ideals. A proper ideal I of R is a 2-absorbing ideal of R if
whenever a, b, c ∈ R and abc ∈ I, then ab ∈ I or ac ∈ I or bc ∈ I. He
proved that I is a 2-absorbing ideal of R if and only if whenever I1, I2, and
I3 are ideals of R with I1I2I3 ⊆ I, then I1I2 ⊆ I or I1I3 ⊆ I or I2I3 ⊆ I.
In [10], the authors introduced the concept of 2-absorbing primary ideal
which is a generalization of primary ideal. A proper ideal I of R is called
a 2-absorbing primary ideal of R if whenever a, b, c ∈ R and abc ∈ I, then
ab ∈ I or ac ∈

√
I or bc ∈

√
I.

The authors in [13] and [16], extended the concept of 2-absorbing
ideals to the concept of 2-absorbing submodules. A proper submodule N
of M is called a 2-absorbing submodule of M if whenever abm ∈ N for
some a, b ∈ R and m ∈ M , then am ∈ N or bm ∈ N or ab ∈ (N :R M).

In [3], the authors introduced two dual notion of 2-absorbing submod-
ules (that is, 2-absorbing and strongly 2-absorbing second submodules)
of M and investigated some properties of these classes of modules. A
non-zero submodule N of M is said to be a 2-absorbing second submodule

of M if whenever a, b ∈ R, L is a completely irreducible submodule of M ,
and abN ⊆ L, then aN ⊆ L or bN ⊆ L or ab ∈ AnnR(N). A non-zero
submodule N of M is said to be a strongly 2-absorbing second submodule

of M if whenever a, b ∈ R, K is a submodule of M , and abN ⊆ K, then
aN ⊆ K or bN ⊆ K or ab ∈ AnnR(N).

The purpose of this paper is to introduce the concepts of generalized
and strongly generalized 2-absorbing second submodules of an R-module
M as generalizations of 2-absorbing and strongly 2-absorbing second
submodules of M respectively, and provide some information concerning
these new classes of modules.

2. Main results

Definition 2.1. We say that a non-zero submodule N of an R-module
M is a generalized 2-absorbing second submodule or G2-absorbing second

submodule of M if whenever a, b ∈ R, L is a completely irreducible sub-
module of M and abN ⊆ L, then a ∈

√

(L :R N) or b ∈
√

(L :R N) or
ab ∈ AnnR(N). By a generalized 2-absorbing second module, we mean a
module which is a generalized 2-absorbing second submodule of itself.
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Example 2.2. Clearly every 2-absorbing second submodule is a G2-
absorbing second submodule. But the converse is not true in general as
we will see in the Example 2.8.

We recall that an R-module M is said to be a cocyclic module if
SocR(M) is a large and simple submodule of M [18]. (Here SocR(M)
denotes the sum of all minimal submodules of M .). A submodule L of
M is a completely irreducible submodule of M if and only if M/L is a
cocyclic R-module [15].

Proposition 2.3. Let N be a G2-absorbing second submodule of an
R-module M . Then we have the following.

(a) If L is a completely irreducible submodule of M such that N 6⊆ L,
then (L :R N) is a 2-absorbing primary ideal of R.

(b) If M is a cocyclic module, then AnnR(N) is a 2-absorbing primary
ideal of R.

(c) If AnnR(N) is a primary ideal of R, then (L :R N) is a primary
ideal of R for all completely irreducible submodule L of M such
that N 6⊆ L.

Proof. (a) Since N 6⊆ L, we have (L :R N) 6= R. Let a, b, c ∈ R and
abc ∈ (L :R N). Then abN ⊆ (L :M c). Thus atN ⊆ (L :M c) for some
positive integer t or bsN ⊆ (L :M c) for some positive integer s or abN = 0
because by [7, 2.1], (L :M c) is a completely irreducible submodule of M .
Therefore, ac ∈

√

(L :R N) or bc ∈
√

(L :R N) or ab ∈ (L :R N).
(b) Since M is cocyclic, the zero submodule of M is a completely

irreducible submodule of M . Thus the result follows from part (a).
(c) Let a, b ∈ R, L be a completely irreducible submodule of M such

that N 6⊆ L, and ab ∈ (L :R N). Then atN ⊆ L for some positive integer
t or bsN ⊆ L for some positive integer s or abN = 0. If abN = 0, then by
assumption, a ∈

√

AnnR(N) or bN = 0. Thus in any cases we get that,
a ∈

√

(L :R N) or b ∈
√

(L :R N).

Lemma 2.4. Let I be an ideal of R and N be a G2-absorbing second
submodule of M . If a ∈ R, L is a completely irreducible submodule of M ,
and IaN ⊆ L, then a ∈

√

(L :R N) or I ⊆
√

(L :R N) or Ia ⊆ AnnR(N).

Proof. Let a 6∈
√

(L :R N) and Ia * AnnR(N). Then there exists b ∈ I
such that abN 6= 0. Now as N is a G2-absorbing second submodule of M ,
baN ⊆ L implies that b ∈

√

(L :R N). We show that I ⊆
√

(L :R N). To
see this, let c be an arbitrary element of I. Then (b+ c)aN ⊆ L. Hence,
either b+c ∈

√

(L :R N) or (b+c)a ∈ AnnR(N). If b+c ∈
√

(L :R N), then
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since b ∈
√

(L :R N) we have c ∈
√

(L :R N). If (b+c)a ∈ AnnR(N), then
ca 6∈ AnnR(N), but caN ⊆ L. Thus c ∈

√

(L :R N). Hence, we conclude
that I ⊆

√

(L :R N).

Theorem 2.5. Let I and J be two ideals of R and N be a G2-absorbing

second submodule of M . If L is a completely irreducible submodule of

M and IJN ⊆ L, then I ⊆
√

(L :R N) or J ⊆
√

(L :R N) or IJ ⊆
AnnR(N).

Proof. Let I 6⊆
√

(L :R N) and J 6⊆
√

(L :R N). We show that IJ ⊆
AnnR(N). Assume that c ∈ I and d ∈ J . By assumption there exists
a ∈ I such that a 6∈

√

(L :R N) but aJN ⊆ L. Now Lemma 2.4 shows
that aJ ⊆ AnnR(N) and so (I \

√

(L :R N))J ⊆ AnnR(N). Similarly
there exists b ∈ (J \

√

(L :R N)) such that Ib ⊆ AnnR(N) and also
I(J \

√

(L :R N)) ⊆ AnnR(N). Thus we have ab ∈ AnnR(N), ad ∈
AnnR(N) and cb ∈ AnnR(N). As a + c ∈ I and b + d ∈ J , we have
(a+ c)(b+ d)N ⊆ L. Therefore, a+ c ∈

√

(L :R N) or b+ d ∈
√

(L :R N)
or (a+ c)(b+ d) ∈ AnnR(N). If a+ c ∈

√

(L :R N), then c 6∈
√

(L :R N).
Hence c ∈ I \

√

(L :R N) which implies that cd ∈ AnnR(N). Similarly
if b + d ∈

√

(L :R N), we can deduce that cd ∈ AnnR(N). Finally if
(a + c)(b + d) ∈ AnnR(N), then ab + ad + cb + cd ∈ AnnR(N) so that
cd ∈ AnnR(N). Therefore, IJ ⊆ AnnR(N).

Theorem 2.6. Let N be a non-zero submodule of an R-module M . The

following statements are equivalent:

(a) If abN ⊆ K for some a, b ∈ R and a submodule K of M , then

a ∈
√

(K :R N) or b ∈
√

(K :R N) or ab ∈ AnnR(N).
(b) If IJN ⊆ K for some ideals I and J of R and submodule K of M ,

then I ⊆
√

(K :R N) or J ⊆
√

(K :R N) or IJ ⊆ AnnR(N).

Proof. (a) ⇒ (b) The proof is similar to the proof of Theorem 2.5.
(b) ⇒ (a) This is clear.

Definition 2.7. We say that a non-zero submodule N of an R-module
M is a strongly generalized 2-absorbing second submodule or strongly G2-
absorbing second submodule of M if satisfies the equivalent conditions
of Theorem 2.6. By a strongly generalized 2-absorbing second module,
we mean a module which is a strongly generalized 2-absorbing second
submodule of itself.

Example 2.8. Clearly every strongly 2-absorbing second submodule
is a strongly G2-absorbing second submodule. But the converse is not
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true in general. For example, for any prime integer p, let M = Zp∞ and
N = 〈1/p3 + Z〉. Then N is a strongly G2-absorbing second submodule
which is not a strongly 2-absorbing second submodule of M .

This is clear that every strongly G2-absorbing second submodule is a
G2-absorbing second submodule. It is natural to ask the following question:

Question 2.9. Let M be an R-module. Is every G2-absorbing second
submodule of M a strongly G2-absorbing second submodule of M?

Theorem 2.10. Let N be a non-zero submodule of an Artinian R-module

M . The following statements are equivalent:

(a) If abN ⊆ L1 ∩ L2 for some a, b ∈ R and completely irreducible

submodules L1, L2 of M , then we have a ∈
√

(L1 ∩ L2 :R N) or

b ∈
√

(L1 ∩ L2 :R N) or ab ∈ AnnR(N).
(b) N is a strongly G2-absorbing second submodule.

Proof. (a) ⇒ (b). Assume that abN ⊆ K for some a, b ∈ R, a submodule
K of M , and ab 6⊆ AnnR(N). Since M is Artinian, there exist completely
irreducible submodules L1, L2, . . . , Ln of M such that K = ∩n

i=1
Li. Then

for each Li (1 6 i 6 n) either a ∈
√

(Li :R N) or b ∈
√

(Li :R N). If
a ∈

√

(Li :R N) for each 1 6 i 6 n, then

a ∈ ∩n
i=1

√

(Li :R N) =
√

∩n
i=1

(Li :R N)

=
√

(∩n
i=1

Li :R N) =
√

(K :R N).

Similarly, if b ∈
√

(Li :R N)) for each 1 6 i 6 n, then we get that
b ∈

√

(K :R N). Now suppose that there exist 1 6 i, j 6 n such that
a 6∈

√

(Li :R N) and b 6∈
√

(Lj :R N). Then a ∈
√

(Lj :R N) and b ∈
√

(Li :R N). Since abN ⊆ Li ∩ Lj , we have either a ∈
√

(Li ∩ Lj :R N)

or b ∈
√

(Li ∩ Lj :R N). If a ∈
√

(Li ∩ Lj :R N), then a ∈
√

(Li :R N)
which is a contradiction. Similarly from b ∈

√

(Li ∩ Lj :R N) we get a
contradiction.

(b) ⇒ (a). This is clear.

Proposition 2.11. Let M be an R-module. If either N is a secondary
submodule of M or N is a finite sum of p-secondary submodules of M ,
then N is strongly G2-absorbing second submodule.

Proof. The first assertion is clear. Now the second assertion follows from
[11, 3.1.4].
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Lemma 2.12. Let M be an R-module, N ⊆ K be two submodules of M ,
and K be a strongly G2-absorbing second submodule of M . Then K/N
is a strongly G2-absorbing second submodule of M/N .

Proof. This is straightforward.

Proposition 2.13. Let N be a strongly G2-absorbing second submodule
of an R-module M . Then we have the following.

(a) AnnR(N) is a 2-absorbing primary ideal of R.
(b) If K is a submodule of M such that N 6⊆ K, then (K :R N) is a

2-absorbing primary ideal of R.

Proof. (a) Let a, b, c ∈ R and abc ∈ AnnR(N). Then abN ⊆ abN implies
that atN ⊆ abN for some positive integer t or bsN ⊆ abN for some positive
integer s or abN = 0. If abN = 0, then we are done. If atN ⊆ abN , then
(ca)tN ⊆ catN ⊆ cabN = 0. Thus ca ∈

√

AnnR(N). In other case, we do
the same.

(b) Let a, b, c ∈ R and abc ∈ (K :R N). Then atcN ⊆ K for some
positive integer t or bscN ⊆ K for some positive integer s or abN = 0. If
atcN ⊆ K or bscN ⊆ K, then (ac)tN ⊆ K or (bc)sN ⊆ K and so we are
done. If abN = 0, then the result follows from part (a).

An R-module M is said to be a comultiplication module if for every sub-
module N of M there exists an ideal I of R such that N = (0 :M I), equiv-
alently, for each submodule N of M , we have N = (0 :M AnnR(N)) [5].

Corollary 2.14. Let M be a comultiplication R-module. If N is a strongly
G2-absorbing second submodule of M such that

√

AnnR(N) = AnnR(N),
then N is a strongly 2-absorbing second submodule of M .

Proof. By Proposition 2.13 (a), AnnR(N) is a 2-absorbing primary ideal of
R. Thus

√

AnnR(N) = AnnR(N) is a 2-absorbing ideal of R by [10, 2.2.].
Now the result follows from [3, 3.10].

A submodule N of an R-module M is said to be coidempotent if
N = (0 :M AnnR(N)2). Also, M is said to be fully coidempotent if every
submodule of M is coidempotent [1]. Clearly, every fully coidempotent
R-module is a comultiplication R-module.

Theorem 2.15. Let R be a Noetherian ring and N be a submodule of a

fully coidempotent R-module M . Then we have the following.

(a) If AnnR(N) is a 2-absorbing primary ideal of R, then N is a strongly

G2-absorbing second submodule of M .
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(b) If M is a cocyclic module and N is a G2-absorbing second submodule

of M , then N is a strongly G2-absorbing second submodule of M .

Proof. (a) Let a, b ∈ R, K be a submodule of M , and abN ⊆ K. Then we
have AnnR(K)abN = 0. Now since R is Noetherian, (AnnR(K)a)tN = 0
for some positive integer t or (AnnR(K)b)sN = 0 for some positive integer
s or abN = 0 by [10, 2.18]. If abN = 0, we are done. If (AnnR(K)a)tN = 0
or (AnnR(K)b)sN = 0, then (AnnR(K))t ⊆ AnnR(a

tN) or (AnnR(K))s ⊆
AnnR(b

sN). Hence, atN ⊆ K or bsN ⊆ K since M is a fully coidempotent
R-module. Therefore, N is a strongly G2-absorbing second submodule
of M .

(b) By Proposition 2.3, AnnR(N) is a 2-absorbing primary ideal of R.
Thus the result follows from part (a).

The following example shows that Theorem 2.15 (a) is not satisfied in
general.

Example 2.16. By [5, 3.9], the Z-module Z is not a comultiplication
Z-module and so it is not a fully coidempotent Z-module. The submodule
N = pZ of Z, where p is a prime number, is not strongly G2-absorbing
second submodule. But AnnZ(pZ) = 0 is a 2-absorbing primary ideal of R.

For a submodule N of an R-module M the second radical (or second
socle) of N is defined as the sum of all second submodules of M contained
in N and it is denoted by sec(N) (or soc(N)). In case N does not contain
any second submodule, the second radical of N is defined to be (0) (see
[12] and [2]).

Proposition 2.17. Let M be a finitely generated comultiplication R-
module. If N is a strongly G2-absorbing second submodule of M , then
sec(N) is a strongly 2-absorbing second submodule of M .

Proof. Let N be a strongly G2-absorbing second submodule of M . By
Proposition 2.13 (a), AnnR(N) is a 2-absorbing primary ideal of R.
Thus by [10, 2.2],

√

AnnR(N) is a 2-absorbing ideal of R. By [6, 2.12],
AnnR(sec(N)) =

√

AnnR(N). Therefore, AnnR(sec(N)) is a 2-absorbing
ideal of R. Now the result follows from [3, 3.10].

A non-zero submodule N of an R-module M is a strongly 2-absorbing

secondary submodule of M if whenever a, b ∈ R,K is a submodule of M and
abN ⊆ K, then a(sec(N)) ⊆ K or b(sec(N)) ⊆ K or ab ∈ AnnR(N) [4].
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Theorem 2.18. Let M be a comultiplication R-module and N be a

strongly G2-absorbing second submodule of M . Then N is a strongly

2-absorbing secondary submodule of M .

Proof. Let a, b ∈ R, K be a submodule of M , and abN ⊆ K. Then
we have atN ⊆ K for some positive integer t or bsN ⊆ K for some
positive integer s or abN = 0. If abN = 0, then we are done. Suppose
that atN ⊆ K for some positive integer t. As M is a comultiplication
R-module, K = (0 :M I) for some ideal I of R. Thus IatN = 0. This
implies that Ia ⊆

√

AnnR(N). Thus

sec(N) ⊆ (0 :M
√

AnnR(N)) ⊆ (0 :M Ia) = (K :M a).

Hence a(sec(N)) ⊆ K, as needed.

Example 2.19. The submodule N = pZ of the Z-module M = Z, where
p is a prime number, is not a strongly G2-absorbing second submodule. But
as sec(pZ) = 0, we have N is a strongly 2-absorbing secondary submodule
of M .

Theorem 2.20. Let f : M → Ḿ be a monomorphism of R-modules.

Then we have the following.

(a) If N is a strongly G2-absorbing second submodule of M , then f(N)
is a strongly G2-absorbing second submodule of Ḿ .

(b) If Ń is a strongly G2-absorbing second submodule of Ḿ and Ń ⊆
f(M), then f−1(Ń) is a strongly G2-absorbing second submodule of

M .

Proof. (a) Since N 6= 0 and f is a monomorphism, we have f(N) 6= 0. Let
a, b ∈ R, Ḱ be a submodule of Ḿ , and abf(N) ⊆ Ḱ. Then abN ⊆ f−1(Ḱ).
As N is strongly G2-absorbing second submodule, atN ⊆ f−1(Ḱ) for some
positive integer t or bsN ⊆ f−1(Ḱ) for some positive integer s or abN = 0.
Therefore,

atf(N) ⊆ f(f−1(Ḱ)) = f(M) ∩ Ḱ ⊆ Ḱ

or
bsf(N) ⊆ f(f−1(Ḱ)) = f(M) ∩ Ḱ ⊆ Ḱ

or abf(N) = 0, as needed.
(b) If f−1(Ń) = 0, then f(M) ∩ Ń = f(f−1(Ń)) = f(0) = 0. Thus

Ń = 0, a contradiction. Therefore, f−1(Ń) 6= 0. Now let a, b ∈ R, K be a
submodule of M , and abf−1(Ń) ⊆ K. Then

abŃ = ab(f(M) ∩ Ń) = abf(f−1(Ń)) ⊆ f(K).
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As Ń is strongly G2-absorbing second submodule, atŃ ⊆ f(K) for some
positive integer t or bsŃ ⊆ f(K) for some positive integer s or abŃ = 0.
Therefore, atf−1(Ń) ⊆ f−1(f(K)) = K or bsf−1(Ń) ⊆ f−1(f(K)) = K
or abf−1(Ń) = 0 as desired.

Corollary 2.21. Let M be an R-module and N ⊆ K be two submodules
of M . Then N is a strongly G2-absorbing second submodule of K if and
only if N is a strongly G2-absorbing second submodule of M .

Proof. This follows from Theorem 2.20 by using the natural monomor-
phism K → M .

Let N be a submodule of an R-module M . Then Corollary 2.21 shows
that N is a strongly G2-absorbing second submodule of M if and only if
N is a strongly G2-absorbing second module.

Let Ri be a commutative ring with identity and Mi be an Ri-module,
for i = 1, 2. Let R = R1 ×R2. Then M = M1 ×M2 is an R-module and
each submodule of M is in the form of N = N1×N2 for some submodules
N1 of M1 and N2 of M2.

Lemma 2.22. Let R = R1 × R2 and M = M1 × M2. Then Mi is a
fully coidempotent Ri-module, for i = 1, 2 if and only if M is a fully
coidempotent R-module.

Proof. First suppose that M is a fully coidempotent R-module and N1

is a submodule of an R1-module M1. Then N = N1 × 0 is a submodule
of M . Thus N = (0 :M AnnR(N)2) = (0 :M1

AnnR1
(N1)

2) × 0. Hence
N1 = (0 :M1

AnnR1
(N1)

2). Therefore, M1 is a fully coidempotent R1-
module. Similarly, M2 is a fully coidempotent R2-module. Conversely, let
N be a submodule of M . Then N = N1 ×N2 for some submodules N1 of
M1 and N2 of M2. By assumption, Ni = (0 :Mi

AnnRi
(Ni)

2) for i = 1, 2.
So

N = (0 :M1
AnnR1

(N1)
2)× (0 :M2

AnnR2
(N2)

2) = (0 :M AnnR(N)2),

as requested.

Theorem 2.23. Let R = R1×R2 be a Noetherian ring and M = M1×M2,

where M1 is a fully coidempotent R1-module and M2 is a fully coidempotent

R2-module. Then we have the following.

(a) A non-zero submodule K1 of M1 is a strongly G2-absorbing second

submodule if and only if N = K1 × 0 is a strongly G2-absorbing

second submodule of M .
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(b) A non-zero submodule K2 of M2 is a strongly G2-absorbing second

submodule if and only if N = 0 × K2 is a strongly G2-absorbing

second submodule of M .

(c) If K1 is a secondary submodule of M1 and K2 is a secondary sub-

module of M2, then N = K1 ×K2 is a strongly G2-absorbing second

submodule of M .

Proof. (a) Let K1 be a strongly G2-absorbing second submodule of M1.
Then AnnR1

(K1) is a 2-absorbing primary ideal of R1 by Proposition
2.13. Now since AnnR(N) = AnnR1

(K1) × R2, we have AnnR(N) is a
2-absorbing primary ideal of R by [10, 2.23]. Thus the result follows from
Theorem 2.15 (a). Conversely, let N = K1 × 0 be a strongly G2-absorbing
second submodule of M . Then AnnR(N) = AnnR1

(K1)×R2 is a primary
ideal of R by Proposition 2.13. Thus AnnR1

(K1) is a primary ideal of R1

by [10, 2.23]. Thus by Theorem 2.15 (a), K1 is a strongly G2-absorbing
second submodule of M1.

(b) This is proved similar to the part (a).
(c) Let K1 be a secondary submodule of M1 and K2 be a secondary

submodule of M2. Then AnnR1
(K1) and AnnR2

(K2) are primary ideals of
R1 and R2, respectively. Now since AnnR(N) = AnnR1

(K1)×AnnR2
(K2),

we have AnnR(N) is a 2-absorbing primary ideal of R by [10, 2.23]. Thus
the result follows from Theorem 2.15 (a).

Theorem 2.24. Let R = R1 × R2 be a Noetherian decomposable ring

and M = M1 × M2 be a fully coidempotent R-module, where M1 is an

R1-module and M2 is an R2-module. Suppose that N = N1 × N2 is a

non-zero submodule of M . Then the following conditions are equivalent:

(a) N is a strongly G2-absorbing second submodule of M ;

(b) Either N1 = 0 and N2 is a strongly G2-absorbing second submodule

of M2 or N2 = 0 and N1 is a strongly G2-absorbing second submodule

of M1 or N1, N2 are secondary submodules of M1, M2, respectively.

Proof. (a) ⇒ (b). Let N = N1 ×N2 be a strongly G2-absorbing second
submodule of M . Then AnnR(N) = AnnR1

(N1) × AnnR2
(N2) is a 2-

absorbing primary ideal of R by Proposition 2.13. By [10, 2.23], we have
AnnR1

(N1) = R1 and AnnR2
(N2) is a 2-absorbing primary ideal of R2 or

AnnR2
(N2) = R2 and AnnR1

(N1) is a 2-absorbing primary ideal of R1 or
AnnR1

(N1) and AnnR2
(N2) are primary ideals of R1 and R2, respectively.

Suppose that AnnR1
(N1) = R1 and AnnR2

(N2) is a 2-absorbing primary
ideal of R2. Then N1 = 0 and N2 is a strongly G2-absorbing second
submodule of M2 by Theorem 2.15 (a) and Lemma 2.22. Similarly if
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AnnR2
(N2) = R2 and AnnR1

(N1) is a 2-absorbing primary ideal of R1.
Then N2 = 0 and N1 is a strongly G2-absorbing second submodule of M1.
If the last case hold, then as M1 (resp. M2) is a comultiplication R1-(resp.
R2-) module, N1 (resp. N2) is a secondary submodule of M1 (resp. M2)
by [4, 2.25].

(b) ⇒ (a). This can be proved easily by using Theorem 2.23.
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