A morphic ring of neat range one

O. Pihura, B. Zabavsky

Communicated by D. Simson

ABSTRACT. We show that a commutative ring R has neat range one if and only if every unit modulo principal ideal of a ring lifts to a neat element. We also show that a commutative morphic ring R has a neat range one if and only if for any elements $a,b\in R$ such that aR=bR there exist neat elements $s,t\in R$ such that $bs=c,\,ct=b$. Examples of morphic rings of neat range one are given.

The notion of principal ideals being uniquely generated first appeared in Kaplansky's classic paper [4]. He had raised the question of when a ring R satisfies the property of being uniquely generated. He remarked that for commutative rings, the property holds for principal ideal rings and artinian rings. In the case of a left quasi morphic ring the property of being uniquely generated is equivalent to that a ring has stable range one. The concept of a neat range one ring is introduced by the first named author in [9]. In this paper we show that for a commutative morphic ring the condition of a neat range one is equivalent to the a uniquely generated weak condition relation with a neat elements.

Throughout this paper we assume that R is a commutative ring with an identity element. To make the paper almost self-contained, we recall basic definitions and some results used later. We recall that:

(i) R is a *Bezout ring*, if each finitely generated ideal of R is principal, see [10].

²⁰¹⁰ MSC: 13F99.

Key words and phrases: Bezout ring, neat ring, clear ring, elementary divisor ring, stable range one, neat range one.

- (ii) Two rectangular matrices A and B are equivalent if there exist invertible matrices P and Q of appropriate sizes such that B = PAQ, see [10].
- (iii) The ring R is *Hermite* if every rectangular matrix A over R is equivalent to an upper or a lower triangular matrix, see [10].
- (iv) R is an elementary divisor ring if every square n by n matrix A with coefficients in R can be converted to a diagonal matrix $diag(a_{11}, \ldots, a_{nn})$ such that every a_{ii} divides $a_{i+1,i+1}$, see [4].
- (v) a ring R is a ring of stable range one, if for any $a, b \in R$ such that aR + bR = R there exists $t \in R$ such that a + bt is a unit of R, see Bass [1].
- (vi) An element $a \in R$ is defined to be a *clean* element of R, if a can be written as the sum of a unit and an idempotent. The ring R is defined to be a *clean ring*, if every element of R is clean, see [10].
- (vii) An element $a \in R$ is defined to be a *neat* element of R, if R/aR is a clean ring. The ring R is defined to be a *neat ring*, if every elements in a ring R are neat, see [6].
- (viii) R is defined to be of *neat range one*, if for any $a, b \in R$ such that aR + bR = R there exists $t \in R$ such that a + bt is a neat element of R, see[9].
- (ix) An element $a \in R$ is defined to be morphic, if $Ann(a) \cong R/aR$, where Ann(a) denotes the annihilator of a in R. The ring R is defined to be morphic, if every its element is morphic, see [7].

We recall from [4] that every elementary divisior ring R is both a Bezout ring and a Hermite ring. Note also that unity elements of R are neat elements and, hence, every ring of stable range one is a ring of neat range one.

In our next result we need the following definition.

Definition 1. (a) An element $a \in R$ is a unit modulo a principal ideal cR if $ax - 1 \in cR$ for some $x \in R$.

(b) A unit $a \in R$ modulo a principal ideal cR lifts to a neat element, if $a - t \in bR$ for a neat element $t \in R$.

Proposition 1. Let R be a commutative ring. Then the following are equivalent:

- 1) R has a neat rang one;
- 2) Every unit lifts to a neat element modulo every principal ideal.

Proof. We assume that R has neat range one. Let $a, b, c \in R$ be such that $ab-1 \in cR$, i.e. b is a unit modulo the principal ideal cR. We show that there exists a neat element $t \in R$ such that $b-t \in R$.

Let $x \in R$ be such that ab - 1 = cx. Then ab - cx = 1. Since R has neat range one, there exists an element $s \in R$ and a neat element $t \in R$ such that b - cs = t. Therefore $b - t \in cR$ where t is a neat element in R.

To prove the implication $(2) \Rightarrow (1)$, assume that every unity of R lifts to a neat element modulo every principal ideal. We show that R has a neat range one. Let $a,b,c \in R$ such that ab+cd=1. Then $ab-1 \in cR$. Therefore, by our hypothesis there exists a neat element $t \in R$ such that $b-t \in cR$. Thus b-t=cx for some $x \in R$ i.e. b+c(-x)=t is a neat element i.e. R has neat range one.

Proposition 2. A morphic ring is a ring of neat range one if and only if for any pair of elements $a, b \in R$ such that aR = bR there are neat elements $s, t \in R$ such that as = b and a = bt.

Proof. In view of Proposition 1 it suffices to show that every unit lifts to a neat element modulo every principal ideal in R.

Let x be a unit that lifts to a neat element modulo the principal ideal yR, i.e there exists $z \in R$ such that $zx - 1 \in yR$. We would like to show that there exists a neat elements $t \in R$ such that $x - t \in yR$. Since R is a morphic, there exists a, b such that $yR = \operatorname{Ann}(a)$ and $xaR = \operatorname{Ann}(b)$.

Obviously, $xR \subset \text{Ann}(ab)$ and $yR \subseteq \text{Ann}(ab)$.

Since $zx-1 \in yR$, we have xR+yR=R and $xR+yR=\mathrm{Ann}(ab)$. Then ab=0 and $a\in\mathrm{Ann}(b)$. Also we have $\mathrm{Ann}(b)=xaR\subseteq aR$. Therefore $\mathrm{Ann}(b)=xaR=aR$. Under the assumption on the ring there exists a neat element $t\in R$ such that xa=ta. This implies that (x-t)a=0. We have $x-t\in\mathrm{Ann}(a)=yR$. Thus from Proposition 1, the R has neat range one.

Let aR = bR. Then there exist $x, y \in R$ such that a = bx, b = ay. Therefore b = bxy, b(1 - xy) = 0. This shows that $1 - xy \in \text{Ann}(b)$.

Now xy + (1 - xy) = 1 where $xy \in xR$ and $1 - xy \in (1 - xy)R$. Therefore xR + (1 - xy)R = R. Since R is assumed to have neat range one, there exists $s \in R$ such that x + (1 - xt)s = t is a neat element in R. Since $1 - xy \in \text{Ann}(b)$, we have (x + (1 - xy)s)b = tb, xb = tb where xb = a. Thus a = tb for some neat element $t \in R$. Similarly we have b = sa, for some neat element $s \in R$, which completes the proof. \square

Theorem 1. If R is an elementary divisor ring, then R is a ring of neat range one.

Proof. By [8] for any elements $a, b, c \in R$ such that aR + bR = R there exists an element $t \in R$ such that s = a + bt = uv, where uR + cR = R,

 $vR+(1-c)R,\ uR+vR=R.$ Let $\overline{u}=u+sR,\ \overline{v}=v+sR.$ Since uR+vR=R, one has ux+vy=1 and $\overline{u}^2\overline{x}=\overline{u},\ \overline{v}^2\overline{y}=\overline{v},$ where $\overline{x}=x+sR,\ \overline{y}=y+sR.$ Let $\overline{vy}=\overline{e},$ obviously $\overline{e}^2=\overline{e}$ and $\overline{1}-\overline{e}=\overline{ux}.$ Since uR+cR=R, we obtain $\overline{ce}\overline{\beta}=\overline{e},$ for some element $\overline{\beta}\in R/sR.$ Similarly, $(\overline{1}-\overline{c})\overline{\alpha}(\overline{1}-\overline{e})=\overline{1}-\overline{e}$ for some element $\overline{\alpha}\in R/sR.$ We proved that for any element $\overline{c}=c+sR$ there exists an idempotent \overline{e} such that $\overline{e}\in \overline{cR}$ and $\overline{1}-\overline{e}\in (\overline{1}-\overline{cR}).$ We have proved that R/sR is a clean ring [6] which completes the proof.

As a consequence we obtain the following result.

Theorem 2. If R is an elementary divisor domain and $a \in R \setminus \{0\}$, then the factor-ring R/aR is a morphic ring of neat range one.

Proof. Since every elementary divisor domain is a Bezout ring [4], by [9] R/aR is a morphic ring. Since every homomorphic image of an elementary divisor ring is an elementary divisor ring, by Theorem 3, R/aR is a morphic ring of neat range one, which completes the proof.

We say that R has almost stable range one if every finite proper homomorphic image R has stable range one. By [5] a Bezout ring of almost stable range one is an elementary divisor ring.

A well-known Henriksen example of a Bezout domain, namely $R = \mathbb{Z} + x\mathbb{Q}[x]$ (see [2]; for a general theorem on pullbacks of Bezout domains [3]), R is an elementary divisor that does not have almost stable range one [8].

Let R be an elementary divisor domain which is not of almost stable range one. Then there exists an element $a \in R$ such that in the factor-ring $\overline{R} = R/aR$ there exist elements $\overline{b}, \overline{c} \in \overline{R}$ such that $\overline{b}\overline{R} = \overline{c}\overline{R}$. There exist noninvertible neat elements $\overline{s}, \overline{t} \in R$ such that $\overline{b}\overline{s} = \overline{c}, \overline{c}\overline{t} = \overline{b}$.

References

- [1] Bass H. Algebraic K-theory, W. A. Benjamin, Inc., New York-Amsterdam, 1968.
- [2] Henriksen M. Some remarks about elementary divsor rings II, Michigan Math. J., 1955, 3, pp. 159-163.
- [3] Houston E., Taylor J. Arithmetic properties in pulbacks, J. Algebra, 2007, v.310, pp. 235 – 260.
- [4] Kaplansky I. Elementary divisirs and modules, Trans. Amer. Math. Soc., 1949, v.66, pp. 464–491.
- [5] McGovern W. Wm. Bezout rings with almost stable range 1, J. of Pure and Appl. Algebra, 1982, 24, pp. 25 40.

- [6] Nicholson W. K. Lifting idempotents and exchange rings, Trans. Amer. Math. Soc., 1977, v.229, pp. 269 – 278.
- [7] Nicholson W.K., Sanchez Campos E. Rings with the dual of the isomorphism theorem, J. Algebra, 2004, v.271, pp. 391 406.
- [8] Roitman M. The Kaplansky condition and rings of almost stable range 1, Trans. Amer. Math. Soc., 2013, v.141, pp. 3013 3019.
- [9] Zabavsky B. V. Diagonal reduction of matrices over finite stable range, Mat. Stud., 2014, v.41, pp. 101–108.
- [10] Zabavsky B. V. Diagonal reduction of matrices over rings, Mathematical Studies, Monograph Series, v. XVI, VNTL Publishers, 2012, Lviv, pp 251.

CONTACT INFORMATION

O. Pihura Department of Mechanics and Mathematics,

Ivan Franko National Univ., Lviv, Ukraine

 $E ext{-}Mail(s)$: pihuraoksana@mail.ru

B. V. Zabavsky Department of Mechanics and Mathematics,

Ivan Franko National Univ., Lviv, Ukraine

E-Mail(s): zabavskii@gmail.com

Received by the editors: 07.11.2014 and in final form 20.01.2015.