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Abstract. In this paper we introduce the notion of the neat
range one for Bezout duo-domains. We show that a distributive
Bezout domain is an elementary divisor domain if and only if it is a
duo-domain of neat range one.

A problem of describing elementary divisor rings is classical and far
from its completion. The most full history of this problem and close to it
problems can be found in [4]. In the case of commutative rings there are
many developments on this problem in the case of noncommutative rings
it is little investigated and fragmented. A general picture is far from its
full description.

Among these results are should especially note a result of [5] which
shows that a distributive elementary divisor domain is a duo-domain.
Tuganbaev extended this result in case of a distributive ring [3].

In this paper we give a criterion when a distributive domain is an
elementary divisor domain.

We start with necessary definitions and facts. Under a ring R we
understand an associative ring with 1, and 1 6= 0. We say that matrices A
and B over a ring R are equivalent if exist invertible matrices P and Q of
appropriate sizes such that B = PAQ. The fact that matrices A and B are
equivalent is denoted by A ∼ B. If for a matrix A there exists a diagonal
matrix D = (di) such that A ∼ D and Rdi+1R ⊆ diR ∩ Rdi for every i
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then we say that the matrix A has a canonical diagonal reduction. A ring
R is an elementary divisor ring if every matrix over R has a canonical
diagonal reduction. If over a ring R every 1 × 2 (2 × 1) matrix has a
canonical diagonal reduction then R called a right (left) Hermite ring.

A ring which is both a right and left Hermite ring is called an Hermite
ring. We note that a right Hermite ring is a right Bezout ring that is a
ring in which every finitely generated right ideal is principal [1], [4].

A ring R is called clean if every element of R is the sum of an
idempotent and a unit. A ring R is called an exchange ring if for every
element a ∈ R there exists an idempotent e ∈ R such that e ∈ aR,
1 − e ∈ (1 − a)R. [2].

A ring R is called a ring of stable range one if for every a, b ∈ R such
that aR+bR = R there exists an element t ∈ R such that a (a+bt)R = R.

A ring R is called right (left) distributive if every lattice right (left)
ideal of ring R is distributive. A distributive ring is a ring which is both
right and left distributive ring [3].

A right (left) quasi-duo ring is a ring in which every a right (left)
maximal ideal is ideal. In the case of distributive right (left) Bezout rings a
connection with right (left) quasi-duo rings is established by the following
theorem.

Theorem 1. [3] The following properties are equivalent for a Bezout

ring R.

1) R is a distributive ring.

2) R is a quasi-duo ring.

3) From the condition aR + bR = R it follows that Ra + Rb = R for

every elements a, b ∈ R.

4) From the condition Ra + Rb = R it follows that aR + bR = R for

every elements a, b ∈ R.

Theorem 2. [5] Any distributive elementary divisor domain is a duo-

domain.

Definition 1. We say that a duo-ring R has neat range one if for every
a, b ∈ R such that aR + bR = R there exists an element t ∈ R such that
a R/(a + bt)R is a clean ring.

We note that every duo-ring of stable range one is a ring of neat range
one.

The following two theorems are the main result of this paper.

Theorem 3. Any Bezout duo-domain is an elementary divisor domain

if and only if it is a domain of neat range one.
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Theorem 4. Any distributive Bezout domain is an elementary divisor

domain if and only if it is a duo-domain of neat range one.

Theorem 3 is a consequence of Theorem 5 and Proposition 4.

Theorem 4 is a consequence of Theorems 2 and 3.

We prove the following result which will be useful in the forthcoming
research. Recall that a row (a1, . . . , an) of elements of a ring R is called
unimodular if a1R + . . . + anR = R.

Proposition 1. Let R be a right Hermite ring, then every unimodular row

(a1, . . . , an) with elements of the ring R can be completed to an invertible

matrix.

Proof. Since R is a right Hermite ring and a1R + . . . + anR = R, then

(a1, . . . , an)P = (1, 0 . . . 0) (1)

for some matrix P of order n over the ring R. Note that

P −1 = (pij).

From equality (1) we have

(a1, . . . , an) = (1, 0 . . . 0)P −1,

then a1 = p11, . . . , an = p1n and hence the row (a1, . . . , an) is the first
row invertible matrix P −1. The proposition is proved.

Proposition 2. A Hermite duo-ring R is an elementary divisor ring if

for such any elements a, b, c ∈ R such that aR + bR + cR = R there exist

elements p, q ∈ R such that (pa)R + (pb + qc)R = R.

Proof. Let R be an elementary divisor ring. Let aR + bR + cR = R. The

matrix A =

(

a b
0 c

)

has canonical diagonal reduction, i.e., there exists

invertible matrices P =

(

p q
∗ ∗

)

∈ GL2(R), Q ∈ GL2(R) such that

PAQ =

(

1 0
0 ∗

)

.

Hence we get that paR + (pb + qc)R = R. The necessity is proved.
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In order to prove sufficiency according to [1] it is enough to prove

that every matrix A =

(

a b
0 c

)

where aR + bR + cR = R has canonical

diagonal reduction. We see that (pa)R+(pb+qc)R = R for some elements
p, q ∈ R. Hence pR + qR = R, as R is an Hermite ring and the row (p, q),
by Proposition 1, is adding to an invertible matrix P ∈ GL2(R).

Obviously, the matrix PA has canonical diagonal reduction. The
proposition is proved.

Proposition 3. Let R be a Bezout duo-domain. For every elements

a, b, c ∈ R such that aR + bR + cR = R the following conditions are

equivalent:

1) There exist elements p, q ∈ R such that paR + (pb + qc)R = R;

2) There exist elements λ, u, v ∈ R such that b + λc = v · u, where

uR + aR = R, vR + cR = R.

Proof. 1) ⇒ 2) Let condition 1) be true. Then it follows that pR+qcR = R
and hence pR + cR = R. Since R is a duo-ring, Rp + Rc = R. Hence
vp + jc = 1 for some elements v, j ∈ R. Then vpb − b = jcb = ct for t ∈ R.
Note that since R is a duo-ring, then t = jc, where jc = cj′.

Then v(pb + qc) = vpb + vqc = b + ct + vqc = b + ct + ck, that is
v(pb + qc) − b ∈ cR, that is v(pb + qc) − b = cλ for some λ ∈ R. We note
that such an element k exists, since R is a duo-ring. Namely, vqc = ck.
Hence vR + cR = R and uR + aR = R where u = pb + qc. We note
that the condition uR + aR = R follows obviously from the condition
paR + (pb + qc)R = R. Condition 2) is proved.

2) ⇒ 1) We assume that exists an element λ ∈ R such that b+cλ = vu,
where vR + cR = R and uR + aR = R. Since vR + cR = R then
Rv + Rc = R and pv + jc = 1 for some elements p, j ∈ R.

We note that pR + cR = R. Then pb = p(vu − cλ) = (pv)u − pcλ =
(1−jc)u−pcλ = u−qc for an element q ∈ R. Hence u = pb+qc. Therefore,
(pb + qc)R + aR = R and pR + cR = R. Since R is a Bezout duo-domain,
let pR + qR = dR, where p = dp1, q = dq1 and p1R + q1R = R such that
p1R + (p1b + q1c)R = p1R + q1cR since pR + cR = R and p1R + q1R = R
then p1R + (p1b + q1c)R = R.

Hence (p1b + q1c)R + aR = R and (p1b + q1c)R + p1R = R and hence
p1aR + (p1b + q1c)R = R. Condition 1) is true.

The proposition is proved.

Remark 1. In Proposition 3 we can choose the elements u and v such
that uR + vR = R.
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Theorem 5. Let R be a Bezout duo-domain. Then the following condi-

tions are equivalent.

1) R is an elementary divisor duo-domain;

2) For every elements x, y, z ∈ R such that xR + yR = R there exists

an element λ ∈ R such that x + λy = vu, where uR + zR = R,

vR + (1 − z)R = R.

Proof. 1) ⇒ 2) Let R be an elementary divisor domain. By Proposition 2,
then for every elements a, b, c ∈ R such that aR + bR + cR = R there
exist elements p, q ∈ R such that paR + (pb + qc)R = R.

We obtain Condition 2 of Proposition 3 to the elements a = z, b =
x, c = y(1 − z).

It is complicated to prove the fact that from Condition 2) of our
theorem we obtain the condition that for every a, b, c ∈ R such that aR +
bR+cR = R there exist elements p, q ∈ R such that paR+(pb+qc)R = R.
Let bR + cR = dR and b = db1, c = dc1 where b1R + c1R = R. Since
aR+dR = R = aR+bR+cR = R then dR+aR = R hence 1−d1d ∈ aR
for an element d1 ∈ R.

2) ⇒ 1) Put x = b1, y = c1, z = d1d. By Condition 2) of our theorem,
there exists an element λ1 ∈ R such that b1 + c1λ1 = vu1 where u1R +
(1 − d1d)R = R, vR + d1dR = R. Since (1 − d1d) ∈ aR and also the fact
that u1R + (1 − d1d)R = R, then u1R + aR = R. We show that u = u1d
hence uR + aR = R. Let λ ∈ R be such that c1λ1 = λc1.

We have that b + λc = (b1 + λc1)d = vu1d = vu. As vR + d1R = R
then vR + dR = R. Remark that vR + cR = vR + dc1R = vR + c1R as
b1 +λc1 = vu1, vR+c1R = R therefore vR+cR = R and this means that
Condition 2) of Proposition 3 is true. Therefore according to Proposition 3
we conclude that for every a, b, c ∈ R with aR + bR + cR = R there exist
elements p, q ∈ R such that paR + (pb + qc)R = R, that is according to
Proposition 2, R is an elementary divisor ring.

The theorem is proved.

Proposition 4. Let R be a Bezout duo-domain and c ∈ R \ {0}. Then

R = R/cR is a clean ring if and only if for every element a ∈ R there exist

elements v, u such that c = vu where uR + aR = R vR + (1 − a)R = R,

uR + vR = R.

Proof. Let R be a clean ring. According to [2], R is an exchange ring. Let
ā = a + cR. Then there exists an idempotent ē ∈ R̄ such that ē ∈ āR̄,
1̄− ē ∈ (1̄− ā)R̄. Since ē ∈ āR̄, e−ap = cs for elements p, s ∈ R. Similarly,
1−e−(1−a)α = cβ for elements α, β ∈ R. Since ē2 = ē, then e(1−e) = ct
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for an element t ∈ R. Let eR + cR = dR. Hence e = de0, c = dc0 for
elements e0, c0 ∈ R such that e0R + c0R = R, hence e0(1 − e) = c0t and
e + c0j ≡ 1 for every element j ∈ R.

Denote that v = d, u = c0 we have c = vu. Since e = 1 − c0j, then
uR + eR = R. Since e = ap + cs, then uR + aR = R. We show that
vR + (1 − a)R = R. As 1 − e + (1 − a)α = cβ and e = de0, c = dc0 hence
1 − de0 + (1 − a)α = dc0β and this means that d(e0 + c0β) + (1 − a)α = 1,
thus dR + (1 − a)R = R that is vR + (1 − a)R = R. The necessity is
proved.

Let c = vu, where uR + aR = R, vR + (1 − a)R = R. Let ū = u + cR,
v̄ = v + cR. From the equality uR + vR = R we have ur + vs = 1 for
some elements r, s ∈ R. Hence vur + v2s = v and u2r + uvs = u and this
means that v̄2s̄ = v̄, ū2r̄ = ū.

Let v̄s̄ = ē, it is obvious that ē2 = ē and 1̄−ē = ūr̄. Since uR+aR = R,
we have ux + ay = 1 for elements x, y ∈ R. Hence vux + vay = v,
vuxs + vays = vs.

Let va = av′ for some element v′. Hence vuxs + av′ys = vs and this
means that āv̄′ȳ · s̄ = v̄ · s̄ that is āj̄ = ē for j̄ ∈ R that is ē ∈ āR̄. Similarly,
from the equality vR + (1 − a)R = R it follows that 1̄ − ē ∈ (1̄ − ā)R.
According to [2], R̄ is a clean ring. The proposition is proved.
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