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On the spectrum of Cayley graphs
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ABSTRACT. The set of eigenvalues of the adjacency matrix
of a graph is called the spectrum of it. In the present paper, we
introduce the spectrum of Cayley graphs of order pgr in terms of
character table, where p, ¢, are prime numbers. We also, stablish
some properties of Cayley graphs of non-abelian groups with a
normal symmetric connected subset.

Introduction

By investigating Cayley graphs, even more detailed information about
a group can be obtained. In this paper, we study the spectral properties
of Cayley graphs via the character table of underlying group.

Computing the spectrum of Cayley graphs was started by a paper
of Babai [2] in 1979 and recently, this exciting research topic is re-
ceived increasing attention by mathematician, see for example [4,6,19,22].
Ghorbani and Nowroozi in a series of articles computed the spectrum
of normal and normal edge-transitive Cayley graphs of order n where
n € {p3,p*q,pqr,2pq} and p,q,r are prime numbers, see [9,11-15]. But
in general the spectrum of Cayley graphs of these groups is still an open
problem. Here, we compute the spectrum of such Cayley graphs by means
of character table. We also compute the spectrum of Cayley graphs of
non-abelian groups by constructing the circulant matrices, see [9].
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In the next section, we give the necessary definitions and some prelim-
inary results. In section three, we stablish a formula for computing the
spectra of normal Cayley graphs. Finally, in section four, we compute the
spectrum of Cayley graphs of order pqr, in general. Here, our notation is
standard and mainly taken from the standard books such as [16].

1. Definitions and preliminaries

Here, we introduce some basic notation and terminology used through-
out the paper. All graphs considered here are finite and simple. A simple
graph is a graph I' without loops and multiple edges. The vertex set
and the edge set of graph I are denoted by V(I') and E(I"), respectively.
When two vertices u and v are endpoints of an edge, we say that they are
adjacent and write u ~ v to indicate this. The adjacency matrix A is an
n X n matrix whose zy-th entry is 1 if xy € E and zero otherwise.

For given graphs I'y and I's their Cartesian product I'y 1 T'y is defined
as the graph on the vertex set V(I';) x V(I'2), where two vertices u =
(uy,uz) and v = (v1,vy) are adjacent if and only if either ([u; = vy
and ugvy € E(I'2)]) or ([ug = vy and wjv; € E(T'1)]). It is well-known
that A(T'1 OTy) = A(T1) ® I + I ® A(T'2), where ® denotes the Tensor
(Kronecker) product see [5].

For the finite group G, the generating subset S is symmetric if 1 ¢ S
and S = S~!. The Cayley graph I' = Cay(G, S) on G with respect to S
has the vertex set V(I') = G and edge set E(I') = {(g,sg)|g € G,s € S}.
By this definition the Cayley graph Cay(G,S) always is connected.

Theorem 1 ([1]). Let T'y = Cay(G, S1) and I'y = Cay(H, S2) be two
Cayley graphs. Then the Cartesian product I'y (T is the Cayley graph of
the direct product G x H with the generating subset (S1,1) O (1,.5).

The characteristic polynomial x(I') of graph I with adjacency matrix
A is defined as x(I') = det(xI — A). It is a monic polynomial of degree
n. The roots of the charachteristic polynomial are eigenvalues of I' and
form the spectrum of I'. Since all considered graphs are undirected, the
adjacency matrix A is symmetric. Consequently, all eigenvalues are real.

Theorem 2 ([3]). Let A and B is square matrices of orders m and n,
respectively. If Ai,..., Am are eigenvalues of A and p1, ..., 1, are the
eigenvalues of B, then all eigenvalues of A ® B are Aip; (< i< m,1 <
j<n).
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It is well-known that if A is a matrix of order m with eigenvalues \;
and B is a matrix of order n with eigenvalues p;, then all eigenvalues of
aA® I, +bl,, ® B are a\; + bu;, where 1 <i<m and 1 <j < n.

A circulant matrix is a square matrix generated from a vector such as
[ag, . ..an—1] as the first row denoted by [[ao, ..., an—1]]. Successive rows
use the same elements as the first row but each such row is circularly
shifted by one element. All eigenvalues of this circulant matrix are A\, =
Z?:_()l a;w’, where w is an n-th root of unity.

Theorem 3 ([2]). Let (A;j,1 <i,j < 1) be square matrices of order n that
have the complete set of eigenvectors {Vi, ...,V } with A Vi, = aijk. Let
also, By, = [afj] be square matrices of order l, each with a complete set of
eigenvectors {UF, . .., Ulk} satisfying Bka = BJkUJk for 1 < j <. Then a

complete set of eigenvectors {Wyi, Wa, ..., Wy} for the square matriz
All A12 oo A]_l
A= . . .

is given by Wg_1y4; = U]]-f Q Vi, fork=1,2,...,nand j=1,2,...,1.
The corresponding eigenvalues are A(p_1)4; = Bjk

In continuing of this paper, we use above results to compute the
spectrum of Cayley graphs. First, we compute the spectrum of a group of
order 8n denoted by Vg, with the following presentation:

Van = (a, b, "= =1ba=atb b la= a_1b>,

where n is an odd number. By using the relations of this group, we conclude
that this group has exactly 8n elements as follows:

{(bra?, 1 <r<4,1<j<2n). (1)

It is clear that in a Cayley graph the vertex 1 correspond to identity
is adjacent with all elements of S.

Theorem 4. The adjacency matriz of the Cayley graph I' = Cay(Vsy, S)
where S = {ba", ba®,b%a*} (1 <i < 2n —1) is as follows:
e o' is adjacent with

ba" " ba* !, b3al Tt 2|
bat_i, b3as—i’ par—t 2 J[Z ’
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e ba' is adjacent with

{at—i’b2as—i’b2ar—i 24

B2at=t a5t g7 24
e b2a' is adjacent with
bat=i, b3~ b3ar—t 2|
{bar_i, ba®~t balt 244
o b3a’ is adjacent with

b2at7'i asfi arfi 92 ’ i
at=t p2a5t B2t 9 J[Z ’
Proof. The proof is straightforward. O

Corollary 1. Let G be a group Vg,. The adjacency matrix of the cubic
Cayley graph T' = Cay(G, S), where S = {ba",ba*,b>a*} is the following

circulant matriz
0o A
AT 0)°

where A =[[0,B,0,C]] = BC+ ER®F and B,C,E, F are the following
circulant matrices:

r/r\ r/s\
B = [0,...,0,°1,0,...,0,71 ,0,...,0],
¢ = [0,1,0,0]],

t

=~
E = [0,...,0,"1,0,...,0],

F = [0,0,0,1]].

Theorem 5. Suppose w = e%i, then
1) All eigenvalues of matriz B are \j = W=7 4
j=0,....2n—1,
2) The eigenvalues of C' and F are +i,+1,
3) The eigenvalues of E are \j = Wl where j =0,...,2n — 1.

s=1)J i which

One can apply Theorem 5 to compute all eigenvalues of Cayley graph
I' = Cay(Vzy, S). For example, in the following example, we compute all
eigenvalues on Cayley graph Cay(Va4,5).
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Example 1. Consider the tetravalent Cayley graph I' = Cay(Va4, 5),
where S = {ba, ba®, b*a®}. The adjacency matrix I is

0 A
AT 0)°

where A = [[0, B,0,C]], B =[1,0,0,0,1]] and C = [[0,1,0,0]]. By using
Theorem 5, all eigenvalues are:

(—32, 3" —16,15, /3" 32).

2. Main results and discussions

A general linear group GL(V) of vector space V is the set of all
A € End(V), where A is invertible. A representation of a group G is
a homomorphism « : G — GL(V) and the degree of « is equal to the
dimension of V. A trivial representation is a homomorphism « : G — C*,
where a(g) = 1,forallg € G. Let ¢ : G — GL(V) be a representation with
©(g) = g, the character x,, : G — C of ¢ is defined as x,(g) = tr(pg). An
irreducible character is the character of an irreducible representation and
the character x is linear, if x(1) = 1. We denote the set of all irreducible
characters of G by Irr(G).

A character table is a matrix whose rows and columns are correspond
to the irreducible characters and the conjugacy classes of G, respectively.

Proposition 1 ([3]). Let G and H be two finite groups with character
tables M(G) and M(H), respectively. Then the character table of direct
product group G x H s

M(G x H) = M(G) @ M(H).

The study of spectrum of Cayley graphs is closely related to irreducible
characters of G. If G is abelian, then the spectrum of X = Cay(G, S) can
easily be determined as follows.

Theorem 6 ([21]). Let S be a symmetric subset of abelian group G. Then
the eigenvalues of adjacency matriz of Cay(G,S) are given by

>‘§0 = Z 90(5)7
ses

where ¢ € Irr(G).
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Let G be a finite group with symmetric subset S. We recall that S is a
normal subset if and only if S9 = g~1Sg = S, for all g € G. The following
theorem is implicitly contained in [7,21].

Theorem 7. Let G be a finite group with a normal symmetric subset S.
Let A be the adjacency matriz of the graph X = Cay(G,S). Then the
eigenvalues of A are given by [A¢]¢(1)2, where A\, = ﬁ Y oscs P(s) and
e € Irr(G).

Example 2. Consider the dihedral group Dg with the following presen-
tation
Dg={ab: a*=b0*=1, b lab=a"1).

The character table of dihedral group Dg is reported in Table 1. Let
S = {a,a™'}, then by using Theorem 7, all eigenvalues of Dg are:

M = A = 2 A0 = Ay = =2 and Ay, = 0.

In other words, the spectrum of Cayley graph on group Dg, where
S = {a,a™1} is as follows:

{[=2%, [0, [21*}-

M(Ds) 1 g1 92 93 g4
» 1 1 1 1 1
o 1 -1 1 1 1
” 1 1 1 1 -1
» 1 -1 -1 1 1
s 2 0 0 9 0

TABLE 1. The character table of Ds.

3. Spectra of Cayley graphs of order pqr

Given two groups G, H and a group homomorphism ¢ : H — Aut(G),
the semi-direct product of G and H with respect to ¢ denoted G %, H
(or, simply, G x H) is a new group with set G x H and multiplication
operation (gi1;h1)(g2;h2) = (g1¢(h1)g2, hih2). The aim of this section
is to compute the spectrum of Cayley graphs of order pgr by means of
semi-direct product. To do this, we first intoduce the presentation of these

group.
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A Frobenius group of order pg where p is prime and ¢|p — 1 is a group
of order pq by the following presentation:

Foq=1(a,b: o =b7 = 1,b7'ab = a"),

where u is an element of order ¢ in multiplicative group Z;. Let G be
a group of order pgr, where p > ¢ > r are prime numbers. It is easy to
see that the Sylow p—subgroup P of G is normal. This means that G has
the following structure:

G = 7Ly Xy Lgyr or Fy .

By using the concept of semi-direct product, Holder in [17] classified
all groups of order pgr. Ghorbani and Nowroozi in [10]| proved that a
group of order pgr is isomorphic with one of the following groupa
i) p=q =r, in this case there are five groups of order p? as follows:
] Pl = Zp
° P2 = Zp X Zp2
o Py =17y, X Lp X Lp,
° P4 = Zp X Zp2
° P5 :Zp X (Zp X Zp)
ii) p > g > r, then all groups of order pgr are
] Gl = qu’r;
Gy =Ly X Fpq(qlp — 1),
G3 = Zq X Fpr(rlp—1),
G4=Z X Fyr(rlg —1),
G5 p qr(qr,p )
Gits = (a,b,c: a’P =bl=¢" =1,ab=ba,c be =b*, ¢ lac =
a’"), where rlp — 1,q — 1,0(u) = 7 in Zy and o(v ) = r in
Zy (1<i<r—1).
iii) p < ¢ and r = p, then all groups of order p?q are
Ly = Z2,
Lo = Zip X 2Ly X Zg,
Ly =17y x Fyp (plg—1),
Ly= }Pq,p2 (p2|q - 1),
Ls={a,b:a”” =b1=1,a""ba = b o =1 (mod q)).
iv) ¢ < p and r = p, then all groups of order p?q, where q | p — 1 are
o Q1= Zy2y,
® Qo =7y X Lg X L,
. Qs—Z X Fpq (qlp — 1),
° Q= (Q|p 1),
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e Q5 = (a,b,c:aP =b? =P =1,ac = ca,b"tab = a®, b~ 1chb =
' al=1 (modp),z=1,...,q—1).

The general structures of groups G;15, 5 and Qg are in terms of
semi-direct product, namely Z, x (Z, x Zq). In [8] the spectra of Cayley
graphs Cay(Z,, X Zy, S) are studied. In continuing, by using some results
of representation theory, we propose the spectra of Cayley graphs of order
pqr, where p, ¢ and r are prime numbers. A class of Z. X (Zy, X Z,,) has
a representation as follows:

Ze Xg (Lo X L)

= (z,y,z;2™ =y" =2 =1,ab = ba, zxz" ' = 2F zyz7t = yk,>, (2)

where o(k) = cin Z},, o(k') = ¢ in Z¥ and K = (k, k).

An embedding map is a homomorphism ¢ : G — GL,,(F), and we
say that the representation is faithful if 1) is injective. Here, we suppose
that the filed F is complex number C. Let G is a finite group and for
g€ G, Ay = A(Cay(G,{g})) is the adjacency matrix of related a Cayley
graph. If S C G, then Ag = A(Cay(G, S)) and according to |8, Theorem
3.2], we have Ag =" ¢ As.

Theorem 8 ([8]). Given a group G and an element g € G, consider the
set I' = {Ay|lg € G} and the map ¢ : G — T given by ¥(g) = Ay. Then,
Y gives a faithful representation for G in GLg|(Q).

The adjacency representation of group G is a representation given
by 1. This is called the regular representation in the literature [24].

Definition 1. Let C}, be the h x h matrix with entries

0 otherwise.

{1, j—i=1 (mod h)
cij:

This matrix is a circulant matrix or cyclic, since it is the adjacency
matrix of Cayley graph Z;, with S = {2} where 2" = id.

Definition 2. Suppose m, n and k satisfies in relation m* =1 (mod n).
Let Q, be the m x m matrix with entries

hki71 . .
w when (i = j),

0 otherwise,
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2mi

where w = en is a primitive n-th root of unity. Clearly, for a € Z,
(Q)* = Qpq. On the other hand, the matrix (Cj,)! is given by

{1, j—i=1(mod h)
Cijz

0 otherwise.

Now, let m* =1 (mod ¢) and n* =1 (mod ¢)). Suppose X, Y and
Z are three mn x mn block matrices with the following blocks with ¢ x ¢
order:

0 0 94 0
Xexe = ) Yexe = ;
0 Qinn 0 Q.
C. 0
and  Zexe = .
0 C.

It is simple to show X" =1, Y™ =1 and Z¢ = 1. If x, y and z are
generatores of Z,,, Z, and Z., respectivley then we have:

Theorem 9. Let G be a finite group and X, Y, Z be block matrices of
order mn x mn with blocks of order ¢ x ¢. Three matrices X, Y and
Z are generators of a faithful representation of G = Ze X (L X Ln),
where K = (k,k"). Then G has a represention in (2), ¢ is injection and
SO(SUabed) _ Xaybzd'

Proof. See |8, Theorem 3.4]. O

The representation ¢ with conditions of Theorem 8 or 9 is called a
natural representation.

Theorem 10. The natural representation and adjacency represention of
Ze ¥ ¢ (Zoy, X L), where K = (k, k') are isomorphic.

Proof. We show tr(Age,p,a) = tr(X*YPZ4). 20yb2? = id iff XY*Z% =T
and so tr(4A;q) = tr(I) = mne. Let 2%’2% # id. The adjacency repre-
sention of this element is A a,p,a. The Cayley graph Cay(Z. X g (Zm X
Z), {x%’2%}) is simple and so there is no a non-zero element in the main
diagonal. This means that tr(A,a,s,4) = 0. The natural representation of
z%2% is X?Y*Z? where

(XaYbZd)ij _ {éQi)a(Q;')b(Cc)da =7,

otherwise.
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If d 1 ¢, all diagonal elements in the block matrix X*Y?*Z¢ are zero and
then tr(Aga,p.qa) = 0. Let d | ¢, if a tn and b{m then the block 2., is
tr(Qealy) = w0 - P14+ WP - . 4 wh ! -w'k/ﬁl).

Then, for matrix X*Y? we yield
tr(XaYb) — Wwe. wlba + wZa . w/QbOd 4o mna w/mnba
— (wa . wlb +w2a . w/2b 4o mna, w/mnb)a

" (wmna X w/mnb _ 1)

@
wa - wh —1 ’

where @ = (1+wk - W 4+ 4wk W* ). So tr(X2Y?) = 0 and these
two group representations are isomorphic. [

Theorem 11. The characteristic polynomial of Cayley graph Cay(G, S),
where G is as represented in Eq. (2), is as follows:

mn—1
X(A(Ze i (Zn > Zn), 5) = |1 X( > 2b<cc>d>‘
=0 yb2zd

Proof. Let G = Ze X g (L, X Zy,), where K = (k, k") and
Ze X (L X Zn)
(z,y,z;2™ =y" = 26=1,ab = ba, zxz" 1 = aF oy =y
where o(k) = ¢ in Z, and o(k’) = ¢ in Z}. Tt yields that
w(ACay(@.5)) = x( T ACay(@. 1) ) = (T 4.).
ses ses

The element s € G can be written uniquely as z%4°2%, where 0 < a < n,
0<y<mand0<d<c Then

X( 3 A> —X< ) Xaybzd).
xaybzd maybzd
Therefore

mﬁlx( > (Qi)a(Qé)b(Cc)d>:mﬁ1X( D7 () () (Ce )>.D

1=0 zeybzdes 1=0 zoybzdes
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By this formula, we can determine the characteristic polynomials of
Cayley graphs of groups G5, Ls, P5 and Qs.

Corollary 2. For the Frobenius group Fj, 4, we have

qg—1
X(A(Zg ¥x Ly, S)) = H X(Z Qia(Cq)b)-
im0 Ngagh

This result gives characteristic polynomials of Cay(G, S), where G €
{Gs5, L4, Py,Q4}. The spectrum of Cayley graphs of cyclic groups was
computed in [20] and this subject is a corollary of Theorem 11.

Proposition 2 (|20]). All eigenvalues of Cay(Zy;S) are given by
{)\|)\:wa8,x€Zn,1<x<n}.
ses

Hence, the characteristic polynomials of Cayley graphs of groups G1,
L1, P, and @ are as follows:

Corollary 3. Let x be a generator of cyclic group Z,, and y be a generator
of L. The eigenvalues of Cay(Zy, X Zm,S), where S = {z,y} are

AN=w! +wl 0<i<n,0<]<m}).

By using Corollary 3, we can determine the spectra of Cayley graphs
of groups Lo, P», P3 and Qo.
Let I'y = Cay(Z., S1) and I'y = Cay(Zy, X Z,, S2) be two Cayley
graphs, then
I‘1 0 FQ = CaY(Zc X (Zn A Zm)vT)7

where T' = {(s,1)(1,t)|s € S1,t € Sa}.

Corollary 4.

x(Cay(I'y x T2, T)) = x(Cay(T'1, 51)).x(Cay(T'2, S2)).

By using Corollary 4 one can find the characteristic polynomial of
Cayley graph Cay(G, S), where G € {G2,G3, Gy, L3, Q3}.

Example 3. Let

Py ={a,b: a” =t =1,b""ab = a?™) and S ={a,a', b0},
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then the adjacency matrix of Cay(Py, S) is a px p block matrix as following
form:

-3
,_P,\‘
A—[Lpz,fp2,0 .,O,Ip] L2®I —|—Iz®[010 01],
where L2 = [0,1,0,...,0,1]. Then all eigenvalues of this matrix are

2008(2’”) + 2605(2];”) where 1 <k <p?and 1 <K <p
Example 4. Let
Ps = (a,b,c:a? =W =P =1, [a,b] =¢, [a,c] = [b,c] =1)
and
S ={a,a',b,b7'},
then the adjacency matrix of Cay(Ps,S) is a p? x p? block matrix, where
p—3 p’—p
——
A=[L,,1,0,...,0,1,0,...,0) = L, ® Lp + [, @ [0,1,0,...,0,1]

P

and L =[0,1,0,...,0,1]. So all eigenvalues of this matrix are \x + g,
where 1 <k <p, 1 <k <p? and

2mik 2mik 2mik’ _ 2wk’

Me=er +e v, 1<k<p, pmp=er» +e » , 1<K <P
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