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Abstract. This paper is about sparse numerical semigroups

and applications in the Weierstrass semigroups theory. We describe

and find the genus of certain families of sparse numerical semigroups

with Frobenius number even and we also study the realization of

the elements on these families as Weierstrass semigroups.

Introduction

Let Z be the set of integers numbers and N0 be the set of non-negative
integers. A subset H =

{

0 = n0(H) < n1(H) < · · ·
}

of N0 is a numerical

semigroup if its is closed respect to addition and its complement N0 \H is
finite. The cardinality of the set Gaps(H) := N0 \H is called genus of the
numerical semigroup H and is denoted by g = g(H). Note that g(H) = 0
if and only if H = N0. If g(H) > 0 the elements of Gaps(H) are called
gaps. The smallest integer c = c(H) such that c+ h ∈ H, for all h ∈ N0

is called the conductor of H. The least positive integer n1 = n1(H) ∈ H
is called the multiplicity of H. As N0 \ H is finite, the set Z \ H has
a maximum, which is called Frobenius number and will be denoted by
ℓg = ℓg(H). A property known of this number is that ℓg(H) 6 2g − 1, see
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[15]. In particular, H = N0 if and only if −1 is the Frobenius number
of H. Aa a consequence of this fact, from now on we use the notation
ℓ0 = ℓ0(H) := −1, for all numerical semigroup H . When g > 0, we denote
Gaps(H) =

{

1 = ℓ1(H) < · · · < ℓg(H)
}

. So, c = ℓg(H) + 1 and is clear
that c = nc−g(H). For simplicity of notation we shall write ℓi for ℓi(H)
and nk for nk(H), for all integers i, k such that 0 6 i 6 g and k > 0, when
there is no danger of confusion. More details about numerical semigroups
theory, see e.g. [17].

Currently, there are several families that have been of interest in the
literature due to their properties and applications. Examples of such
families are the sparse semigroups, which were introduced in [14]. A
numerical semigroup H = {0 = n0 < n1 < · · · } of genus g > 0 with
Gaps(H) = {ℓ1 < · · · < ℓg} is called sparse numerical semigroup if
ℓi − ℓi−1 6 2, for all integer i such that 1 6 i 6 g, or equivalently
ni − ni−1 > 2, for all integer i such that 1 6 i 6 c − g, where c is the
conductor of H. For convenience, we considerer the numerical semigroup
N0 as sparse. Thus, the concept of sparse numerical semigroups it’s in a
way a generalization of the concept of Arf numerical semigroups, which
was introduced in [1].

Among other applications, the study of numerical semigroup is related
to Algebraic Geometry in the treatment of algebraic curves and their
Weierstrass semigroups. More explicitly, given a numerical semigroup H,
does it exist a curve X such that for some point P ∈ X has H = H(P )?,
where H(P ) is the Weierstrass semigroup of X at P . If the answer is yes,
we say that the numerical semigroup H is Weierstrass. Studies to answer
this question have been done for decades, see e.g. [4], [12], [15] and [19].
From a geometrical point of view, sparse numerical semigroups are closely
related to Weierstrass semigroups arising in double covering of curves, cf.
[19]. Its arithmetical structure is strongly influenced by the parity of ℓg.
In this work, we study certain families of sparse numerical semigroups
which are examples of Weierstrass semigroups. In addition, we manage
to describe and find the genus of the semigroups on these families. These
aspects are very important in the study of numerical semigroups theory.
It is important to note that in [6] the authors find an upper bound for the
genus of sparse numerical semigroups with Frobenius number even. Here,
in this paper, we get a better bound for the genus of the semigroups on
the families of sparse numerical semigroups studied.

This paper is organized as follows. Section 1, contains basic concepts
about numerical semigroups and backgrounds for the next sections. In
Section 2, we study certain families of sparse numerical semigroups with
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Frobenius number even. As the main results, we describe and find the
genus of the semigroups on these families of sparse numerical semigroups.
Finally, in Section 3 we study the realization of the sparse numerical
semigroups determined in the previous section as Weierstrass semigroups.

1. Preliminaries

1.1. Basic concepts

Let H =
{

0 = n0 < n1 < · · ·
}

be a numerical semigroup of genus
g > 0 and Gaps(H) = {ℓ1 < · · · < ℓg}. For each 1 6 i 6 g, the ordered
pair (ℓi−1, ℓi) will be called leap on H (or simply leap). The set of leaps
on H will be denoted by

V = V(H) :=
{

(ℓi−1, ℓi) : 1 6 i 6 g
}

.

Note that |V | = g. The ordered pair (ℓi−1, ℓi) will be called single leap if
ℓi − ℓi−1 = 1 and double leap if ℓi − ℓi−1 = 2.

Based on this set, for a positive integer m, let us define the subset

Vm = Vm(H) :=
{

(ℓi−1, ℓi) : ℓi − ℓi−1 = m, 1 6 i 6 g
}

and for an interval [a, b], with −1 6 a < b 6 ℓg, let us define the subset

V[a,b] =
{

(ℓi−1, ℓi) : ℓi−1, ℓi ∈ [a, b], 1 6 i 6 g
}

.

For convenience, we define Vm(N0) := ∅, for all positive integer m. To
simplify the notation we will denote the cardinality of the set Vm(H) by
vm(H), that is, vm = vm(H) := |Vm(H) |.

1.2. Arf numerical semigroup

A numerical semigroup H = {0 = n0 < n1 < · · · } is called Arf

numerical semigroup if
ni + nj − nk ∈ H, (1)

for all integers i, j, k such that 0 6 k 6 j 6 i, or equivalently ni+nj−nk ∈
H, for all integers i, j, k such that 0 6 k 6 j 6 i 6 c − g, where c is
the conductor and g is the genus of H, respectively. The Arf numerical
semigroups was introduced in [1]. For more details about this family of
numerical semigroups, see e.g. [2], [5], [16] and [18].

If g > 0 and Gaps(H) = {ℓ1 < · · · < ℓg}, the Arf property (1) implies
that

ℓi − ℓi−1 6 2, (2)
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for all integer i such that 1 6 i 6 g, or equivalently ni − ni−1 > 2, for all
integer i such that 1 6 i 6 c− g (see [14, Corollary 1] and [20, Corollary
2.1.4]). Using this property is not difficult to see that if H is an Arf
numerical semigroup, then H is a sparse numerical semigroup.

For each non-negative integer g, let

Ng := {0} ∪ {n ∈ N : n > g + 1}

(in the case g = 0, it notation is itself the N0). It is clear that Ng is a
numerical semigroup of genus g. The semigroup Ng is called ordinary nu-

merical semigroup and is a canonical example of Arf numerical semigroups
and, consequently, a example of sparse numerical semigroups.

1.3. Sparse numerical semigroups

Theorem 1.1 ([18], Theorem 2.2). Let H be a numerical semigroup of

genus g.
(1) H is an sparse numerical semigroup if and only if v1(H)+v2(H) = g.

In this case, vm(H) = 0, for all positive integer m > 3.
(2) If H is an sparse numerical semigroup, then the Frobenius number of

H is ℓg = v1(H) + 2v2(H)− 1.
(3) If g > 0 and ℓg(H) = 2g −K, for some positive integer K, then H

is an sparse numerical semigroup if and only if v1(H) = K − 1 and

v2(H) = g −K + 1.

For a numerical semigroup H = {0 = n0 < n1 < · · · }, define M =
M(H) := n1 − 1. The parameter M was introduced in [14], where if
ℓg(H) = 2g −K, for some positive integer K, we have that

0 6 M 6 K. (3)

If g > 1 and Gaps(H) = {1 = ℓ1 < · · · < ℓg}, define

SM = SM (H) :=
∣

∣

{

(ℓi−1, ℓi) : ℓi − ℓi−1 = 1, M + 1 6 i 6 g
}∣

∣ . (4)

Note that SM < v1, since
{

(ℓi−1, ℓi) : ℓi− ℓi−1 = 1, M +1 6 i 6 g
}

( V1.
Before the next result, let us remember that a semigroup H is called

γ-hyperelliptic if it has exactly γ even gaps. If γ = 0, H is called simply
hyperelliptic.

Proposition 1.2. Let H = {0 = n0 < n1 < · · · } be a numerical semi-

group of genus g and M = M(H) = n1 − 1. Then:
(1) 0 6 M 6 g;
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(2) M(H) = 0 if and only if H = N0;
(3) M(H) = g if and only if H = Ng;
(4) M(H) = 1 if and only if H is hyperelliptic;
(5) If g > 0 and Gaps(H) = {ℓ1 < · · · < ℓg}, then M is the largest integer

such that ℓM = M .

Proof. The assertions (1), (2) and (3) are clear. Item (4), follows from the
fact that M = 1 if and only if n1 = 2. Finally, item (5) follows directly
from the fact that all integers belong to interval [1, n1 − 1] are gaps.

Corollary 1.3. Let H be a sparse numerical semigroup of genus g > 1
with Frobenius number ℓg = 2g − K, for some positive integer K, and

Gaps(H) = {ℓ1 < · · · < ℓg}. Let M = M(H) and SM = SM (H) be

defined in (4). If M < g, then SM = K −M.

Proof. By the definition of SM , since M < g, we have that SM 6= 0 and
SM = v1(H) − (M − 1). Now, by Theorem 1.1 item (2), follows that
SM = K − 1− (M − 1) = K −M .

In Proposition 1.2, we present the semigroups for the cases M = 0, 1
and M = g. The case M = 2 is treated in [14, Proposition 3]. The
following result treat of the case M = K.

Theorem 1.4. Let H be a numerical semigroup of genus g > 0 with

Frobenius number ℓg = 2g−K, for some positive integer K. The following

statements are equivalent:
(1) H is an sparse numerical semigroup and M = K;
(2) H = NK or H = {K + 2i− 1 : 1 6 i 6 g −K} ∪N2g−K ;
(3) v1(H) = M − 1 and v2(H) = g −M + 1.
In this case, Gaps(H) = {1, . . . , ℓK , . . . , ℓg}, where ℓi = 2i − K, for all

integer i such that K 6 i 6 g.

Proof. We prove that (1) ⇒ (2) ⇒ (3) ⇒ (1). By [14, Theorem 1 (2)]
follows that (1) ⇒ (2). Now, suppose (2). If H = NK , then M = K
and by Theorem 1.1 (3) follows that v1(H) = M − 1 and v2(H) =
g − M + 1. If H = {K + 2i − 1 : 1 6 i 6 g − K} ∪ N2g−K , then
Gaps(H) = {1, . . . ,K, ℓK+1, . . . , ℓg}, where ℓK+i = K + 2i, for all integer
i such that 1 6 i 6 g − K. So, M = K, v1(H) = K − 1 = M − 1 and
v2(H) = g−K+1 = g−M +1. Thus, we have (2) ⇒ (3). The implication
(3) ⇒ (1), follows directly from the Theorem 1.1 items (1) and (3).

The assertion on the gaps of H follows as in the proof of the implication
(2) ⇒ (3).
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2. Sparse numerical semigroups with Frobenius number

even

For each positive integer k, consider the family H sfe
k of sparse numerical

semigroups H with genus g = g(H) and Frobenius number even of the
form 2g − 2k. That is,

H
sfe
k := {H : H is a sparse numerical semigroup

with genus g and ℓg = 2g − 2k}.

In this section, we will study the classification of the elements of
some proper subsets in H sfe

k as well as the cardinality of these subsets.
If H ∈ H sfe

k in [14, Theorem 2] is proved that g(H) 6 6k − 3 and that
the family H sfe

k is finite. In [20, Question 2.3.10], was conjectured that
g(H) 6 4k − 1. This conjecture was proved by Contiero, Moreira and
Veloso in [6, Corollary 3.7]. In Theorem 2.8 and Theorem 2.13, we get a
better bound for g(H) for certain H ∈ H sfe

k .
In the previous section, in particular, we describe all the sparse nu-

merical semigroups belongs to H sfe
k with M = 0, 1 and M = 2k. The next

result describe the case M = 3.

Lemma 2.1. Let k > 2 be an integer and H be a numerical semigroup

of genus g and Frobenius number ℓg = 2g − 2k. If M = 3, the following

statements are equivalent:

(1) H is be an Arf numerical semigroup;
(2) H is be an sparse numerical semigroup;
(3) H = 〈4, 4k − 1, 4k + 1, 4k + 2〉;
(4) H is k-hyperelliptic.

In this case, g = 3k − 1 and

Gaps(H) = {1, . . . , 2g − 2k} \
{

4i : i ∈ N, 1 6 i 6 2g−2k−2
4

}

.

Proof. We prove that (1) ⇒ (2) ⇒ (3) ⇒ (4) ⇒ (3) ⇒ (1). Implication
(1) ⇒ (2) is always true. Before show the next implications, since M = 3,
we have that the multiplicity of H is n1 = 4. Let G := {1, . . . , 2g − 2k} \
{

4i : i ∈ N, 1 6 i 6 2g−2k−2
4

}

. It is clear that Gaps(H) is a subset of G.

Since 4 ∈ H and ℓg = 2g− 2k is even, we have that ℓg = 4i0 +2, for some
i0 ∈ N. Note that if ℓ ∈ G is even, then ℓ = 4i+ 2, for some i ∈ N0 with
i 6 i0. So, ℓ ∈ G and ℓ even implies that ℓ /∈ H, because otherwise we
will have that ℓg ∈ H, since ℓ = 4i+ 2, 4 ∈ H, ℓg = 4i0 + 2 and i 6 i0.
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Now, suppose (2). Let ℓ ∈ G. If ℓ is even, we have seen above that
ℓ ∈ Gaps(H). If ℓ ≡ 1 (mod 4), then ℓ − 1 ∈ H and we have that
ℓ ∈ Gaps(H), since H is sparse. If ℓ ≡ 3 (mod 4), then ℓ + 1 ∈ H and
we also have that ℓ ∈ H, since H is sparse. Thus, Gaps(H) = G, and so
H = 〈4, 4k − 1, 4k + 1, 4k + 2〉. Thus, we have (2) ⇒ (3).

Now, we prove the implication (3) ⇒ (4). If H = 〈4, 4k−1, 4k+1, 4k+
2〉, then 2 ∈ Gaps(H) and the number of even gaps on the interval [4, 4k]
is equal to 4k−4

4 = k − 1. So, H is k-hyperelliptic.
To prove the implication (4) ⇒ (3), first note that G∩2N = Gaps(H)∩

2N. Suppose that H is k-hyperelliptic. Then, G ∩ 2N = Gaps(H) ∩ 2N
and |G ∩ 2N | = g − k − 2g−2k−2

4 implies that g − k − 2g−2k−2
4 = k, that

is, g = 3k − 1. Since M = 3, g = 3k − 1 and ℓg = 2g − 2k = 4k − 2, we
conclude that Gaps(H) = [1, 4k − 2] \ {4i : i ∈ N, 1 6 i 6 k − 1}, and
then H = 〈4, 4k − 1, 4k + 1, 4k + 2〉.

Finally, we prove the implication (3) ⇒ (1). If H = 〈4, 4k − 1, 4k +
1, 4k + 2〉, then H = 4N0 ∪ {n ∈ N : n > 4k − 1}. Suppose that
H = {0 = n0 < 4 = n1 < n2 < · · · } and let i, j, s integers such that
0 6 s 6 j 6 i. If ni, nj or ns belongs to {n ∈ N : n > 4k − 1}, then it is
clear that ni + nj − ns ∈ {n ∈ N : n > 4k − 1} and so ni + nj − ns ∈ H.
If ni, nj , ns ∈ 4N0 then it is also clear that ni + nj − ns ∈ 4N0 and so
ni + nj − ns ∈ H. Therefore, H is Arf.

For H ∈ H sfe
k , by Equation (3) and Proposition 1.2, follows that

2 6 M(H) 6 2k. (5)

For each integer J such that 0 6 J 6 2k − 2, consider the set Hk
2+J of

sparse numerical semigroups H ∈ H sfe
k such that M(H) = 2 + J . That is,

H
k
2+J =

{

H ∈ H
sfe
k : M(H) = 2 + J

}

. (6)

Since

H
sfe
k =

2k−2
⋃

·
J=0

H
k
2+J ,

in order to study the cardinality of H sfe
k it is enough to study the cardinality

of Hk
2+J , for all integer J such that 0 6 J 6 2k − 2. Next we will study

the cases: J = 2k − 2, J = 2k − 3 and J = 2k − 4.
The following result shows that all numerical semigroups H belongs

to Hk
2k are Arf and (g(H)− k)-hyperelliptic.
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Proposition 2.2. Let H be a numerical semigroup of genus g > 0 with

Frobenius number ℓg = 2g − 2k, for some positive integer k. If M = 2k,
then the following statements are equivalent:

(1) H is an Arf numerical semigroup;
(2) H is an sparse numerical semigroup;
(3) H = N2k or H = {2k + 2i− 1 : 1 6 i 6 g − 2k} ∪N2g−2k;
(4) v1(H) = 2k − 1 and v2(H) = g − 2k + 1;
(5) H is (g − k)-hyperelliptic.

In this case, 2k 6 g 6 3k and Gaps(H) = {1, . . . , 2k − 1, ℓ2k, . . . , ℓg},
where ℓi = 2(i− k), for all integer i such that 2k 6 i 6 g.

Proof. We prove that (1) ⇒ (2) ⇒ (3) ⇔ (4), (3) ⇔ (5) and (3) ⇒ (1).
The implication (1) ⇒ (2) is always true. The implication (2) ⇒ (3), the
equivalence (3) ⇔ (4) and the assertion on the gaps of H is a particular
case from Theorem 1.4, by taking M = K = 2k.

Now, suppose (3). Then, ni = 2k + 2i− 1, for all integer i such that
1 6 i 6 g − 2k + 1, Let i, j integers such that 0 6 j 6 i 6 g − 2k + 1. If
j = 0 is clear that 2ni − nj ∈ H ; other case 2ni − nj = 2k+4i− 2j − 1 >

2k + 2i − 1 > 2k + 1 > ℓ2k. Since in the interval [ℓ2k, ℓg] the gaps ℓi’s
are even numbers and 2ni − nj is odd, follow that 2ni − nj ∈ H. This
shows that (3) ⇒ (1). Also, by Theorem 1.4, (3) implies that Gaps(H) =
{1, . . . , 2k − 1, ℓ2k, . . . , ℓg}, where ℓi = 2(i− k), for all integer i such that
2k 6 i 6 g, and thus (3) ⇒ (5). Finally, suppose (5). Since in the interval
[2, 2g − 2k] there are g − k elements even, these elements should be gaps
and so (5) ⇒ (3).

Note that, since n1 = 2k + 1, from item (3) follows that 2(2k + 1) >
ℓg + 2 = (2g − 2k) + 2. Therefore, we have that g 6 3k.

Theorem 2.3. For all integer k > 1,

H
k
2k = {N2k} ∪

{

H(k,r) : r ∈ N, 1 6 r 6 k
}

,

where

H(k,r) = {2k + 2i− 1 : i ∈ N, 1 6 i 6 r} ∪N2k+2r,

for 1 6 r 6 k. In addition, g
(

H(k,r)

)

= 2k+r. In particular, the cardinality

of Hk
2k is

∣

∣Hk
2k

∣

∣ = k + 1.

Proof. For each integer r such that 1 6 r 6 k, let H(k,r) = {2k+2i−1 : i ∈
N, 1 6 i 6 r}∪N2k+2r. By the definition, is clear that H(k,r) is a numerical
semigroup of genus g

(

H(k,r)

)

= 2k + r and ℓg
(

H(k,r)

)

= 2g
(

H(k,r)

)

− 2k.
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So, by Proposition 2.2, we have that H(k,r) belongs to H k
2k, for all integer

r such that 1 6 r 6 k. Also, by Proposition 2.2, N2k is contained in H k
2k.

Now, let H ∈ H k
2k of genus g and H 6= N2k. By Proposition 2.2, we have

2k+ 1 6 g 6 3k and H = {2k+ 2i− 1 : i ∈ N, 1 6 i 6 g− 2k} ∪N2g−2k.
Let r := g − 2k. Then, 1 6 r 6 k and so H = H(k,r). This completes the
proof.

A numerical semigroup H of genus g > 0 is called quasi-symmetric

if the Frobenius number of H is ℓg = 2g − 2. In [2] and [3], has been
proved that there are only two Arf numerical semigroups quasi-symmetric:
〈3, 4, 5〉 and 〈3, 5, 7〉. In [14, Example 4] and [20, Example 2.3.13], was
proved that Arf numerical semigroups quasi-symmetric is equivalent to
sparse numerical semigroups quasi-symmetric. This result can be obtained
directly from the previous theorem by taking k = 1. That is, the family
of sparse numerical semigroups quasi-symmetric is

H
sfe
1 =

{

N2, {3} ∪N4

}

= H
1
2 .

The following is a further demonstration of the [14, Example 5] about the
classification of sparse numerical semigroups of genus g with Frobenius
number ℓg = 2g − 4.

Corollary 2.4. The family of sparse numerical semigroups of genus g
and Frobenius number 2g − 4 is

H
sfe
2 =

{

{3, 6} ∪N8, {3, 6, 9} ∪N10, {4} ∪N6,N4, {5} ∪N6, {5, 7} ∪N8

}

.

In this case,

H
2
2 =

{

{3, 6} ∪N8, {3, 6, 9} ∪N10

}

,

H
2
3 =

{

{4} ∪N6

}

,

H
2
4 =

{

N4, {5} ∪N6, {5, 7} ∪N8

}

.

Proof. First, note that H sfe
2 = H2

2 ∪ H2
3 ∪ H2

4 . From [14, Proposition
3], we have that H2

2 =
{

{3, 6} ∪N8, {3, 6, 9} ∪N10

}

. From the item (3)
of Lemma 2.1 follows that H2

3 =
{

{4} ∪ N6

}

and taking k = 2 in the
previous theorem follows that H2

4 =
{

N4, {5} ∪N6, {5, 7} ∪N8

}

.

Lemma 2.5. Let k > 2 be an integer. For each pair of integers r and αr

such that 1 6 r 6 k − 1 and 1 6 αr 6 r, let

Hαr

(k,r) := {2(k + µ− 1) : 1 6 µ 6 αr}∪

{2k + 2ν + 1 : αr 6 ν 6 r − 1} ∪N2k+2r.
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Then, Hαr

(k,r) ∈ H k
2k−1 and g

(

Hαr

(k,r)

)

= 2k + r, for all pairs (r, αr).

Proof. Let r, αr and Hαr

(k,r) be as above. By the definition, it is clear that
Hαr

(k,r) is a numerical semigroup with set of gaps given by

Gaps
(

Hαr

(k,r)

)

= {i : 1 6 i 6 2k − 1} ∪· {2k + 2µ− 1 : 1 6 µ 6 αr}∪·

{2k + 2ν : αr 6 ν 6 r}.

In particular, g
(

Hαr

(k,r)

)

= (2k − 1) + αr + (r − αr + 1) = 2k + r. Also,

M
(

Hαr

(k,r)

)

= 2k − 1 and ℓg

(

Hαr

(k,r)

)

= 2k + 2r = 2g − 2k. Therefore,

Hαr

(k,r) ∈ H k
2k−1, for all pairs (r, αr) as above.

Henceforth Hαr

(k,r) is the sparse numerical semigroup defined in the
Lemma 2.5.

Remark 2.6. Let k > 2 be an integer and (r, αr) be as defined in the
previous lemma. Then,

Gaps
(

Hαr

(k,r)

)

=
{

ℓ1

(

Hαr

(k,r)

)

, . . . , ℓ2k+r

(

Hαr

(k,r)

)}

,

where

ℓi

(

(Hαr

(k,r)

)

=











i, if 1 6 i 6 2k − 1;

2(i− k) + 1, if 2k 6 i 6 2k − 1 + αr;

2(i− k), if 2k + αr 6 i 6 2k + r.

The following theorem will give us a new bound for the genus of
semigroups in Hk

2k−1. Before, we will make an observation that will be
very useful in the following.

Remark 2.7. Let H be a sparse numerical semigroup of genus g > 1
with Frobenius number ℓg = 2g − K, for some positive integer K, and
Gaps(H) = {ℓ1 < · · · < ℓg}. Let r and s integers such that 1 6 r < s 6 g.
If V[ℓr,ℓs] ∩ V1 =

{

(ℓj−1, ℓj)
}

, for some j ∈ {r + 1, . . . , s}, then

ℓv = ℓj−1 − 2(j − v − 1),

for all integer v such that r 6 v 6 j − 1, and

ℓw = ℓj + 2(w − j),

for all integer w such that j 6 w 6 s. In particular, ℓj−1 ≡ ℓv (mod 2),
for all integer v such that r 6 v 6 j − 1, and ℓj ≡ ℓw (mod 2), for all
integer w such that j 6 w 6 s.
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Theorem 2.8. Let k > 2 be an integer. If H ∈ Hk
2k−1, then

2k + 1 6 g(H) 6 3k − 1.

Proof. Let k > 2 be an integer and let H ∈ Hk
2k−1 with g(H) = g and

Gaps(H) = {1 = ℓ1 < · · · < ℓg}. Since H is a sparse semigroup and
M = 2k − 1, we have that ℓM+1 = 2k + 1. If g 6 2k, then ℓg 6 2k, a
contradiction with the value of ℓM+1. So, g > 2k + 1. Now, suppose that
g = 3k + s, for some integer s > 0. So, ℓg = 4k + 2s. By the Corollary
1.3, SM = 1, that is, there exist a unique single leap (ℓj−1, ℓj), for some
integer j such that 2k+1 = M +2 6 j 6 g. Then, by the Remark 2.7, all
the even numbers greater than 2k+ 1 and smaller than ℓj−1 are non-gaps.
Moreover all the even numbers from ℓj to ℓg are gaps. More precisely, we
have ℓg = ℓj + 2(g − j). So, ℓj = (4k + 2s)− 2(3k + s− j) = 2j − 2k. We
conclude the proof by studying the following cases separately: j < 3k and
j > 3k. Firstly, assume that j < 3k. Then, ℓj = 2j − 2k < 4k 6 4k + 2s.
So, 4k is a gap, a contradiction since 2k is a non-gap. Now, suppose that
j > 3k. Then, 2k 6 2j − 4k < 2j − 2k − 1 = ℓj−1. Thus, 2j − 4k ∈ H.
Therefore, ℓj = 2j − 2k = 2k + (2j − 4k) ∈ H, a contradiction, and the
proof is complete.

Theorem 2.9. For all integer k > 2,

H
k
2k−1 =

{

Hαr

(k,r) : (r, αr) ∈ N
2, 1 6 r 6 k − 1, 1 6 αr 6 r

}

.

Proof. Firstly, by the Lemma 2.5, we have that
{

Hαr

(k,r) : (r, αr) ∈ N
2, 1 6 r 6 k − 1, 1 6 αr 6 r

}

⊂ H
k
2k−1.

Now, let H ∈ Hk
2k−1 with g(H) = g. By Theorem 2.8, we have 2k + 1 6

g 6 3k − 1. Let r := g − 2k. So, 1 6 r 6 k − 1. Since ℓg = 2g − 2k, we
have that ℓg = ℓ2k+r = 2k + 2r. Let Gaps(H) = {1 = ℓ1 < · · · < ℓg}. By
Corollary 1.3, SM = 1, that is, there exist a unique single leap (ℓj−1, ℓj),
for some integer j such that 2k + 1 = M + 2 6 j 6 g = 2k + r. Let
αr := j − 2k. By Remark 2.7, ℓv = ℓ2k + 2(v − 2k), for all integer v such
that 2k 6 v 6 j − 1 and ℓw = ℓ2k+r + 2

[

w − (2k + r)
]

, for all integer w
such that j 6 w 6 2k+ r. Since M = 2k− 1, we have ℓ2k−1 = 2k− 1 and
ℓ2k = 2k + 1. Thus, we concluded that ℓv = 2(v − k) + 1, for all integer v
such that 2k 6 v 6 j− 1 = 2k− 1+αr, and ℓw = 2(w− k), for all integer
w such that 2k+αr = j 6 w 6 2k+ r = g. Therefore, by Remark 2.6, we
have that H = Hαr

(k,r) and follows the result.
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Corollary 2.10. For all integer k > 2,
∣

∣Hk
2k−1

∣

∣ =
(

k
2

)

.

Proof. By the Theorem 2.9, we have that

H
k
2k−1 =

k−1
⋃

·
r=1

{

Hαr

(k,r) : αr ∈ N, 1 6 αr 6 r
}

.

Therefore,
∣

∣

∣
H

k
2k−1

∣

∣

∣
=

k−1
∑

r=1

r =

(

k

2

)

.

Lemma 2.11. Let k > 3 be an integer. Let r, s and αs be a triple of

integers such that 1 6 r 6 k − 2, 1 6 s 6 r and 1 6 αs 6 r − s+ 1. For

r ∈ {k, k + 1}, let s = 1 and αs = k. For each triple (r, s, αs), consider

H
(s,αs)
(k,r) :={2k + 2λ− 3 : 1 6 λ 6 s}∪

{2(k + s+ µ− 1) : 1 6 µ 6 αs − 1}∪

{2k + 2ν + 2s− 1 : αs 6 ν 6 r − s} ∪N2k+2r.

Then, H
(s,αs)
(k,r) ∈ Hk

2k−2 and g
(

H
(s,αs)
(k,r)

)

= 2k + r, for all triples (r, s, αs).

Proof. Let r, s, αs and H
(s,αs)
(k,r) be as above. By the definition, it is clear

that H
(s,αs)
(k,r) is a numerical semigroup with set of gaps given by

Gaps
(

H
(s,αs)
(k,r)

)

= {i : 1 6 i 6 2k − 2} ∪· {2(k + λ− 1) : 1 6 λ 6 s}∪·

{2k + 2µ+ 2s− 3 : 1 6 µ 6 αs}∪·

{2(k + ν + s) : αs − 1 6 ν 6 r − s}.

In particular, g
(

H
(s,αs)
(k,r)

)

= (2k−2)+s+αs+(r−s−αs+2) = 2k+r. Also,

M
(

H
(s,αs)
(k,r)

)

= 2k − 2 and ℓg

(

H
(s,αs)
(k,r)

)

= 2k + 2r = 2g − 2k. Therefore,

H
(s,αs)
(k,r) ∈ Hk

2k−2, for all triple (r, s, αs) as above.

Henceforth H
(s,αs)
(k,r) is the sparse numerical semigroup defined in the

Lemma 2.11.

Remark 2.12. Let k > 3 be an integer and (r, s, αs) be as defined in the
previous lemma. Then,

Gaps
(

H
(s,αs)
(k,r)

)

=
{

ℓ1

(

H
(s,αs)
(k,r)

)

, . . . , ℓ2k+r

(

H
(s,αs)
(k,r)

)}

,
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where

ℓi

(

H
(s,αs)
(k,r)

)

=























i, if 1 6 i 6 2k − 2;

2(i− k + 1), if 2k − 1 6 i 6 2k + s− 2;

2(i− k) + 1, if 2k + s− 1 6 i 6 2k + s+ αs − 2;

2(i− k), if 2k + s+ αs − 1 6 i 6 2k + r.

Theorem 2.13. Let k > 3 be an integer. If H ∈ Hk
2k−2, then 2k + 1 6

g(H) 6 3k + 1 and g(H) 6= 3k − 1.

Proof. Let k > 3 be an integer and let H ∈ Hk
2k−2 with g(H) = g and

Gaps(H) = {1 = ℓ1 < · · · < ℓg}. Since M = M(H) = 2k − 2 and H is a
sparse semigroup, we have that ℓ2k−1 = ℓM+1 = 2k and, by the Corollary
1.3, SM = 2. If g < 2k, then ℓg < 2k, a contradiction with the value
of ℓM+1. If g = 2k, then ℓg = 2k. So, g = M + 1 = 2k − 1 = g − 1, a
contradiction. Therefore, g > 2k+1. It is clear that g 6= 3k− 1, because if
g = 3k−1, then ℓg = 4k−2 ∈ Gaps(H), a contradiction, since 2k−1 ∈ H .
Now, suppose that H has genus g = 3k + s, for some integer s > 2. So,
ℓg = 4k+2s and follows that ℓg/2 = 2k+ s ∈ Gaps(H). Since 2k−1 ∈ H ,
we have that ℓ := 2k + 2s+ 1 ∈ Gaps(H). We prove that 2k + 2s ∈ H.
In fact, suppose that 2k + 2s ∈ Gaps(H). Thus, (ℓ − 1, ℓ) is a single
leap. If ℓ2k = 2k + 1, then (2k, 2k + 1) is a single leap. Note that, if
ℓ2k = 2k+2, then 2k+1 ∈ H and so 2k+2s−1 ∈ Gaps(H) (since s > 2),
or equivalently, (ℓ − 2, ℓ − 1) is a single leap. On the other hand, since
SM = 2, by Remark 2.7, follows that (2k + 2s+ 1) ≡ (4k + 2s) (mod 2),
a contradiction. Therefore, 2k + 2s ∈ H. Then, 2k + 2s − 1 ∈ Gaps(H)
and 4k+2s− 1 = (2k− 1)+ (2k+2s) ∈ H . Thus, ℓg−1 = 4k+2s− 2 and
follows that 2k+ s− 1 ∈ Gaps(H). So, (2k+ s− 1, 2k+ s) is a single leap.
Therefore, since 2k + 2s+ 1 is odd and 4k + 2s− 2 is even, we have that
∣

∣V[2k+2s+1,4k+2s−2] ∩ V1(H)
∣

∣ = 1. We conclude the proof by studying the
following cases separately: s = 2 and s > 3. Firstly, assume that s = 2. In
this case, (2k + 1, 2k + 2) and (2k + 2, 2k + 3) are both single leaps. So,
SM = 3, a contradiction. Now, suppose that s > 3. Then, 2k + s− 2 ∈ H
and consequently 4k+2s− 4 ∈ H . So, ℓg−2 = 4k+2s− 3, a contradiction,
since 4k + 2s− 3 = (2k − 1) + (2k + 2s− 2) ∈ H.

Theorem 2.14. For all integer k > 3,

H
k
2k−2 =

{

H
(s,αs)
(k,r) : (r, s, αs) ∈ N

3, 1 6 r 6 k − 2, 1 6 s 6 r,

1 6 αs 6 r − s+ 1
}

∪
{

H
(1,k)
(k,r) : r ∈ {k, k + 1}

}

.
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Proof. Firstly, by the Lemma 2.11, we have that
{

H
(s,αs)
(k,r) : (r, s, αs) ∈ N

3, 1 6 r 6 k− 2, 1 6 s 6 r, 1 6 αs 6 r− s+1
}

∪
{

H
(1,k)
(k,r) : r ∈ {k, k + 1}

}

⊂ Hk
2k−2.

Now, let H ∈ Hk
2k−2 with g(H) = g. By Theorem 2.13, we have

2k + 1 6 g 6 3k + 1 and g 6= 3k − 1. Let r := g − 2k, then 1 6 r 6 k − 2
or r ∈ {k, k + 1}. Since ℓg = 2g − 2k, we have that ℓg = ℓ2k+r = 2k + 2r.
Let Gaps(H) = {1 = ℓ1 < · · · < ℓg} be the gaps set of H. By Corollary
1.3, SM = 2. That is, there exists exactly two single leaps (ℓi−1, ℓi) and
(ℓj−1, ℓj), for some integers i and j such that 2k 6 i < j 6 g = 2k + r.

We affirm that if r ∈ {k, k + 1}, then i = 2k and j = 3k. In fact, first
we will prove that (2k, 2k + 1) is a single leap. Indeed, since M = 2k − 2,
we have that ℓ2k−2 = 2k − 2 and ℓ2k−1 = 2k. In particular, 2k − 1 ∈ H.
Suppose that 2k + 1 ∈ H. Thus, we have the following: if r = k, then
ℓg = 4k = (2k − 1) + (2k + 1) ∈ H; and if r = k + 1, then ℓg = 4k + 2 =
2(2k + 1) ∈ H. Therefore, in both cases, we get a contradiction. Thus,
(2k, 2k + 1) is a single leap and so i = 2k. Now, we will prove that j = 3k.
Since, 4k − 2 = 2(2k − 1) ∈ H, follows that 4k − 1 is a gap. Then,
by Remark 2.7, 2k + 2 ∈ H, since (2k + 2) 6≡ (4k − 1) (mod 2). Thus,
4k + 1 = (2k − 1) + (2k + 2) ∈ H and so 4k is a gap. Consequently,
(4k − 1, 4k) is a single leap. Note that, if r = k, then ℓ3k = ℓg = 4k, and
if r = k + 1, then ℓ3k = ℓg−1 = 4k. Therefore, in both cases, j = 3k.

For r ∈ {1, . . . , k−2}∪{k, k+1}, let s := i−2k+1 and αs := j−i. Note
that if r ∈ {1, . . . , k− 2}, then 1 6 s 6 r and 1 6 αs = (j− 2k)− s+1 6

r − s+ 1, and if r ∈ {k, k + 1}, then s = 1 and αs = k.

We will prove that H = H
(s,αs)
(k,r) , with s and αs as above. In fact, by

Remark 2.7, we have that ℓu = ℓi−1 − 2(i− u− 1), for all integer u such
that 2k − 1 6 u 6 i − 1, ℓv = ℓi + 2(v − i), for all integer v such that
i 6 v 6 j−1, and ℓw = ℓj+2(w−j), for all integer w such that j 6 w 6 g.
Since ℓg = 2g−2k, it is not hard conclude that ℓj = 2(j−k) and, therefore,
ℓj−1 = 2(j−k)−1. In the same way we can conclude that ℓi = 2(i−k)+1
and ℓi−1 = 2(i− k), and that ℓu = 2(u− k+1), for all integer u such that
2k − 1 6 u 6 i− 1 = 2k + s− 2, ℓv = 2(v − k) + 1, for all integer v such
that 2k + s− 1 = i 6 v 6 j − 1 = 2k + s+ αs − 2 and ℓw = 2(w − k), for
all integer w such that 2k + s+ αs − 1 = j 6 w 6 g = 2k + r. Therefore,
by Remark 2.12, we have that H = H

(s,αs)
(k,r) .

Corollary 2.15. For all integer k > 3,
∣

∣Hk
2k−2

∣

∣ =
(

k
3

)

+ 2.
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Proof. By the Theorem 2.14, we have that

H
k
2k−2 =

k−2
⋃

·
r=1

r
⋃

·
s=1

{

H
(s,αs)
(k,r) : αs ∈ N, 1 6 αs 6 r − s+ 1

}

∪·

{

H
(1,k)
(k,r) : r ∈ {k, k + 1}

}

.

Therefore,

∣

∣

∣
H

k
2k−2

∣

∣

∣
=

k−2
∑

r=1

r
∑

s=1

(r − s+ 1) + 2 =
k−2
∑

r=1

(

r + 1

2

)

+ 2 =

(

k

3

)

+ 2.

3. On Weierstrass semigroup

Let X be a non-singular, projective, irreducible, algebraic curve of
genus g > 1 over a field K. Let K(X ) be the field of rational functions on
X and for f ∈ K(X ), (f)∞ will denote the divisor of poles of f . Let P be
a point on X . The set

H(P ) := {n ∈ N0 : there exist f ∈ K(X ) with (f)∞ = nP},

is a numerical semigroup called Weierstrass semigroup of X at P .
Given a numerical semigroup H , does it exist a curve X such that for

some point P ∈ X has H = H(P )? If the answer is yes, we say that the
numerical semigroup H is Weierstrass. Studies to answer this question
have been done for decades, see e.g. [4], [8], [10], [11], [12], [13], [15] and [19].
In addition to the genus g(H), Frobenius number ℓg(H) and multiplicity
n1(H), an important concept in this study is the weight of a numerical
semigroup H. If Gaps(H) = {1 = ℓ1 < · · · < ℓg} be the gaps set of H,
the weight of H is

w(H) =

g
∑

i=1

(ℓi − i).

As a particular result, a numerical semigroup H is Weierstrass if the
following condition hold:

either w(H) 6 g(H)/2, or g(H)/2 < w(H) 6 g(H)− 1 and 2n1(H) > ℓg(H) (∗)

(see Eisenbud-Harris [7], Komeda [9]).
Next, we will see which of the semigroups in the families studied in

the previous section are Weierstrass.
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Lemma 3.1. Let k > 2 be an integer. If H = Hαr

(k,r) ∈ Hk
2k−1, then

w(H) = αr +
r(r+1)

2 and 2n1(H) > ℓg(H).

Proof. Since H = Hαr

(k,r) ∈ Hk
2k−1, by Remark 2.6, we have that

w(H) =

2k−1+αr
∑

i=2k

(i−2k+1)+
2k+r
∑

i=2k+αr

(i−2k) =

r
∑

i=1

i+αr =
r(r + 1)

2
+αr.

On the other hand, by Lemma 2.5, ℓg(H) = 2k + 2r 6 4k − 2 < 4k =
2(2k) = 2n1(H), since r 6 k − 1.

Proposition 3.2. Let k > 2 be an integer and H = Hαr

(k,r) ∈ Hk
2k−1. If

αr +
r(r−1)

2 6 2k − 1, then H is Weierstrass. In particular, if k > 3 and

r ∈
{

1, . . . ,
⌊

−1+
√
16k−7
2

⌋}

, then H is Weierstrass.

Proof. By previous lemma, 2n1(H) > ℓg(H). So, from the condition (∗)
above, follows that H is Weierstrass if w(H) 6 g(H)−1. On the other hand,
by Lemma 2.5, g(H) = 2k + r, and, by Lemma 3.1, w(H) = αr +

r(r+1)
2 .

Thus, H is Weierstrass if αr +
r(r+1)

2 6 2k+ r− 1, that is, if αr +
r(r−1)

2 6

2k − 1.
Now, if r ∈

{

1, . . . ,
⌊

−1+
√
16k−7
2

⌋}

, then r + r(r−1)
2 6 2k − 1. Also,

since k > 3, we have that r 6 k − 1. So, since αr 6 r, the required result
follows.

Lemma 3.3. Let k > 3 be an integer. If H = H
(s,αs)
(k,r) ∈ Hk

2k−2, then

w(H) = 2s−1+αs+
r(r+1)

2 . In addition, if r 6∈ {k, k+1}, then 2n1(H) >
ℓg(H).

Proof. Since H = H
(s,αs)
(k,r) ∈ Hk

2k−2, by Remark 2.12, we have that

w(H) =

2k+s−2
∑

i=2k−1

(i− 2k + 2) +

2k+s+αs−2
∑

i=2k+s−1

(i− 2k + 1) +

2k+r
∑

i=2k+s+αs−1

(i− 2k)

=

r
∑

i=−1

i+ 2s+ αs

= −1 +
r(r + 1)

2
+ 2s+ αs.

On the other hand, by Lemma 2.11, ℓg(H) = 2k + 2r 6 4k − 2 =
2(2k − 1) = 2n1(H), since r 6 k − 2.
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Proposition 3.4. Let k > 3 be an integer and H = H
(s,αs)
(k,r) ∈ Hk

2k−2.

If r 6∈ {k, k + 1} and 2s + αs +
r(r−1)

2 6 2k, then H is Weierstrass.

In particular, if k > 4 and r ∈
{

1, . . . ,
⌊

−3+
√
16k+1
2

⌋}

, then H is

Weierstrass.

Proof. Using the lemmas 2.11 and 3.3, the proof of the first statement is
analogous to the proof of the Proposition 3.2.

Now, if r ∈
{

1, . . . ,
⌊

−3+
√
16k+1
2

⌋}

, then 2r + r(r−1)
2 6 2k − 1. Also,

since k > 4, we have that r 6 k − 2. So, since s 6 r and αs 6 r − s+ 1,
the required result follows.

We observe that, for r ∈ {k, k+ 1}, the condition (∗) above cannot be

used to conclude that the semigroups H
(1,k)
(k,r) ’s are Weierstrass.
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