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Cohomologies of finite abelian groups

Yuriy A. Drozd and Andriana I. Plakosh

ABSTRACT. We construct a simplified resolution for the trivial
G-module Z, where G is a finite abelian group, and compare it with
the standard resolution. We use it to calculate cohomologies of
irreducible G-lattices and their duals.

Introduction

The theory of cohomologies of groups was inspired by the works of
Hurewicz on cohomologies of acyclic spaces and was founded in 1940’s
by Eilenberg-MacLane, Eckmann, Hopf and others. It was one of the
origins of the homological algebra. It was also related to the theory of
group extensions and projective representations, where cohomologies arise
as factor sets. This theory is widely used in topology, number theory,
algebraic geometry and other branches of mathematics. Thus it is actively
studied by plenty of mathematicians. In particular, there is a lot of
papers devoted to the calculation of cohomologies of concrete groups
and their classes. In these investigations one often needs special sorts of
resolutions, which are simpler and more convenient than the standard one.
For instance, Takahashi [7] proposed a new approach to the calculation of
cohomologies of finite abelian groups and gave applications of his method
to the cohomologies of the trivial module and of some Galois groups.

The aim of our paper is to describe a rather simple resolution for finite
abelian groups (Section 1) and to use it for calculation of cohomologies
of irreducible G-lattices and their duals (Sections 4 and 5). Our approach
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is close to that of Takahashi, though it seems more explicit. We also
compare our resolution with the standard one (Section 2) and prove
some facts concerning duality for cohomologies of G-lattices (Section 3).
The results about the second cohomologies can be useful in the study of
crystallographic groups and of Chernikov groups.

1. Resolution

For a periodic element a of a group G we denote by o(a) the order
of a, sq = Z?i%)_l a’. Let G = [[;_; G; be a direct product of finite
cyclic groups G; = (a; | aj’ = 1) of orders 0; = o(a;), R = ZG, P =
R[z1,x9,...,xs] and P, be the set of homogeneous polynomials from P
of degree n (including 0). We define a differential d : P,, — P,_; by the

rule
S

dp(ahrah? . ahs) = Z(—l)KiCimlfl bl ke
i=1

where K; = >7%" k; and

a; — 1 if kl is Odd,
; if k; > 0 is even,

0 if k; =0.

When speaking of the G-module Z, we always suppose that the ele-
ments of G act trivially.

Theorem 1.1. P = (P,,d,) is a free resolution of the G-module Z.

Proof. If s = 1, it is well-known. If R; = ZG; and P' denotes such
resolution for the group G;, then R = Q;_; R; and P is the tensor
product of complexes ®7_; P*. As all groups of cycles and boundaries in
the complexes P! are free abelian, the claim follows from the Kiinneth
relations [3, Theorem VI.3.1]. O

2. Correspondence with standard resolution

To apply Theorem 1.1, for instance, to extensions of groups, we have
to compare it with the standard resolution, which is usually used for this
purpose [2,3]. So, in what follows, S denotes the normalized standard



146 COHOMOLOGIES OF FINITE ABELIAN GROUPS

resolution for Z as R-module, { [g1, 92,...,9n] | gi € G\ {1} } is the usual
basis of S,, such that the standard differential d° is defined as

n

dil[glvg2) .. agn] = 91[92) CIEa agn] + Z(_l)z[gh oy 9i9i+1,5 - - - 7gn]+
i=1
+ (_1)”[91"927 cee ’gn—l]’

setting [g1, g2, - . ., gn) = 0 if some g; = 1. Note that Py = Sy = R.
We denote al =1+ a+a?+...a" L. Then s, = alo®},

ol = o} 4 giglh}, (2.1)

in particular,

a{ero(a)} _ a{m} + amsa'

Theorem 2.1. There is a quasi-isomorphism o : S — P such that

oo = id,
ki k T e (k)
o1lattas? .. aks) = Z ( H ajj)ai Ty,
i=1 j=1

. :
oolafral? . aFs alralz o als ZZ(H kq Hal’“) ke j], (2.2)
i=1j5=1 ¢g=1 r=1
[(k+1)/o)x? ifi=j,
where ogfal,a’] =<0 if ¢ <j,

19 g
a}l}agk}xjxi iti>j

Since S and P are free resolutions of Z, ¢ induces isomoprhisms
of cohomologies H"(Hompg(S,M)) — H"(Hompg(P, M)). In particular,
combining o9 with cocycles from Hompg(P2, M), we obtain the “usual”
presentation of cocycles from H?(G, M).

Proof. Actually, we have to show that the diagram

ds d3
Sy —=S; ——=Sg

|

Py 2P, —5 Py,
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is commutative. Then the set of homomorphisms {og, 01,02} extends to
a quasi-isomorphism o : S — P.

Note that gh —1 = (g — 1) + g(h — 1) and a* — 1 = al¥}(a — 1).
Therefore,

s i—1
N
d5[ahak? . ab) = alab? ek -1 :Z(Hajj)(afl —1)
=1 j=1
s i1 ks L s i—1 L .
=> (I a’j])a;'{ Ha;—1) = > (11 llj])a;-{ Fdya;,
i=1 j=1 i=1 j=1

hence dyo1 = dj.

Set (r); = res(r, 0;), the residue of » modulo o;. Then, for 0 < k < o;,
0<I<oy,
— [af*'] + [af],

thus

Jlds [a al] (afa‘l} _ az{(k-i-l)i} + az{l}>$i
k

{
o) — " ol (kD) 00, )
= [(k +1)/oi]sa; i = do([(k + 1) Joi]a),

so, if we set galal, al] = [(k +1)/0;]2?, we have

daoslal, al] = ovds[al, al].

In the same way,

d3af,df] = afla}] — [aiaj) + [af],

thus, if i < 7,

;{ }xj - a;-{k}:r: - aka{ }$] + a{ } x; =0,

ord5[ak, aj] ;

while if ¢ > j
ko {1} 1 {k} K},

a;, j] aj'Tj—aj T —aja; T+ a0 T

= (al- - 1)a{ }x] (aé- — l)a;-{k}a:i —do ( {0y { }xjxl)

Ulds[

So, if we set

UQ[ak al]: ! S
iy a{l}a,{k} ix; ifi>j
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we have

dooaak, aé-] = alda[af,aé-] for i # j.

Let now o9 is defined by the rule (2.2). We check that dyoy = 01d5
for s = 3. The general case is analogous, though a bit cumbersome. We
write a, b, ¢ instead of a1, a9, a3 and x,y, z instead of x1, x2, 3. Then

o1d5[a’ti ¢, afb ] = oy (a'b ¢ [aFb e’] — [0t TRYTLE ] 4 [0t )
— i (0 + by 4 kbl sy — alitl g — gitkplitiy
— a2 4 [(i 4 k) foa)sax + a”TF(( + 1) fop]svy
+ a4 5) Jod)sex 4+ al a4+ a'bVHy + a'b T2
= (a'V "ol — TR 1 VY L (6 4 k) f04]s0) 2
+al(a® o7 bt — aFoUHE 1 pUY L R (5 4+ 1) op)se)y
F @i (@FB e A — Rt g Y L GRR(r  8) fo]se)z,
while
dooy [aibj c’, akblcs] =dy (—aia{k}b{j}l‘y—aibja{k}c{s}xz—aHkbjb{l}c{r}yz
+ (i + k) foa)a® + a ™ [(j + 1) foply® + a TV [(r + 5) foc]2?)
= —a'(a® = )by + o' (¥ — Daa — a¥(aF — 1)l 2
+a'b (" —)at™a — a0 — 1)z + TRV (¢ — DMy,
+ [(i + k)/0a]sax + aH—k[(j +1)/ob]spy + aH_kbj—H[(r +5)/0c]scw
= (—a'a™ + o' "™ 4 [(i + k) Joa]sa)x
+ a'(—a®blY 4 b 4 aFpT ot — R bt 4+ R[4 1) ob)sp)y
+ ' (" = aFB A 4 RV (r + 5) o) se) 2.

Relations (2.1) immediately imply that both results are equal. O

3. Cohomologies of G-lattices

In this section G denotes a finite group, R = ZG. Recall that a G-
lattice (or an integral representation of G) is a G-module M such that
its abelian group is free of finite rank. They also say that M is a lattice
in the QG-module M = Q @z M. Two G-lattices M, N are said to be
of the same genus if M, ~ N,, for each prime p, where M, = Z, @7 M
(Zp ={r/z|re€Z,secZ\pL}). Then they write M vV N. We also set
M* = Homgz(M,Z), where G acts by the rule gf(u) = f(g~ u).
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We denote by H"™(G, M) the Tate cohomologies of G with coefficients
in M [2,3]. Let

d dp— d d
F:ooo s F, S F, ] —5 .. 2 F S F—0

be a free resolution of Z, where all modules [F,, are finitely generated,

& & dr &
F*:0-Ff 5F 2. 5 F | % F ...

be the dual complex, dy : Fg — F{§ be the composition of the maps
Fo — cokerdy; ~ Z ~ kerd; — Fy. Set F_,, = F;_,, d_, = d;,. The
sequence

dn, dpn— d d d
Ft:...>F, & F,_1 —5 ... 3 F 5 F =%
d d_ d_ d_ d_
R PRt P NP i R

is called a complete resolution for the group G. Then ﬁ”(G, M) are
just the cohomologies of the complex Hompg(F*, M). If Fy = R and the
surjection Fg — Z maps ¢ to 1, then F_; ~ R and dj is just the trace,
i.e. the multiplication by trg = >, o @. It is the case for the resolutions
F and S.

Proposition 3.1. Let G be a finite group, M, N be G-lattices such that
MV N. Then H"(G,M) ~ H"(G,N) for all n.

Proof. Tt is known that all groups H"(G, M) (n > 0) are periodic of
period #(G), hence H"(G, M) ~ @4 H"(G, M),. Moreover, as Z,
is flat over Z, H™(G, M), ~ H™(G, M,). Tt implies he claim. O

We denote by DM the dual G-module DM = Homg(M, T), where
T = Q/Z.

Proposition 3.2. Let M be a G-lattice. Then

H" (G, DM) ~ DH™(G, M),
H™(G,DM) ~ H""Y(G, M*), (3.2)
H™(G,M*) ~ DH™™(G, M).

If M =7Z, (3.3) coincides with [3, Theorem XII.6.6].
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Proof. (3.1) follows from [3, Corollary XII.6.5].
Consider the exact sequence 0 — Z — Q — T — 0. As M is free
abelian, it gives the exact sequence of G-modules

0 — M* — Homg(M,Q) — DM — 0.

H™(G,Homg(M,Q)) = 0 for all n, since the multiplication by #(G) is
an automorphism of Homgz (M, Q), whence we obtain (3.2).
(3.3) follows from (3.1) and (3.2). O

We also need some information on cohomologies of direct products.

Proposition 3.3. Let N be a normal subgroup of G, F = G/N and
ged(#(N), #(F)) = 1. For every G-module M and all n

H™(G, M)~ H"(N, M) & A™(F, MN). (3.4)

Proof. As #(G) annihilates all H"(G, M) if n > 0 and the same is true
for N and F', in the Hochschild-Serre spectral sequence

HP(F,HY(N,M)) = H"(G, M)
all terms with p > 0 and ¢ > 0 are zero. Hence, if n > 0,
H™(G, M) ~ H(F, H"(N,M)) & H"(F, H*(N, M))
= H"(N,M)"" & H"(F, M").

Suppose now that the claim holds for H". Choose an exact sequence
0—L—P— M — 0, where P is a free ZG-module. Then
H"YG, M) ~ HY(G,L) ~ A"(N, L)' © A™(F, L™).

As P is also free as ZN-module, H"(N, L) ~ H"~'(N, M). On the other
hand, there are exact sequences

0—LYN - PYN 5 M =0
and
0— M - MY - MY /M -0,
where M’ is the image of the map PN — M. Obviously, M’ D try M,
thus #(N)(MY/M’) = 0, whence H"(F, M~ /M’) = 0. Therefore,

A Y F, MYy ~ Y F,M') ~ H"(F, L"),

since PV is a free ZF-module. So the isomorphism (3.4) holds for A",
hence for all values of n. O
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Corollary 3.4. Let G = Gy x Gy with ged(#(Gh), #(G2)) =1, M =
M, ®z Mo, where M; is a G;-lattice (i = 1,2). Then

H™(G, M) ~ H"(Gy, M) @z M$? & ME* @7 H™(Gy, Ms).

Proof. As M; are free abelian, ®zM; is an exact functor and M Gi =
M @z Mj (j # i). Hence H™(Gi, M) ~ H™(G;, M;) ®z Mj, where j # i.
So the claim is just a reformulation of Proposition 3.3 for this special
case. [

4. Cohomologies of irreducible G-lattices

A G-lattice M is called irreducible if there are no submodules 0 # N C
M such that M/N is torsion free (i.e. again a G-lattice). Equivalently,
M = Q®yz M is a simple QG-module. If G is a finite abelian group, then
any simple QG-module is defined by a group homomorphism p : G — K*,
where K is a cyclotomic field and the image of p generates the ring of
integers of K. Therefore, any two G-lattices in K are of the same genus
[4], so have the same cohomologies. In particular, if M is a G-lattice in
K, sois M*, hence M*V M and

H™(G, M) ~ H"(G,M*) ~ DH"(G,M) ~ DH""Y(G,DM).  (4.1)

The subgroup of periodic elements of K is cyclic and generated by a
primitive root of unity (. Hence, there is an element a € G such that
pla) = (. Let G =[];_; Ci, where C; = (a; | a]* = 1) are cyclic groups.
We can suppose that a; = a. Set 0 = o1. Changmg he generators a;, we
can make p(a;) =1 for i # 1. Let G’ = (ag,as,...,as), s0 G=C1 x G'.
Then M ~ My ®y Z, where My is M considered as Ci-module and Z is
the trivial G’-module. Note that ME =0, as (v = v implies v = 0. Hence
HO(G, M) = 0. Consider the trace T' = dgead = (= Oa )(ZQGG/ g)-
Obviously, ZZ;%) ¢k =0, hence TM = 0. It implies that H~ G, M) =

Ho(G,M) = M/(¢—1)M. If o = p™ fore some m, then also o(¢) = p* for
some k, whence Nk o(1—¢) = p [1] and HYG,M) = Hy(G, M) ~ Z/pZ.
If o(¢) is not a degree of a prime number, then Ng p(1 — () = 1 and

(G, M) = Hy(G,M) = 0 (it also follows from Corollary 3.4)..

Let a finite abelian group G be a direct product GGy x G2 and the
orders of G; and Gs be coprime. If K; (i = 1,2) is a cyclotomic field
arising from a simple QG;-module, then K = K ®g K> is again a
field, hence a simple QG-module, and all simple QG-modules arise in this
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way. If M; (i =1,2) is a G;-lattice in K;, then M = M; ®z M is a G-
lattice in K, unique up to genus. Corollary 3.4 shows that fI"(G, M)=0
if neither My nor My is trivial. If Mj is non-trivial and My is trivial,
then H™(G, M) ~ H"(G1, M), and if both M; and My are trivial, then
H™(G, M) ~ H"(G1,Z) ® H"(G3,Z). Thus we only need to consider the
case of p-groups. Note also that T = @, T, and T), is the quasicyclic
p-group, i.e. the direct limit hgm Z/p™Z with respect to the natural
embeddings Z/p™ Z — Z/p™t'Z. Hence, if M is finitely generated,
DM =~ @, DMy, where D,M = Homgz(M,Ty). If M is a lattice, the
additive group of D,,M is a direct product of several copies of T,. Moreover,
if G is a p-group, ﬁ”(G, DyM) =0 and Dqﬁ”(G,M) =0 for q # p, so
we can always replace D by D, in all formulae from Proposition 3.2.

So, let G = [[;_; Gk, where G}, is a cyclic group of order p"*. We
calculate cohomologies of a non-trivial irreducible G-lattices. Actually, it
is easier to calculate homologies.

Theorem 4.1. Let M be a non-trivial irreducible G-lattice. Then
H, (G, M) ~ (Z/pZ)" ™) where

v(n,s) = (=1)" Y (‘f) (4.2)

1=0

Note that for fixed n the value of v(n, s) is a polynomial of degree n
with respect to s with the leading coefficient (n!)~!. For instance,

v(0,s) =1, wv(l,s)=s—1,

2 ) 3 _
V2, 5) = % V(3. 5) = #

Proof. We consider G as a direct product G’ x G, where G’ = [[3=] G,
and suppose that G acts trivially on M. Then M can be considered as the
outer tensor product M’ xz Z, where M’ = M considered as G’-module
and Z is considered as trivial Gg-module. Then we can use the Kiinneth
formula [2, Corollary V.5.8]:

Hn(G, M) ~ (éHz(G,,M,) X7 Hn,l(GS,Z))
=0

n—1
@ (P Torf (Hi(G', M), Hy—i-1(Gs, Z))).  (4.3)
1=0
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Recall that, for a cyclic group C' = Z/p™Z,
HO(C> Z) =Z;
Z/p"Z if nis odd,

0 if n is even;

H,(C,Z) = {

while for a non-trivial irreducible lattice M

H,(CL M) = Z/pZ ?f n ?s even,
0 if n is odd,
that is,
v(n, 1) = 1 if n is even,
0 if n is odd.
Moreover,
HO(G’ M) = Z/pZ,
that is,

v(0,s) = 1.

Thus (4.1) is valid for n = 0 and for s = 1, the minimal values of n and s.
Therefore, the Kiinneth formula implies that H"(G, M) ~ (Z/pZ)**)
for some v(n, s). Moreover, it implies that

v(n,s) = Zy(n,s— 1)=v(n,s—1)+v(n—1,s)
k=0

Hence we can prove (4.1) by induction, supposing that it is true for
v(n,s — 1) and v(n — 1, s). Then we have

v(n,s) =v(n,s —1)+v(n—1,s)

Note that in this case H~ (G, M) = Ho(G, M) and H(G, M) = 0.
The formulae (4.1) and (4.2) give the following result.
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Corollary 4.2. If M is a non-trivial irreducible G-lattice, then
A™G, M) ~ A"=Y(G, DM) ~ (2/pz)"("=12),

Analogous calculations give the known result for the trivial G-module
Z (cf. [6,7]).

Theorem 4.3. Ifn # 0 and my > mo > -+ > mg, then
H™(G,Z) ~ @y (Z/p™Z) M= 1)+ =D, (4.4)
Recall that HO(G,Z) ~ Z/p™Z, where m = Y5 _; my.

Proof. First of all, the Kiinneth formula (4.3) implies that H,(G,Z) is a
direct sum of p(n, s) cyclic groups so that

n

wu(n,s) = Z,u(i,s —1)+¢,

i=1
where
1 if nis odd,
- {0 if n is even,
whence

IU(TL, S) = ,U,(TL, S 1) + M(TL -1, S) + (_1)71*1.
Using induction by s, we obtain that
M(nv 8) - V(n? 5) - (_1)71’

hence
pu(n,s) = p(n,s —1)+v(n—1,s).

Note that all groups H*(G,Z) are of period p™s. Therefore, by (4.3),
H,.(G,Z)~ H,(G',Z) ® (Z/p™Z)"
for some r. Together with the formula for p(n, s), it gives that
H,(G,Z) ~ H,(G', Z) & (Z/p™= 7))~ (D",

By induction, we obtain that

Hn(G,Z) ~ @(Z/pme)l/(n,k)f(,l)n
k=1

In view of (4.1), it is just the formula (4.4). O
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5. Explicit formulae

In this section we find explicit formulae for crossed homomoprhisms
(elements of H(G, M)) and cocycles (elements of H*(G,M)) for irre-
ducible latticies and their duals (the latter are important, for instance,
in study of Chernikov groups see [5]). We use the resolution defined in
Section 1.

Let G = H | Gi, where G; = (a; | afmi = 1) is a cyclic group of
order o; = We set s; = 54,. For a cochain p : PP,, — M we denote by
o its coboundary, that is the composition pdy,yq : Ppy1 — M. Then, if
E:Pp— M, i<y,

0¢(x7) = si€ (i),

(5.1)
O(ziz;) = (ai — 1)&(z;) — (a; — 1)&(z3).
Thus £ is a cocycle if and only if
$i€(x;) = 0 for all 1, (5.2)

(a; = 1)§(x;) = (a; — 1)&(x;) for all i # j.

Ify:Py, > M,i<j<k, then

o« ) = (a; — 1)y(a?) =0,
Oy(wixj) = siv(zizy) + (a5 — 1)v(27),
Oy(wix}) = (az = D(af) = sjy(izy),

M(wizjar) = (a; — 1)y(z;mr) — (a; 1)’7(%%) + (ar — D)y(@iz;).
Thus v is a cocycle if and only if

(a; — 1)y(z?) =0 for all 4,
siv(zieg) = —(aj — Dy(af),  spy(aje) = (6 — Dy(z5),  (5.3)
(aj — Dy(wizk) = (ai — D)y(zjzr) + (ap — 1)y (ziz)).

Finally, if we identify an element v € M with the homomorphism
Py — M which maps a to au, then du(x;) = (a; — 1)u.

First suppose that M = Z. Then the element s; acts on M as p™
and the formulae (5.2) show that H'(G,Z) = 0. As a; — 1 acts as 0, the
formulae (5.3) mean that ~ is a cocycle if and only if v(z;x;) = 0. The
formulae (5.1) imply that, adding a coboundary, we can reduce v(z?)
modulo p™i. Therefore, H(G,Z) ~ @, Z/p™7Z and generators of this
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group can be chosen as the cohomology classes of the cocycles v : Py — Z
such that ~;(z;2;) = 0 for all ¢, j and v (x 2) = ik

For the dual module D,Z = T,, the formulae (5.2) mean that £ is
a cocylce if and only if p™ié(z;) = 0. Hence HY(G,T,) ~ @I Tin,,
where T,,, = {u e T, | p™u=0} (it is a cyclic group of order p™). As
T, is divisible, the formulae (5.1) imply that, adding a coboundary to
a 2-dimensional cocycle v, one can always make y(z7) = 0. Then the
formulae (5.3) mean that p"i ’yx .z; = 0, where m;; = min{m;, m;}. Hence
H?*(G,Ty) ~ @By Trny; =~ DBij Z/pm”Z and generators of this group
are the classes of cocycles 7y (1 < k <1 < s) such that v (z?) = 0 for
all i, while vy (xjz;) = dridijur;, where uy is a fixed element of T, of
order p'"k

Let now M be a lattice in a cyclotomic field K of order p™ such that
a1 acts as the multiplication by the primitive root ¢ of unity of order
p™ and all a; (i > 1) act trivially. As we can choose any lattice in the
same genus, we can suppose that M = Z[(]. Therefore, the formulae (5.2)
show that ¢ is a cocycle if and only if {(z;) =0 fori > 1. As(—1isa
prime element in Z[¢] with the norm p [1], M/({ — 1)M ~ Z/pZ. Hence,
adding a coboundary du to &, one can make {(x;) = A, where A\ € Z
is defined modulo p. Thus H'(G, M) ~ Z/pZ. The formulae (5.3) show
that v is a cocycle if and only if y(z3) = 0, y(wiz;) =0if 1 < i < j
and p™iy(z17;) = (¢ — 1)y(z?). The formulae (5.1) imply that, adding a
coboundary, one can make (:clwz) i, where \; € Z is defined modulo
p. Then v(z?) is uniquely defined. Thus H?(G, M) ~ (Z/pZ)*~'. The
generators of this group are the classes of cocycles v, (1 < k < s) such
that v (23) = y@iz;) = 0 for all 1 < i < j, y(z125) = Ok, (i) = 0 if
i # k and (1 — Q)yx(zy) = p™*.

Consider the dual module D,M. As the multiplication by ¢ — 1 is
injective on M, it is surjective on D,M. On the other hand, the subgroup
{ue DM | ((—1)u=0}is dual to M/(¢ —1)M, so it is generated by
one element ug of period p. Thus, adding a couboundary OJu to a 1-cocycle
€, one can make {(x1) = 0. Then (¢ —1)&(x;) = 0if i > 1, whence {(x;) =
A\itg, where \; € Z/pZ. Hence H' (G, D,M) ~ P§! ~ (Z/pZ)S . In the
same way, adding a coboundary to a 2-cocycle v, we can make y(x12;) = 0
for i > 1. Then the conditions (5.3) give (( —1)y(z7) = 0 for all 4, whence
v(22) = ANug (\i € Z/pZ), and (¢ — 1)y(x;x;) = 0 for 1 <i < j, whence
Y(zizj) = Nijuo (Nij € Z/pZ). Therefore H*(G, D, M) ~ Tgs2_s+2)/2 ~
(Z/pZ)(&*=s+2)/2 Th generators of this group are cocycles v, (1 < k < s)
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and vy (1 < k <1 < s) such that g (z12;) = Y (z12;) for i > 1, y(2?) =
dikto, Yi(xizj) = 0 for i # j, Yt (22 = 0 for all i and Yt (xi5) = 6i051u0.
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