Algebra and Discrete Mathematics Volume **24** (2017). Number 2, pp. 181–190 © Journal "Algebra and Discrete Mathematics"

Some properties of the nilradical and non-nilradical graphs over finite commutative ring \mathbb{Z}_n

Shalini Chandra, Om Prakash and Sheela Suthar

Communicated by M. Ya. Komarnytskyj

ABSTRACT. Let \mathbb{Z}_n be the finite commutative ring of residue classes modulo n with identity and $\Gamma(\mathbb{Z}_n)$ be its zero-divisor graph. In this paper, we investigate some properties of nilradical graph, denoted by $N(\mathbb{Z}_n)$ and non-nilradical graph, denoted by $\Omega(\mathbb{Z}_n)$ of $\Gamma(\mathbb{Z}_n)$. In particular, we determine the Chromatic number and Energy of $N(\mathbb{Z}_n)$ and $\Omega(\mathbb{Z}_n)$ for a positive integer n. In addition, we have found the conditions in which $N(\mathbb{Z}_n)$ and $\Omega(\mathbb{Z}_n)$ graphs are planar. We have also given MATLAB coding of our calculations.

Introduction

The concept of zero-divisor graph was introduced by I. beck in 1988 but the most common definition of zero-divisor graph given by D. F. Anderson and P. S. Livingston in 1999 is as follows: "Let R be a commutative ring (with 1) and let Z(R) be its set of zero-divisors. We associate a simple graph $\Gamma(R)$ to R with vertices $Z(R)^* = Z(R) - \{0\}$, the set of nonzero zero-divisors of R, and for distinct $x, y \in Z(R)^*$, the vertices x and y are adjacent if and only if xy = 0. Thus, $\Gamma(R)$ is the empty graph if and only if R is an integral domain." We have derived some results for the ring \mathbb{Z}_n .

A complete graph is a graph (without loops and multiple edges) in which every vertex is adjacent to any other vertices of the graph. A graph in which all vertices have the same degree is said to be a regular graph. A complete bipartite graph is a graph whose vertices can be divided into

²⁰¹⁰ MSC: 13Axx, 05Cxx, 05C15, 05C10, 65KXX.

Key words and phrases: commutative ring, zero-divisor graph, nilradical graph, non-nilradical graph, chromatic number, planar graph, energy of a graph.

two sets such that every vertex in one set is connected to every vertex in the other, and no vertex is connected to any other vertices in the same set. A star graph is a complete bipartite graph in which at least one of the two vertex sets contains only one vertex. That one vertex is called the center of the star graph. A vertex of a graph is isolated if there is no edge incident on it. A graph is almost connected if there exists a path between any two non-isolated vertices. A proper coloring of a graph \mathbb{Z}_n is a function that assigns a color to each vertex such that no any two adjacent vertices have the same color. The chromatic number of \mathbb{Z}_n , denoted by $\chi(\mathbb{Z}_n)$, is the smallest number of colors required for proper coloring. A planar graph is a graph that can be embedded in the plane, i.e, it can be drawn on the plane in such a way that its edges intersect only at their endpoints and we will repeatedly use Kuratowski's theorem, which states that a graph is planar if and only if it does not contain a subdivision of K_5 or $K_{3,3}$. The energy of a graph is the sum of absolute value of all eigenvalues of the adjacency matrix. The adjacency matrix corresponding to a zero divisor graph is defined as $A = [a_{i,j}]$, where $a_{i,j} = 1$, if $v_i \& v_j$ represent zero divisor, i.e., $v_i \cdot v_j = 0$ and $a_{i,j} = 0$ otherwise, where v_i and v_j are vertices of the graph.

Nilradical and non-nilradical graphs

Definition 1.1. The nilradical graph of \mathbb{Z}_n , denoted by $N(\mathbb{Z}_n)$, is the graph whose vertices are the nonzero nilpotent elements of \mathbb{Z}_n and any two vertices are connected by an edge if and only if their product is 0.

Definition 1.2. The non-nilradical graph of \mathbb{Z}_n , denoted by $\Omega(\mathbb{Z}_n)$, is the graph whose vertices are the non-nilpotent zero-divisors of \mathbb{Z}_n and any two vertices are connected by an edge if and only if their product is 0.

1. Chromatic number and planarity of nilradical and non-nilradical graphs

Theorem 1. If p and q are distinct prime numbers and n is a positive integer, then

(1) $\chi(N(\mathbb{Z}_n)) = 0$ if n = pq; (2) $\chi(N(\mathbb{Z}_n)) = p - 1$ if $n = p^2$; (3) $\chi(N(\mathbb{Z}_n)) = pq - 1$ if $n = p^2q^2$; (4) $\chi(N(\mathbb{Z}_n)) = p$ if $n = p^3$; (5) $\chi(N(\mathbb{Z}_n)) = p - 1$ if $n = p^2q$. *Proof.* (1) Let n = pq, where p and q are distinct primes. Then $N(\mathbb{Z}_n)$ is an empty graph. So, there is no need of any color for coloring the graph. Hence, chromatic number is zero.

(2) Let $n = p^2$, where p is a prime number. If p = 2, then $N(\mathbb{Z}_n)$ has only one vertex. This implies the chromatic number is one. If $p \ge 3$, then the number of nilpotent elements which are divisible by p^2 are (p-1). Also, these (p-1) nilpotent elements form a complete graph. So, (p-1)colors are required for coloring the graph and these (p-1) colors are minimum in numbers. Therefore, chromatic number is (p-1).

(3) Let $n = p^2 q^2$, where p and q are prime numbers and $p \neq q$. Then the nilpotent elements are multiple of pq and number of nilpotent elements are pq - 1. Also, these pq - 1 elements are connected to each other. Thus, pq - 1 elements form a complete graph with pq - 1 vertices. Therefore, (pq - 1) colors are required for coloring the graph. Hence, chromatic number of $N(\mathbb{Z}_{p^2q^2})$ is (pq - 1).

(4) If $n = p^3$, where p is a prime number, then $N(\mathbb{Z}_n)$ is a complete p-partite graph with $(p^2 - 1)$ vertices. Therefore, we required p colors for proper coloring. Hence, chromatic number of $N(\mathbb{Z}_n)$ is p.

(5) Let $n = p^2 q$, where p and q are distinct prime numbers. Then the nilpotent elements are multiple of pq, and the number of nilpotent elements are (p-1). These (p-1) elements are connected to each other and form a complete graph with (p-1) vertices. Therefore, (p-1) colors are required for coloring the graph $N(\mathbb{Z}_{p^2q})$. Hence, chromatic number of $N(\mathbb{Z}_{p^2q})$ is (p-1).

Theorem 2. Let p and q be two distinct prime numbers and n a positive integer. Then

- (1) $\chi(\Omega(\mathbb{Z}_n)) = m \text{ if } n = p_1 p_2 p_3 \dots p_m, m \ge 1, \text{ where } p_1, p_2, \dots, p_m \text{ are distinct primes;}$
- (2) $\chi(\Omega(\mathbb{Z}_n)) = 0$ if $n = p^2$;
- (3) $\chi(\Omega(\mathbb{Z}_n)) = 0$ if $n = p^3$;
- (4) $\chi(\Omega(\mathbb{Z}_n)) = 2$ if $n = p^2 q$, for q = 2 or 3.

Proof. (1) Let $n = p_1 p_2 p_3 \dots p_m$, for some positive integer m, such that all p_i are distinct prime numbers. Then $\Omega(\mathbb{Z}_n)$ is equal to $\Gamma(\mathbb{Z}_n)$ and since $\Gamma(\mathbb{Z}_n)$ is *m*-partite graph, therefore $\Omega(\mathbb{Z}_n)$ is also *m*-partite graph. In this case, *m* distinct colors are needed for proper coloring of the graph $\Omega(\mathbb{Z}_n)$. Thus, Chromatic number of graph $\Omega(\mathbb{Z}_n)$ is *m*.

(2) Let $n = p^2$, where p is a prime number. Then clearly $\Omega(\mathbb{Z}_n)$ is an empty graph. Hence, there is no need of any color for coloring the graph $\Omega(\mathbb{Z}_n)$. Hence, chromatic number is zero.

(3) Let $n = p^3$, where p is a prime number. Then $\Omega(\mathbb{Z}_n)$ is an empty graph. Hence, there is no need of any color for coloring the graph $\Omega(\mathbb{Z}_n)$. So, chromatic number is zero.

(4) Let $n = p^2 q$, where p and q are distinct prime numbers. Then multiple of p, p^2 and q^2 are not adjacent to themselves. But the vertices which are multiple of p^2 are adjacent to those vertices which are multiple of q and not adjacent with multiple of p. Similarly, elements which are multiple of q are not adjacent with multiple of p. Thus, there are two disjoint sets of vertices which are adjacent from one set to other but not adjacent to each other in a set. Therefore, two colors are required for coloring the $\Omega(\mathbb{Z}_n)$ graph and also we can use one color from them for isolated vertices. Hence, chromatic number is two for $\Omega(\mathbb{Z}_n)$, when $n = p^2 q$, where p, q are distinct prime numbers.

Theorem 3. If p and q are distinct prime numbers and n is a positive integer, then

- (1) $N(\mathbb{Z}_n)$ is planar, where n = pq;
- (2) $N(\mathbb{Z}_n)$ is planar for $p \leq 5$ and non-planar for p > 5, where $n = p^2$;
- (3) $N(\mathbb{Z}_n)$ is planar for $p \leq 5$ and q is any prime number, where $n = p^2 q$;
- (4) $N(\mathbb{Z}_n)$ is planar, if p < 5 and non-planar for $p \ge 5$, where $n = p^3$;
- (5) $N(\mathbb{Z}_n)$ is planar, where n = 4k, gcd(2, k) = 1, $p^2 \not\mid k$ for any prime p and k is any positive integer;
- (6) $N(\mathbb{Z}_n)$ is planar, where n = 9k, gcd(3, k) = 1, $p^2 \not\mid k$ for any prime p and k is any positive integer.

Proof. (1) If n = pq, where p and q are distinct prime numbers, then $N(\mathbb{Z}_n)$ is an empty graph. Therefore, $N(\mathbb{Z}_n)$ graph is a planar graph.

(2) If $n = p^2$, where p is a prime number, then the nilpotent elements of (\mathbb{Z}_n) are multiple of p. So, there are (p-1) nilpotent elements which form a complete graph with (p-1) vertices and all vertices are adjacent to each other. If p = 2, then $N(\mathbb{Z}_n)$ has only one vertex and when p = 3, then $N(\mathbb{Z}_n)$ has two vertices. In this case, $N(\mathbb{Z}_n)$ is a planar graph. If p = 5, then $N(\mathbb{Z}_n)$ is a complete graph with 4 vertices and all vertices are adjacent to each other. Therefore, $N(\mathbb{Z}_n)$ is a planar graph.

For p > 5, $N(\mathbb{Z}_n)$ graph contains $K_{3,3}$ or K_5 as a proper subgraph. Hence, $N(\mathbb{Z}_n)$ is not a planar graph for p > 5.

(3) If $n = p^2 q$, where p and q are distinct prime numbers, then $N(\mathbb{Z}_n)$ is a complete graph with (p-1) vertices. Thus, $N(\mathbb{Z}_n)$ is a planar graph only when $p \leq 5$ and q is any prime, $p \neq q$, otherwise $N(\mathbb{Z}_n)$ contains

 K_5 as a subgraph which is not planar and therefore $N(\mathbb{Z}_n)$ is a planar if $p \leq 5$.

(4) If $n = p^3$, where p is any prime, then $N(\mathbb{Z}_n)$ is a complete p-partite graph with $(p^2 - 1)$ vertices. Therefore, $N(\mathbb{Z}_n)$ is planar for p < 5 and non-planar for $p \ge 5$.

(5) If n = 4k, and $p^2 \not\mid k$, for a prime p and k is any positive integer, then $N(\mathbb{Z}_n)$ has only one vertex, hence $N(\mathbb{Z}_n)$ graph is a planar graph.

(6) If n = 9k, $p^2 \not\mid k$, for all prime p and k is any positive integer, then $N(\mathbb{Z}_n)$ has two vertices which are adjacent to each other. Thus, $N(\mathbb{Z}_n)$ is a planar graph.

Theorem 4. If p and q are distinct prime numbers and n is a positive integer, then

- (1) $\Omega(\mathbb{Z}_n)$ is not planar, for n = pq, (specially $p \ge 5$ and $q \ge 3$);
- (2) $\Omega(\mathbb{Z}_n)$ is planar, for $n = p^2$;
- (3) $\Omega(\mathbb{Z}_n)$ is planar, for $n = p^3$;
- (4) $\Omega(\mathbb{Z}_n)$ is planar for $k \leq 6$ and non-planar for all k > 6, where n = 4k, gcd(2,k) = 1 and p^2 / k , for a prime p and k is any positive integer;
- (5) $\Omega(\mathbb{Z}_n)$ is a planar for $k \leq 4$ and non-planar for $k \geq 5$, where n = 9k, gcd(3,k) = 1 and $p^2 \not\mid k$, for a prime p and k is any positive integer;
- (6) $\Omega(\mathbb{Z}_n)$ is planar for q = 2 and 3, and p is any prime number, where $n = p^2 q$.

Proof. (1) Let n = pq, such that p and q are distinct primes. Then clearly $\Omega(\mathbb{Z}_n)$ is a bi-partite graph. If, we take n = pq where p = 2 and q is any prime number, then $\Omega(\mathbb{Z}_n)$ is a star graph. We know that star graph is a planar graph. Hence, $\Omega(\mathbb{Z}_n)$ is a planar graph in this case. If p = 3 and q is any prime number, then $\Omega(\mathbb{Z}_n)$ is a complete bi-partite graph, which is a planar graph. If $p \ge 5$ and q is any prime number which is greater than 3, then $\Omega(\mathbb{Z}_n)$ is not a planar graph. Because, in this case, $\Omega(\mathbb{Z}_n)$ graph contain $K_{3,3}$ as a subgraph. Therefore, $\Omega(\mathbb{Z}_n)$ is not a planar graph for n = pq.

(2) Let $n = p^2$, where p is any prime number. Then, there are no non-nilpotent elements of \mathbb{Z}_n in $\Omega(\mathbb{Z}_n)$. Therefore, $\Omega(\mathbb{Z}_n)$ is an empty graph. Hence, $\Omega(\mathbb{Z}_n)$ is a planar graph.

(3) Let $n = p^3$, where p is any prime number. Then, there is no nonnilpotent element of \mathbb{Z}_n in $\Omega(\mathbb{Z}_n)$. Therefore, $\Omega(\mathbb{Z}_n)$ is an empty graph. Hence, $\Omega(\mathbb{Z}_n)$ is a planar graph.

(4) Let n = 4k, where $p^2 \not | k$, for a prime p and k is any positive integer. Then, $\Omega(\mathbb{Z}_n)$ is planar for $k \leq 6$. If we take k is any prime number,

then $\Omega(\mathbb{Z}_n)$ is always complete bi-partite graph. We know that complete bi-partite graph is planar graph. Therefore, $\Omega(\mathbb{Z}_n)$ is the planar graph for the prime k. On the other hand, if k > 6, then $\Omega(\mathbb{Z}_n)$ graph contains $K_{3,3}$ or K_5 as a subgraph. Thus, for k > 6, $\Omega(\mathbb{Z}_n)$ graph is not a planar.

(5) Let n = 9k, where $p^2 \not| k$, for a prime p and k is any positive integer. Then $\Omega(\mathbb{Z}_n)$ is a planar graph for $k \leq 4$. For $k \geq 5$, $\Omega(\mathbb{Z}_n)$ graph contains $K_{3,3}$ as a subgraph. Therefore, graph is not a planar for $k \geq 5$.

(6) Let $n = p^2 q$, where p and q are distinct primes. If q = 2 and p is any prime number, then $\Omega(\mathbb{Z}_n)$ graph is a star graph. Therefore, $\Omega(\mathbb{Z}_n)$ graph is planar. If q = 3 and p is any prime number, then $\Omega(\mathbb{Z}_n)$ graph is a complete bi-partite graph. Therefore, $\Omega(\mathbb{Z}_n)$ is planar graph. For $q \ge 5$ and p is any prime greater than 2 (and 3), $\Omega(\mathbb{Z}_n)$ graph contains $K_{3,3}$ or K_5 as a subgraph. Thus, $\Omega(\mathbb{Z}_n)$ is non-planar. \Box

Lemma 1. If n = pq, where p and q are primes, then there is no isolated vertex in $\Omega(\mathbb{Z}_n)$ graph.

Proof. If n = pq, where p and q are distinct primes, then $\Omega(\mathbb{Z}_n)$ is a complete bi-partite graph. Hence, there is no isolated vertex. When $n = p^2$, for any prime p, then there is no vertex in $\Omega(\mathbb{Z}_n)$. Hence, graph is empty. Thus, in this case again we have no isolated vertex. \Box

Lemma 2. If $n = p^3$, for any prime p, then $\Omega(\mathbb{Z}_n)$ graph has no isolated vertex.

Proof. If $n = p^3$, then zero divisor graph has $p^2 - 1$ elements in which all elements are nilpotent and no element is non-nilpotent. Also all nilpotent elements are adjacent with nilpotent elements, but in $\Omega(\mathbb{Z}_n)$, there are no non-nilpotent elements. Thus, $\Omega(\mathbb{Z}_n)$ is an empty graph. Therefore, $\Omega(\mathbb{Z}_n)$ graph has no isolated vertex.

Observation 1. If $n = p^2 q$, for p and q are distinct prime numbers, then $\Omega(\mathbb{Z}_n)$ graph has (p-1)(q-1) isolated vertices.

2. Energy of nilradical and non-nilradical graphs

Theorem 5. If $n = p^2$, for prime p, then $E(N(\mathbb{Z}_n))$ is (2p - 4) and $E(\Omega(\mathbb{Z}_n))$ is zero $(E(\Omega(\mathbb{Z}_n)))$ is zero also for p^3).

Proof. When $n = p^2$, $N(\mathbb{Z}_n)$ is a complete graph with p-1 vertices. Then $f(\lambda) = |\lambda I_{p-1} - M(N(\mathbb{Z}_n))| = (\lambda - 1)^{p-2}(\lambda + p - 2)$ by [2], where M

is a matrix of order (p-1). If $f(\lambda) = 0$, then $\lambda = 1, 2-p$. Therefore, $\sum_{i=1}^{p-1} |\lambda_i| = 2p-4$.

When $n = p^2$, then $\Omega(\mathbb{Z}_n)$ graph is an empty graph. Hence, it has zero energy.

When $n = p^3$, then $\Omega(\mathbb{Z}_n)$ is an empty graph and hence, it has zero energy.

Theorem 6. If n = pq, where p and q are distinct primes, then energy of $\Omega(\mathbb{Z}_n)$ is $2\sqrt{(p-1)(q-1)}$ and energy of $N(\mathbb{Z}_n)$ is zero.

Proof. Let n = pq, where p and q are two distinct prime. Then $\Omega(\mathbb{Z}_n)$ is a bi-partite graph. Also, its eigen polynomial $f(\lambda) = |\lambda I_{p+q-2} - M(\Omega(\mathbb{Z}_n))| = (\lambda)^{p+q-4}(\lambda^2 - (p-1)(q-1))$, where M is a matrix of order (p+q-2). Thus, nonzero eigenvalues are $\pm \sqrt{(p-1)(q-1)}$ and so $E(\Omega(\mathbb{Z}_n)) = 2\sqrt{(p-1)(q-1)}$. Also, $N(\mathbb{Z}_n)$) graph has no vertices for distinct primes p and q. Thus, $E(N(\mathbb{Z}_n))$ has no energy. \Box

Theorem 7. For $n = p^2 q$, energy of $N(\mathbb{Z}_n)$ is 2p - 4, for all distinct primes p and q.

Proof. Same as above Theorem (5).

Observation 2. If $n = p^2 q$, then energy of $\Omega(\mathbb{Z}_n)$ is:

- (1) $2\sqrt{pq-2}$, for p=2 and q is any prime number;
- (2) $2\sqrt{pq+p(q-2)}$, for p=3 and q is any prime number;
- (3) $2\sqrt{2pq+2p(q-2)}$, for p=5 and q is any prime number.

3. Computer program

Now, we offer three algorithms for calculating energy with MATLAB software. These algorithms include several sub-algorithms. It is enough to input n. In the first algorithm at the first stage, we obtain $M(N(\mathbb{Z}_n))$ and plot $N(\mathbb{Z}_n)$ by function nil_radical_zn2(p). At the second stage, we calculate Energy index by using energy.

In the second algorithm at the first stage, we obtain $\Omega(N(\mathbb{Z}_n))$ and plot $\Omega(\mathbb{Z}_n)$ by function non_nil_radical_zn2(p). At the second stage, we calculate Energy index by using energy.

In third algorithm, we put the value of n and call above two functions together.

```
First algorithm
function Nz=nil radical zn2(p)
n=p;
M = [];
for i=1:n-1
for j=1:n-1
if \mod(i * i, n) = = 0
M = [M, i];
 break;
\mathbf{end}
end
end
Μ
n = length(M);
for i=0:n-1
axes(i+1,:) = [cos(2*pi*i/n), sin(2*pi*i/n)];
end
Nz = zeros(n);
hold on
for i=1:n
plot(axes(i,1),axes(i,2), '*')
if mod(M(i)^2, p) == 0
Nz(i, i) = 1;
plot(axes(i,1),axes(i,2), 'ro')
end
end
for i=1:n-1
for j=i+1:n
if \mod(M(i) * M(j), p) == 0
Nz(i, j) = 1; Nz(j, i) = 1;
plot (axes ([i, j], 1), axes ([i, j], 2));
end
end
end
eg = eig(Nz)
E = sum(abs(eg))
```

Second algorithm

```
function NNz=non_nil_radical_zn2(p)
n=p;
M=[];
for i=1:n-1
for j=1:n-1
if mod(i*j,n)==0
```

```
if mod(i * i, n) \sim = 0
 M = [M, i];
 break;
end
end
end
end
Μ
n = length(M);
for i=0:n-1
axes(i+1,:) = [cos(2*pi*i/n), sin(2*pi*i/n)];
end
NNz = zeros(n);
hold on
for i=1:n
plot (axes(i,1), axes(i,2), '*')
if \mod (M(i)^2, p) = = 0
NNz(i, i) = 1;
plot(axes(i,1),axes(i,2), 'ro')
end
end
for i=1:n-1
for j=i+1:n
if \mod(M(i) * M(j), p) == 0
NNz(i, j) = 1; NNz(j, i) = 1;
plot (axes ([i, j], 1), axes ([i, j], 2));
end
end
end
eg = eig(NNz)
E = sum(abs(eg))
```

Third algorithm

```
p=n;
Nz=nil_radical_zn2(p)
figure;
NNz=non_nil_radical_zn2(p)
figure;
```

All above algorithms are also useful for p^3 . If we use the formula "if mod(i*j,n)==0" at the place of sixth line in the first algorithm, then it will give fruitful result for p^3 .

n	$E(N(\mathbb{Z}_n))$	$E(\Omega(\mathbb{Z}_n))$
27	7.2111	0
45	2	9.7980
77	0	15.4919
121	18	0
225	26.00	21.9089
343	32.3110	0

TABLE 1. The values of $E(N(\mathbb{Z}_n))$ and $E(\Omega(\mathbb{Z}_n))$ for n = 27, 45, 77, 121, 225and 343.

References

- M. R. Ahmadi and R. J. Nezhad, Energy and Wiener Index of Zero Divisor Graphs, Iranian J. Math. Chem., 2(1), 2011, pp.45-51.
- D. F. Anderson and P. S. Livingston, The zero-divisor graph of a commutative ring, J. Algebra, 217, 1999, pp.434-447.
- [3] I. Beck, Coloring of Commutative rings, J. Algebra, 116, 1988, pp.208-226.
- [4] R. Belshoff and J. Chapman, *Planar zero divisor graphs*, J. Algebra, **316**(1), 2007, pp.471-480.
- [5] V. K. Bhat, Ravi Raina, Neeraj Nehra and Om Prakash, A Note on zero divisor graph over Rings, Int. J. Contemp. Math. Sci., 2(14), 2007, pp.667-671.
- [6] A. Bishop, T. Cuchta, K. Lokken and O. Pechenik, *The Nilradical and Non-Nilradical Graphs of Commutative Rings*, Int. J. Algebra 2(20), 2008, pp.981-994.
- [7] F. Harary, Graph Theory, First Edition, Addison-Wesley, Boston, 1969.
- [8] C. Musli, Introduction to Ring and Modules, Second Edition, Narosa Publishing House, New Delhi, 1997.

CONTACT INFORMATION

Shalini Chandra, Sheela Suthar	Department of Mathematics and Statistics, Banasthali Vidyapith, Banasthali, Rajasthan - 304 022, India <i>E-Mail(s)</i> : chandrshalini@gmail.com, sheelasuthar@gmail.com <i>Web-page(s)</i> : www.banasthali.ac.in
Om Prakash	Department of Mathematics, IIT Patna, Patliputra colony, Patna - 800 013, India <i>E-Mail(s)</i> : om@iitp.ac.in <i>Web-page(s)</i> : www.iitp.ac.in

Received by the editors: 24.09.2015 and in final form 25.02.2016.