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Geometry of flocks and n-ary groups
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Communicated by I. V. Protasov

ABSTRACT. Semiabelinan flocks and n-ary groups are charac-
terized by the properties of parallelograms and vectors of the affine
geometry defined by these flocks and n-ary groups.

1. Introduction

If in the standard (affine) geometry is fixed point O, then any point
_)
P of this geometry is uniquely determined by the vector p'= OP, and
H
conversely, any vector OP uniquely determines the point P. Moreover,

any interval AB is interpreted as the vector @ — b or as the vector b — d.
In the first case,

AB=CD <+ d-b+d=¢
or, in the other words
AB=CD <= f(a,b,d) =c,

where each vector ¥ is treated as an element v of a commutative group
(G,+). The operation f has the form f(z,y,z) =x —y+ z. Groups (also
non-commutative) with a ternary operation defined in such a way were
considered by J. Certaine [3] as a special case of ternary heaps investigated
by H. Priifer [18]. Ternary heaps have interesting applications to projective
geometry [1], affine geometry 2], theory of nets (webs), theory of knots
and even to the differential geometry [24], [25].
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All affine geometries may be treated as geometries defined by some
n-ary relations (see, for example, [23]). The class of affine geometries
defined by n-ary groups, which are a natural generalization of the notion
of groups, was introduced by S.A. Rusakov (see [20], [21]) and in detail
described by Yu.l. Kulazhenko.

Below, using methods proposed by W.A. Dudek in his fundamental
paper [7], we give very short and elegant proofs of various Kulazhenko’s
results.

2. Preliminaries

We will use the standard notation: the sequence z;,...,x; will be
denoted as 2} (for j < i it is the empty symbol). In the case 2,41 = ... =
Zirr = x instead of xii’f
symbol. In this notation the formula

k 0
we will write (:c). Obviously (a:) is the empty

f(xh vy Ty Yig 1y ooy Yidky Tidk+15 - - '7xn)7

where ;11 = ... =y = y, will be written as f(z¢, (glj),xzﬁ_kﬂ).

By an n-ary group (G, f) we mean (see [4]) a non-empty set G together
with one n-ary operation f: G"™ — G satisfying for all i = 1,2,...,n the
following two conditions:

19 the associative law:

2n—1 i—1 i—1y - 2n—1
@), a0t = Fa faf ™), 2005
20 for all 21, 29,...,%n, b € G there exits a unique x; € G such that
f(xi_lvxia x?—i—l) =b.

Such n-ary group may be considered also as an algebra (G, f, g) with
one associative n-ary operation f and one unary operation g satisfying
some identities (see, for example, [5], [6], [8] or [9]). In particular, an n-ary
group may be treated as an algebra (G, f, [*2]) with one associative n-ary
operation f and one unary operation 72 : z s z[=2 such that

(n—1)

Fa20 1 T2 ) = rrw, ), e =y ()

is true for all z,y € G (see [19]).
Applying associativity to (1) we obtain

(n-1), (n—2) (n-2) , (n-1)

FFEED ), e ) = fly, a L fCx Lat) =y (2)
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which together with results proved in [9] and [5] shows that

s, = 1" 2 — 3, 3

where T denotes the skew element to x (see [4], |5] or [9]). In general T # x,
but the situation when = x or T =g for = # y also is possible (see [8]).
Moreover, in any n-ary group (G, f) with n > 3 we have

(i=3) _ (n—i) (G=3) _ (n—3)
f(:l:7 y Y,y ,Z):f(CE, y Yy 72) (4)
for all x,y,z € G and 3 <i,j < n.
An n-ary operation f defined on G is semiabelian if

f(xlaxgilvxn) = f(xnaxgilvxl)

for all z1,...,z, € G.
One can prove (for details see [5]) that for n > 3 an n-ary group (G, f)

is semiabelian if and only if there exists a € GG such that for all z,y € G

-2 -2
holds f(z, (na ),y) = f(z,(na ),y), or equivalently,

_ (n=3) (n—3)

flza, ay) = f(za, ay). (5)
A nonempty set G with one ternary operation [-, - ,-] satisfying the
para-associative law
[z, y, 2], u, 0] = [, [u, z,y], 0] = [z,y, [z, u, w]]

and such that for all a, b, ¢ € G there are uniquely determined z,y,z € G
such that

[,a,b] = [a,y,b] = [a,b, 2] = ¢ (6)

is called a flock (see [7| or [10]). Obviously, a semiabelian flock is a

semiabelian ternary group. So, a flock (G,[-, - ,-]) is semiabelian if and

only if there exists a € G such that [z, a, z] = [z,a,z] for all z,z € G.
Properties of flocks are similar to properties of ternary groups.
Further, we will use the following lemmas proved in [7].

Lemma 2.1. In any flock (G,[-, - ,-]) for each x € G there exists T such
that

[z, 2,y = [, 2, 9] = [y, 2, 7] = [y, T, 2] =y
forally € G.

Lemma 2.2. In any flock T = x and [x,y, 2] = [T,7,Z].
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By the Post’s Coset Theorem (see [17]), for any n-ary group (G, f) there
exists a binary group (G7#,-) such that G C G* and f(2}) = x1-72-.. .-,
for z1,...,x, € G. Since in this group Z = 22" for all z € G, then

[xvyvz] - f(x7§7 (ny?’)?‘z) (7)
is an idempotent para-associative ternary operation. So, if (G, f) is an
n-ary group then (G,[-, - ,-]) with an operation defined by (7) is an
idempotent ternary flock. We will say that this flock is induced by an
n-group (G, f). From Post’s Theorem it follows that the operation of this
flock can be presented in the form [z,y, 2] = 2 - y~! - 2, where (G7,") is
the covering group of the corresponding an n-ary group (G, f).

The following obvious lemma plays an important role in the proofs of
our results presented in this paper.

Lemma 2.3. An n-ary group (G, f) is semiabelian if and only if the flock

(G,[-, - ,-]) defined by (7) is semiabelian.
Further, for simplicity, instead of [. . . [[x1, 2, 3], 4, T5], . . ., Tok, Tok11]
we will write [z1,x9,...,Zoky1]. Since the operation [-, - ,-]| is para-

associative we also have

[561, T2,y $2k+1] = [9017 Z2, [373904, [ .- [«772k71a T2k, 902k+1] o ]]]

3. Parallelograms

Generalizing the idea presented by W. Szmielew (see [23]) S.A. Rusakov
considered in [22] the affine geometry as the geometry induced by n-ary
groups. In his generalization elements of an n-ary group (G, f) are points.
The ordered pair of two points a,b € G is called an interval and is denoted
by (a,b). The set of four points a, b, ¢,d € G such that (a,b), (b, c), (c,d)
and (d,a) are intervals is called a quadrangle. Intervals (a, b), (b, c), (¢, d)
and (d,a) are sides of this quadrangle. Intervals (a,c) and (b, d) are its
diagonals.

It is easy to see that the relation = defined on the set of all intervals
by

(2n—4)
(a.b) = (c,d) <= [labF b d)=c (8)

is an equivalence. In view of (3) this relation can be rewritten in the form

@B = led) e fab b d)=c
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%
The equivalence class of (a,b) is interpreted as a vector ab. Such defined
vectors form some vector space (see [22]), where the addition of vectors
can be defined (see [11]) by

C

where g = f(b,cl=2, ,d) and h = f(c,b=2, b ", a), or equivalently

(see [13]) g = f(b,zc, (ngg),d) and h = f(c,b, b ,a).
According to [22] four points a, b, c,d € G form a parallelogram if

(2n—4)
fla, b2 b o) =d. (9)

As a simple consequence of (4) and (7) we obtain the following two
lemmas.

Lemma 3.1. For an n-ary group (G, f), where n > 3, the following
conditions are equivalent:

(i) elements a,b,c,d € G form a parallelogram,
_ (n=3)
(ii) f(a,b, b ,c)=d,
(iii) [a,b,c] =d.

Lemma 3.2. For an n-ary group (G, f), where n > 3, the following
conditions are equivalent:
(i) intervals (a,b) and {(c,d) are equivalent,

_ (n=3)
(ii) f(a,b, b ,d)=c,
(iii) [a,b,d] = c.
Now let (G,[-, - ,-]) be an arbitrary flock and a,b,c,d € G. Then the

relation

(a,b) = (c,d) <= Ja,b,d]=c

is an equivalence. Similarly as in the case of n-ary groups, the equivalence
class of (a,b) can be interpreted as a vector ab. Consequently,

_> —
db=cd [a,b,d] = c. (10)
The addition of such vectors is defined by
- — T
ab + cd = afb, 2, d| = [c, b, a]d. (11)

Thus points a, b, c,d € G form a parallelogram if [a,b, c] = d.
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Therefore for n > 2 the affine geometry introduced by Rusakov and
investigated by Kulazhenko is a special case of the affine geometry induced
by flocks (see [7]). Namely, for n > 2, the affine geometry induced by
an n-ary group (G, f) coincides with the affine geometry induced by an
idempotent flock defined by (7). So, all Kulazhenko’s results on parallelo-
grams proved in [11] and [13] are a simple consequence of Dudek’s results
from [7].

4. Vectors of semiabelian flocks

In this section we characterize semialelian flocks by the properties of
vectors of the corresponding geometry.

Lemma 4.1. A flock (G,[-, - ,-]) is semiabelian if and only if

z = I:x7 727ﬂ7y7§7uayvu]

IS

is true for all x,y,z,u € G.

Proof. A semiabelian flock is a ternary group, hence the operation |-, -, -]
is associative. Thus, by Lemma 2.1

[x7ﬂ7 z7 u’ y?f? u??? u] = I:x7ﬂﬁ Z7ﬂ7 U7f’ y? y? u] - [x7 u? Z7 x’ u]
=[z,7, z,u,u]l = z
Conversely, if z = [z,u, 2,4, y,T,u,7,u] for all z,y,z,u € G, then

multiplying this equation on the right by u,y,w, x we obtain
[276’ y7U7 ':L'jl = I::E?ﬂ7 z’U7 y:l?

which for z = wu gives [y, uw, x] = [z, u, y]. This, by Lemma 2.2, means that

[y,v,2] = [z,v,y] for all z,y,v € G. So, (G,[-, - ,-]) is a semiabelian
flock. O
Lemma 4.2. A flock (G,[-, - ,-]) is semiabelian if and only if

z=[2,7,u,7,2,0,y,,1]
holds for all x,y,z,u,v € G.

Proof. The proof of the necessity is the same as in the previous lemma.
To prove the sufficiency it is sufficient to multiple this equation on the
right by v, u,¥,v. Then, after reduction, putting x = z = v, we can see
that (G,[-, - ,-]) is semiabelian. O
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In the same way we can prove

Lemma 4.3. A flock (G, |-, - ,-]) is semiabelian if and only if
u=I[,9,27,y,T,u77,

or equivalently

forall x,y,z,u € G.

In the case when a flock is defined by (7), as a simple consequence of
the above lemmas we obtain the Kulazhenko’s result proved in [16].

Theorem 4.4. (Kulazhenko) For n > 2 an n-ary group (G, f) is semia-

belian if and only if one of the following equivalent identities is satisfied
(6) = = Flay=2, Ty a2, O o2, P gy 2, Y ),

y, !l

Theorem 4.5. A flock (G,[-, - ,-]) is semiabelian if and only if for any
pairs (zi,y;) of elements of G, where 1 <i <t andt > 2 is an odd natural
number, the identity

[xla T2, X3, T4y, Tt—2,Tt—1,Tt, L1, Y1, Y2, T2, T3, Y3, (12)
coy Y1, Tt—1, Tty Yt—1, Y2y - - - 7y6>§57 y47§37 y?] = Y1,

1s valid.

Proof. Applying Lemma 2.1 we can see that (12) holds in any semiabelian
flock.

Conversely, if (12) holds in the flock (G, [-, - ,-]), then putting y; =
[z,y, 2], s = z and z for other z; and y; we obtain

[x7f’$’f7' "?x’f7z7f’ I:x7y’Z]7f7x’f7x7f7x’Z7x7j7"' 7$757x’f’x:|
= [z,y,2].

The left side of this equation, after application of Lemma 2.1, can be re-
ducedto the form [z, 7, [z, y, 2], Z, z]. Later, applying the para-associativity

of the operation [-, - ,-] and Lemma 2.1, we obtain
I:Z7T7 [$7 y7 2]727 x] = [['Z7 f’ I:'Z‘? y7 Z]]7§7 x:l = I:[I:Z?f’ x? ]y’ 2]757 x:l
= [[z,y,2],Z,2] = [2,9,[2, %, 2]] = [2,y, 2].

This proves that a flock (G,[-, - ,-]) is semiabelian. O
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Theorem 4.6. A flock (G,[-, - ,-]) is semiabelian if and only if
[x7yaz”u767w :m_ﬁ—i_m (13)
holds for all x,y, z,u,v,w € G.

Proof. Let (G,[-, - ,-]) be a semiabelian flock. Then it is a ternary group
and

[N R
Tl — b + 2 = Tl + vf) + 7tb = afu, v,y] + 2 = 2[u, v, y, 7, w].

Consider the quadrangle ([z,7, 2], x, [u, U, y, Z, w], [u, U, w]). Since, as it is
not difficult to verify, [[z,7, 2|, 7, [u, U, y, Z, w]] = [u, T, w], this quadrangle

is a parallelogram (Lemma 3.1). Thus [z,7, z][u, v, w] = z[u,7,y,Z, wj.
This proves (13).
Conversely, if (13) holds for all z,y, z, u,v,w € G, then

[I‘,?,ZHU,@,U} :ﬁ—ﬁ—kﬁ: [uvﬁayasza

i.e., the quadrangle ([z,7, 2], z, [u,U,y,Z, w], [u, v, w]) is a parallelogram.
Thus [[z,7, 2], T, [u, 7, y,Z, w|| = [u, 7, w]|. Multiplying this identity on the
right by w, u we obtain the identity from Lemma 4.2. Hence this flock is
semiabelian. O

Theorem 4.7. A flock (G,[-, - ,-]) is semiabelian if and only if for any
pairs (i, y;) of elements of G, where 1 <i <t andt > 2 is an odd natural
number, the identity

[I'l,an T3, T4y Tt—1, :Et”ylay% Y3:Yss - Y15 ytj (14)
= T1Y — T2y + TaYs — - — T1h—1 + Ty,
1s satisfied.
Proof. By Theorem 4.6 in a flock (G,[-, - ,-]) we have

T1Y1 — T2Y2 + x3y3 = [331,72; 903] [yl,%; y3]-

Thus

T1Y1 — T2Y2 + X3Y3 — T4ys + T5y4

= |21, T2, 23][y1, Vo, y3] — X4Y4 + T5Y5

= [21,Ta, T3, T4, T5) (Y1, U, Y3, Ua, U5

and so on. This proves (14).
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Conversely, if (14) holds in a flock (G, [, - ,-]), then

[xlvf?vx&f‘lv"‘7$t][y17527y37y47-..7yt]
=Tyl —X2Y2 +T3Y3 — ... — Te—1Y—1 + @

=Tyl + Y202 + T3Y3 — ...+ Yr_1T¢1 + E?z

_ } ;
=21[Y1, Yo, T2| + T3Y3 + ... F Y1 x—1 + @

= 21[Y1, T2» T2, T3, Y3] + - - + Y1711 + TeY}

= xl[y17y27x27§3>y3ag47w4] + .ot Y11 + Ey_;

\

— ... = $1[y17?27$27§37y37y47$4a CIEa 7ft7ytj'

This means that
<[$laf27 T3y ... ,.’I)t],l’l, [ylay2ax27f37y3uy47x4 “ee 7ft7yt}7
[y17y27y3”"7yt]>
is a parallelogram. So, by Lemma 3.1,
[[xl7§2a T3y ... ,SUt],fl, [3/17?2a 1:2af3ay3ay4ux4v cee 7Et7yt]]
- [y17g27y37 e 7yt]'

Multiplying this identity by ¥, yt—1,Ys—2,Yt—3, - -, Y3, Y2 and applying
Lemma 2.1, we obtain (12). Hence, by Theorem 4.5, this flock is semiabelian.

O]

In the case when z; = x (resp. y; = y) for all i = 1,2,...,t we obtain
Corollary 4.8. A flock (G,[-, - ,-]) is semiabelian if and only if for all
elements x,y1,y2, ...,y € G, where t > 2 is an odd natural number, the
rdentity

x[y17y27y3ay4a o 7§t717yt] = LE—>y1 - @ +:E—>3 — .. T TYt—1 +'1"—>yt
is satisfied.
Corollary 4.9. A flock (G,[-, - ,-]) is semiabelian if and only if for all
elements x1,xa,...,x4,y € G, where t > 2 is an odd natural number, the

identity

[xlaf27x37§47"'7ft—17$t]y:m_@_‘_@_ cee T X1 +'@

1s satisfied.
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5. Symmetry and semiabelianism

According to Rusakov (see [20] or [22]) two elements a and ¢ of an n-ary
group (G, f) are called symmetric if and only if there exists a uniquely
determined point x € G such that

F(f(a, 272,

Thus, in view of the above results, for n > 3 this definition can be
formulated in the form:

(n;;2))’ (n:;2), c) =uwm.

Definition 5.1. Two elements a and ¢ of an n-ary group (G, f) are
symmetric if and only if there exists one and only one x € GG such that

f(a,z, (nig)), c) =x. (15)

Thus for symmetric elements a and ¢ there exists uniquely determined
element = € G and the symmetry S, such that S;(a) = ¢. Since in (15)
the element c is uniquely determined by a and z, then using the same
method as in [5] and [9] one can prove that the symmetry S, has the

form:
-3
Sz(a) = f(x,a, (na ),x).
In the case of flocks (see [7]) points a,c € G are symmetric if and only
if there exists a uniquely determined x € G such that

[a,T, c] = .
In this case S;(a) = [z,a, x].
Theorem 5.2. A flock (G,[-, - ,-]) is semiabelian if and only if
ut + Sy (u)y + SySs(u)z + 5.8, S, (u)w = I (16)

for any points z,y, z,u,w € G such that (z,y,z,w) is a parallelogram.

Proof. Observe first that ﬁ = z# for any r € G. By Lemma 2.2 we also
have

Sysx(u) = [y’fvuafa y} = [?756,6,757?]

and

S.8ySy(u) = (2,9, x,u, 2,7, 2] = [Z,9,T,u,T,y, 2.
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Thus

ut + Sy (u)y + SyS,(u)z + 5.8, S (u)w
~——+
= ulx, Sz (u), y] + SySz(u )z+SZSny(u)w
,[a: u, @),y + S ySz(u)z + 5.8, (u)w
+ Sy Sz (u)z + 55,5, (u)w

y]
x,y ,zj+SSS()
v,z +

|
8
8

I

<
__?__

}a\

I
e

[Zayvxaﬂv z,Y, Z]w = u[uvfaf%zv ’U)]

So,

ut + Sy(u)y + SySe(u)z + 5.5y S; (v)w = ulu, T, y, Z, w].

But w = [z,7, 2] because the quadrangle (x,y, z, w) is a parallelogram.
Hence

ut + Sp(w)y + SySe(u)z + 5.8y (v)w = ulu, =, y,%, x,7, z].

This means that the condition (16) can be written in the form

ulu, T, y,z, z,7, zj = 22,
which, by (10), is equivalent to
[,9,2,%,y] = 2
and consequently, to [z,7, z] = [z,7, z]. This completes the proof. O

Theorem 5.3. A flock (G,[-, - ,-]) is semiabelian if and only if

T+ So(w)y + SySa(1)? + 525,82 (w)t + SuS2SySa(u)o

(17)
+ 5080S-5,Sa(u)z = 0

for any points x,y, z,u,w € G and v = [w, Z, y|.

Proof. As in the previous proof,

ut + Sx(u)z; + Sy Sz(u)z + 5.8, Ss (v)w = ulu, 7, vy, Z, w].

Since

SwS2SySz(u)v = [w,Z,y,T,u, T,y, Z, w|v,
we have

ud + Sy (u)y + SySy(u)z + 5,8, Sy (u)w + SuS.SyS, (u)v = ut
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because

and

for v = [w,Z,y] (Lemma 2.1).

Similarly,

SypSuwS2S8ySy(u)r = [v,W, 2,7, x,u, x,Y, 2, W, v]T

= [w,2,9,@, 2,7, x,4, 2]z,
because

[U7@727y) u, y
Z,

@][Wzmmmwﬂw
w,z,y],w, 2,7, ,

z,Y, [z,

Qﬁ \

Consequently, uf + S,S.,55, S (u)z = [w, %, y,W, 2,7, ]z, by (11).
Thus (17) has the form

(w,%,y,W, 2,3, ]z = 7%,
which, by (10), is equivalent to
[w7?7 y’ w? Z?@) w:l = x?

ie., to [w,z,y] = [y,z,w|, which completes the proof. O

Theorem 5.4. A flock (G,][-, - ,-]) is semiabelian if and only if

2@:m+&@%@

for any points x,y, z,u € G.
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Proof. According to (11) we have

27) = Tl + T = x[y, T,y

and

20+ Sw(z)Sy(u; =70+ [x,Z, 2]y, w, y] = [z, Z, 2,7, 2] [y, u, y]

So, by (10), the equation mentioned in our theorem can be written as

[l‘, [y,$,?], [yaﬂ’ y” = [x’ 2, T, U, Z],

i.e., as

|:$7 y? m? ﬂ? y] = I:‘,'r7 z7 $7 ﬂ? Z]‘

The last equation is valid in semiabelian flocks only. O

Theorem 5.5. A flock (G,[-, - ,-]) is semiabelian if and only if
2(Zf) + z0) = 2T + 274

for any points x,y, z,u € G.

Proof. Since

2(z + 2t) = x[y, Z, u, T, y, %, ul

and

2T + 220 = z[y, T, u, Z, u, Z, u],

the equation given in the above theorem is equivalent to

i.e., to

29, 2,0, 2,9, 2, 0[[y, 7, ], Z, [u, Z, u]]| = 2.
The last equation can be written as
[z[y,z,u,z,7, 2,1l|y, T, y, Z, u, Z, u]| =z,
which, in view of Lemma 2.1 and (6), means that
[v,z,u,2,9,2z,ul = [y,x,9, 2,4, 2,1,

ie. to [y, z,u,z,y] = [y,x,7, z,u]. This equation holds only in semiabelian
flocks. O
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6. Conclusion

Our results are valid for arbitrary flocks and generalize various results
proved by S.A. Rusakov and Yu.l. Kulazhenko for n-ary groups with
n = 3. Moreover, in the case idempotent flocks, i.e., flocks with the
property = x, our results coincide with the corresponding results proved
for n-ary groups. It is a consequence of (7) and Lemma 2.3. Namely, in the
case of idempotent flocks, our Lemma 4.1 coincides with the Kulazhenko’s
Proposition from [16], Lemma 4.2 with Lemma from [16], and Theorem 4.6
with the main theorem of [16]. His results are presented in very complicated
form (see our Theorem 4.4). Theorems 4.5, 4.7 and Corollary 4.8 (also 4.9)
generalize Kulazhenko’s results from [15]. In the case of idempotent flocks
these results are identical. Results of Section 5 generalize Kulazhenko’s
results from [12].

Another consequence of our results are short and more elegant proofs.
For example, the original proof of Theorem 5.2 (for n-ary groups) has in
[12] three printed pages of rather complicated transformations; the proof
of Theorem 5.3 has four pages. Also the original proofs of Theorems 5.4
and 5.5 presented in [13]| are much longer.
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