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Abstract. In [10], the notion of the splitting graph of a graph
was introduced. In this paper we compute the zero forcing number
of the splitting graph of a graph and also obtain some bounds
besides finding the exact value of this parameter. We prove for any
connected graph Γ of order n > 2, Z[S(Γ)] 6 2Z(Γ) and also obtain
many classes of graph in which Z[S(Γ)] = 2Z(Γ). Further, we show
some classes of graphs in which Z[S(Γ)] < 2Z(Γ).

1. Introduction

Throughout this paper we use the notation Γ for the graph G = (V,E)
and we consider only simple, undirected and finite graphs. The zero forcing
number of a graph Γ = (V,E) is a new graph invariant introduced in [5].
In this paper we introduce the concept of zero forcing number of splitting
graph of a graph Γ. The splitting graph of a graph Γ is the graph S(Γ)
obtained by taking a vertex v′ corresponding to each vertex v ∈ Γ and
join v′ to all vertices of Γ adjacent to v (see[10]). The zero forcing number
Z(Γ) of a graph Γ can be defined as follows:

• Color change rule : Let Γ be a graph with each vertex is colored
either white or black. Suppose if u is a black vertex of Γ and exactly
one neighbor v of u is white, then change the color of v to black.
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• Given a coloring of Γ, then the derived coloring is the result of
applying the color-change rule until no more changes are possible.

• A zero forcing set Z for a graph Γ is a subset of the vertices of
Γ such that if at first the vertices in Z are colored black and the
remaining vertices are colored white, then the derived coloring of Γ
yields a graph with all black vertices.

• Z(Γ) is the minimum |Z| over all zero forcing sets Z ⊆ V (Γ) (see
[5]).

When the color change rule is applied to a vertex u to change the
color of v, we say u forces v and write u → v . The sequence of v1 → u1,
v2 → u2, . . ., vk → uk is called a forcing sequence for Z (see [9]).

This parameter was found by the AIM Minium Rank Special Graphs
Group(see [5]) and they used this parameter Z(Γ) to bound the minimum
rank for numerous families of graphs. The zero forcing set can also be
used as a tool for logic circuits (see [3]).

In this paper, we initiate the study of the zero forcing number of the
splitting graph S(Γ) of a graph Γ. We start with some preliminary results.
For more definitions on graphs we refer to [2] and [7]. We can find the
following observation in [8].

Observation 1 ([8]). For any connected graph Γ = (V,E) , Z(Γ) = 1 if
and only if Γ = Pn for some n > 1.

It can be noted that if Γ is a connected graph of order n > 3, then
S(Γ) contains a cycle C4. Therefore, by using the above observation we
have the following.

Proposition 2. Let Γ be a connected graph of order n > 3. Then
Z[S(Γ)] > 2, and this bound is sharp for the path Pn.

Proposition 3. For any connected graph Γ = (V,E) , Z[S(Γ)] = 1 if
and only if Γ is the path P2.

Proof. If Γ = (V,E) is the path P2, then S(Γ) is the path P4 and therefore
Z[S(Γ)] = 1. The converse follows from Observation 1. 2

2. Bounds on Z[S(Γ)]

In this section we prove some bounds on the zero forcing number of
S(Γ).

Theorem 4. Let Γ be a connected graph of order n > 3. Then Z[S(Γ)] 6
2Z(Γ).
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Proof. Consider any minimum zero forcing set Z of Γ. Let Z =
{v1, v2, . . . , vk}, 1 6 k 6 n be a minimum zero forcing set of Γ. Now
consider the set

Z
′

= {v1, v2, . . . , vk} ∪ {v′1, v
′

2, . . . , v
′

k} ∈ V [S(Γ)],

where {v′
1
, v′

2
, . . . , v′k} be the copies of the vertices of {v1, v2, . . . , vk} in

V [S(Γ)]. Color all vertices in Z
′

as black.

We show that the set Z
′

forms a zero forcing set for S(Γ). Now
consider the vertices in Γ which has exactly one white neighbor in Γ.
Let it be v1, v2, . . . , vl, l 6 k and v′

1
, v′

2
, . . . , v′l be the corresponding

vertices of v1, v2, . . . , vl in S(Γ). Now we can see that in S(Γ), N(v′
1
),

N(v′
2
), . . . , N(v′l), each one contains exactly one white vertex. Let it be

u1, u2, . . . , ul. Now clearly v′
1
→ u1, v

′

2
→ u2, . . ., v

′

l → ul. Again consider
the set {v1, v2, . . . , vl} in S(Γ). At this time we can see that v1 → u′

1
,

v2 → u′
2
,. . ., vl → u′l. Consider the white vertices which are adjacent to

u1, u2, . . . , ul in Γ. Let it be w1, w2, . . . , wl. Clearly u′
1
→ w1 u1 → w′

1

and so on. Therefore the set Z
′

forms a zero forcing set for S(Γ). 2

A subset D ⊆ V (Γ) is called a dominating set if V −D is adjacent
to at least one vertex in D. The minimum number of vertices in such a
set D is called the domination number of Γ and is denoted by γ(Γ). A
dominating set which is connected is known as a connected dominating
set and the minimum number of vertices in any connected dominating set
is called the connected domination number γc(Γ) (see [11]). In [1] Amos
et al. (2015) determined the following upper bound on the zero forcing
number.

Corollary 5. (cf [1, Corollary 4.3]) For any connected graph Γ of order
n > 2, Z(Γ) 6 n− γc(Γ).

Characterization of graphs in which Z(Γ) = n− γc(Γ) still remains an
open problem.

From Theorem 4 and Corollary 5 we conclude the following upper
bound.

Proposition 6. For any connected graph Γ of order n > 2, Z[S(Γ)] 6
2[n− γc(Γ)], and this inequality is sharp.

Proof. Note that Theorem 4 yields

Z[S(Γ)] 6 2Z(Γ) (1)
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whereas Corollary 5 yields

Z(Γ) 6 n− γc(Γ). (2)

From (1) and (2) the result follows. To see that the bound is sharp, consider
cycles of order n > 4. 2

3. Families of graphs where Z[S(Γ)] = 2Z(Γ)

It is an open problem to characterize families of graphs does Z[S(Γ)] =
2Z(Γ). In this section we provide some familiar families of graphs for
which the equality Z[S(Γ)] = 2Z(Γ) holds. We start with paths and cycles.

Proposition 7. If Γ is the path Pn on n > 3 vertices, then Z[S(Γ)] =
2 = 2[Z(Γ)].

Proposition 8. If Γ is the cycle Cn on n > 4 vertices, then Z[S(Γ)] =
4 = 2[Z(Γ)].

Proof. Let v1, v2, ..., vn be the vertices of Cn and let v′
1
, v′

2
, ..., v′n be the

corresponding vertices of Cn in S(Cn). Consider the set Z = {v1, v
′

2
, v2, v

′

3
}.

Color these vertices with the color black. Now v′
2
→ v3, v

′

3
→ v4 and

v3 → v′
4

and so on. Therefore the set Z forms a zero forcing set and
hence Z[S(Γ)] 6 4. We can easily verify that with 3 black vertices it
is not possible to change the color of all other vertices to black. Hence
Z[S(Γ)] = 4. 2

If Γ is the graph K3 on 3 vertices, then we can choose the black
vertices depicted in Figure 1 as the zero forcing set of S(Γ). Therefore,
Z[S(K3)] = 3.

Proposition 9. If Γ is the star K1,n on n+ 1 vertices, then Z[S(Γ)] =
2n− 2 = 2(n− 1) = 2[Z(Γ)].

Proof. Assume that we have a zero forcing set Z consisting of 2n − 3
vertices. Then the number of white vertices in Z is 2n+ 2− (2n− 3) = 5.
Consider the five white vertices in S(Γ). Consider the case when either
two of them will be in A-part or two of them will be in B-part. We can
easily verify that in this case the color changing rule is not possible, a
contradiction. Therefore we need at least 2n− 2 black vertices in any zero
forcing set of S(Γ) and hence

Z[S(Γ)] > 2n− 2 (3)
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Figure 1. The splitting graph of K3 with Z[S(K3)] = 3.

Consider the 4-white vertices as depicted in Figure 2. Consider one black
vertex from A-part, this black vertex forces the vertex u to black. Change
the color of u to black. Again consider one black vertex from B-part, this
black vertex forces the vertex w to black. Again change the color of w
to black. If we consider the vertex w, then there is exactly one neighbor
which is white. Change the color of this vertex to black. In a similar
manner we can change the color of other vertex to black. Now we get a
derived coloring of S(Γ) with all vertices colored black. This implies,

Z[S(Γ)] 6 2n− 2. (4)

From (3) and (4) the result follows. 2

Figure 2.
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Proposition 10 ([5]). For any graph Γ, Z(Γ) > δ(Γ), where δ(Γ) denote
the minimum degree of the graph Γ.

Proposition 11. Let Γ be a connected graph with Z(Γ) = k = δ(Γ) and
let Γ̂ be the graph obtained from Γ by adding a single vertex v and joining
it to all other vertices of G. Then Z(Γ̂) = Z(Γ) + 1.

Proof. Since Γ is a graph with Z(Γ) = δ(Γ) and we have from Proposition
10 δ(Γ̂) 6 Z(Γ̂). Let v be a vertex in Γ with δ(Γ) = k. In Γ̂, δ(Γ̂) =
k + 1 = δ(Γ) + 1. Therefore, δ(Γ) + 1 6 Z(Γ̂) . This implies,

Z(Γ) + 1 6 Z(Γ̂). (5)

Now color the vertex v which is connected to all other vertices of Γ by
black. Now Z(Γ) ∪ {v} forms a zero forcing set for Z(Γ̂). This implies

Z(Γ̂) 6 Z(Γ) + 1. (6)

From (5) and (6) the result follows. 2

A wheel graph is a graph obtained by connecting a single vertex to all
vertices of a cycle graph Cn−1. If Γ is the cycle graph, then Z(Γ) = 2 (see
[9]). By using Proposition 11 we can easily verify that if Γ is the wheel
graph, then Z(Γ) = 3.

Proposition 12. Let Γ be the wheel graph with n > 5 vertices obtained
by connecting a single vertex to all vertices of the cycle graph Cn−1. Then
Z[S(Γ)] = 6.

Proof. From the above note Z[Γ] = 3 and from Theorem 3, Z[S(Γ)] 6
2 Z(Γ), we can conclude the following

Z[S(Γ)] 6 6. (7)

To prove the reverse part assume Z[S(Γ)] = 5. Divide the graph S(Γ)
into three parts as shown in Figure 3.

Let v1, v2, . . . , vn−1 be the vertices in S(Γ) with deg(vi) = 6,
1 6 i 6 n− 1, v′

1
, v′

2
, . . . , v′n−1

be the vertices in S(Γ) with deg(v′i) = 3,
1 6 i 6 n − 1 and let vn be the vertex which is adjacent to
{v1, v2, . . . , vn−1} ∪ {v′

1
, v′

2
, . . . , v′n−1

} and v′n be the vertex which is
adjacent to {v1, v2, . . . , vn−1} with deg(vn) = 2n− 2 and deg(v′n) = n− 1.

Case 1. {vn, v
′

n} ∈ Z. Now S(Γ)− {vn, v
′

n} = S(Cn). We know that
from proposition 8 Z[S(Cn)] = 4. This implies Z[S(Γ)] = 4 + 2 = 6 6= 5,
a contradiction.
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Figure 3.

Case 2. Suppose vn ∈ Z and v′n /∈ Z. Now we have four vertices
remains in Z. If we use these four vertices to begin the color changing
rule, then we can observe that with these 4-vertices we can change the
color of at most two vertices to black, not all. A contradiction.

Case 3. Suppose vn /∈ Z and v′n ∈ Z. Now we have four vertices
remains in Z. If we use these four vertices to begin the color changing
rule, then we can observe that with these 4-vertices we can change the
color of at most two vertices to black, not all. A contradiction. 2

We now prove one more additional family of graphs in which Z[S(Γ)] =
2Z(Γ). The following definition can be found in [1].

Definition 13 ([1]). A connected graph Γ = (V,E) is defined as a cycle-
path graph (CP -graph) if it contains r vertex disjoint cycles that are
connected by r− 1 edges of the path Pr. Thus a CP -graph with n vertices
contains m = n+ r − 1 edges and edge between two cycles is a cut edge.

Example 14. Let Γ be the graph depicted in Figure 4. Then Γ represents
the CP -graph with the cycle C4 and the path P3. That is the graph Γ is
the C4P3-graph.

Proposition 15. Let Γ be the CP -graph with r vertex disjoint cycles.
Then Z(Γ) = r + 1.
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Figure 4.

Proof. We proceed by induction on the number of cycles r. Assume that
r = 1. In this case Γ is a cycle, Z(Γ) = 2 = r + 1. Assume the theorem
is true for all CP -graphs with r − 1 cycles, where r > 2. Let C be an
end-cycle that is a cycle connected to rest of the graph by a unique edge
e = {u, v}, where u ∈ V (Γ) − C and v ∈ C. The induced subgraph
< Γ[V − C] > is a CP -graph with r − 1 < r cycles. Assume, the result is
true for < Γ[V − C] >, that is, Z(< Γ[V − C] >) = r − 1 + 1 = r.

Let S be a minimum zero forcing set of < Γ[V − C] > and let w be
a neighbor of v on C. Consider the set Z = S ∪ {w}. Since {u, v} is the
only cut edge between < Γ[V − C] > and C, therefore we can start the
color changing of the vertices of < Γ[V − C] > with S vertices. Since
u is a black vertex and the only white vertex which is adjacent to u is
v therefore, u → v to black. Now in C we can see that {u,w} forms
zero forcing set, where u ∈ Z(< Γ[V − C] >). Therefore by induction
hypothesis Z(Γ) = Z(< Γ[V − C] >) + |{w}| = r + 1. 2

Proposition 16. Let Γ be the CP -graph with r-vertex disjoint cycles
Cn of order n > 4. Then Z[S(Γ)] = 2(r + 1).

Proof. We prove the result by induction on the number of cycles r on
the CP -graph. Assume that r = 1. In this case Γ is a cycle, we have
from Proposition 8, Z[S(Γ)] = 2(1 + 1) = 4. Assume the result is true
for all CP -graphs with r − 1 cycles Cn, where r > 2. Let C be an end-
cycle that is a cycle connected to rest of the CP -graph by a unique
edge e = {u, v}, where u ∈ V (Γ) − C and v ∈ C and let S(C) be the
splitting graph of the cycle C in S(Γ). Now S(C) is connected to the
rest of S(Γ) by three edges. Let these edges be X = {u1v1, u1v2, u2v1},
where {u1, u2} ∈< V [S(Γ)] − V [S(C)] > (that is the subgraph induced
by V [S(Γ)] − V [S(C)] )and {v1, v2} ∈ S(C). Assume, the result is true
for < V [S(Γ)] − V [S(C)] >, that is, Z{< V [S(Γ)] − V [S(C)] >} =
2[(r − 1) + 1] = 2r.

Let U be a minimum zero forcing set of < V [S(Γ)]− V [S(C)] > , let
w1 be the neighbor of v1 in V [S(C)] and w′

1
be the corresponding vertex

of w1 in V [S(C)]. Consider the set Z = U ∪{w1, w
′

1
}. Since X is a cut set

between S(Γ)− S(C) and S(C) therefore, the set U forces the vertices v1
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and v2 to black. Now {w1, w
′

1
} is in Z. Therefore the set {v1, v2, w1, w

′

1
}

forms a zero forcing set of S(C) in S(Γ). Therefore by induction hypothesis
Z[S(Γ)] =< V [S(Γ)]− V [S(C)] > +|{w1, w

′

1
}| = 2r + 2. 2

The Cartesian product G2H of two graphs G and H is the graph with
vertex set equal to the Cartesian product V (G)× V (H) and where two
vertices (u, v) and (u′, v′) are adjacent in G2H if u = u′ and vv′ ∈ E(H)
or uu′ ∈ E(G) and v = v′. Ladder graph is the graph obtained by taking
the Cartesian product of Pn with P2. In [5], it was proved that if Γ is the
ladder graph, then Z(Γ) = 2. We now prove one more additional family
of graphs in which Z[S(Γ)] = 2 Z(Γ).

Proposition 17. If Γ is the splitting graph of the ladder graph, then
Z(Γ) = 4.

Proof. Consider the graph Γ depicted in Figure 5. The set of left black
vertices of the graph Γ forms a zero forcing set of Γ. It can be easily verified
that with three vertices we cannot form a zero forcing set. Therefore,
Z(Γ) = 4. 2

Figure 5.

4. Families of graphs where Z[S(Γ)] < 2Z(Γ)

We start this section with a CP -graph family in which Z[S(Γ)] <
2Z(Γ). Let us consider the CP -graph C3Pr, where C3 is the cycle graph
on 3 vertices and Pr is the path on r > 1 vertices.

Proposition 18. Let Γ be the C3Pr - graph. Then Z[S(Γ)] 6 2r < 2r+2.
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We now obtain a formula for the zero forcing number of the friendship
graph Fn. The friendship graph Fn can be obtained from the wheel graph
by deleting the alternate edges of the cycle Cn−1 where n is odd. Also
Fn can be obtained by coalescing k copies of the cycle graph C3 with a
common vertex (see [4]).

The following Lemma can be found in [9].

Lemma 19 ([9]). Let Γ = (V,E) be a graph with cut-vertex v ∈ V (Γ).
Let X1, . . . , Xk be the vertex sets for the connected components of Γ− v,

and for 1 6 i 6 k, let Γi = Γ[Xi ∪ {v}]. Then Z(Γ) >
k∑

i=1

Z(Γi)− k + 1.

Theorem 20. Let Fn be the friendship graph with k copies of the cycle
graph C3. Then Z(Fn) = ⌊n/2⌋+ 1.

Proof. Let v1, v2, . . . , vn be the vertices of Fn and vn be the central ver-
tex. The cycle graph C3 is a complete graph of order three. Therefore,
Z(C3) = 2. Since vn is a cut vertex, G− vn will have ⌊n/2⌋ components.
Lemma 19 gives

Z(Fn) > 1− ⌊n/2⌋+ 2⌊n/2⌋ = ⌊n/2⌋+ 1. (8)

To establish the reverse inequality consider the following set of black
vertices

Z = {v1, v3, . . . , vn−2} ∪ {vn}.

Clearly the vertices v1 and vn are black therefore, the vertex v1 → v2 to
black. The vertices v3 and vn are black therefore, the vertex v3 → v4 to
black, and so on. Similarly the vertices vn−2 and vn are black therefore,
the vertex vn−2 → vn−1 to black. Now we get a derived coloring with the
zero forcing set Z. The number of vertices in Z is ⌊n/2⌋+ 1 and hence

⌊n/2⌋+ 1 > Z(Fn). (9)

Therefore from (8)and (9) the result follows. 2

Lemma 21. Let S(Fn) be the splitting graph of Fn and let

Al = {vk, v
′

k, vj , v
′

j}, 1 6 l 6 ⌊n/2⌋

(vk, vj is an edge in Fn and i, j 6= n) be the set of vertices of S(Fn)
obtained by deleting the vertices vn and v′n from S(Fn). Then atleast one
vertex from the set Al will be in any optimal zero forcing set of S(Fn).
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Proof. On the contrary assume that non of them belongs to any Z that is,
vi, v

′

i, vj , v
′

j /∈ Z. In any color changing rule vn and v′n will never force the
vertices in A to black since N(vn) and N(v′n) have two white neighbors
in A. Therefore at lest one vertex from the set A will be in Z. 2

Theorem 22. Let Fn be the friendship graph with ⌊n/2⌋ copies of the
cycle graph C3. Then Z[S(Fn)] = ⌊n/2⌋ + 2, where S(Fn) denote the
splitting graph of the friendship graph.

Proof. Let v1, v2, . . . , vn be the vertices of Fn and let vn be the com-
mon vertex obtained by coalescing k copies of the cycle graph C3. Let
v′
1
, v′

2
, . . . , v′n be the copies of the the vertices v1, v2, . . . , vn of S(Fn).

Consider the set Z = {vn, v
′

n, v
′

1
, v′

3
, v′

5
, . . . , v′n−2

}. Also let T1 be the
triangle in Fn with V (T1) = {v1, v2, vn} and V (T ′

1
) = {v′

1
, v′

2
, v′n} be the

copies of the vertices of T1 in S(Fn).
We can see that in color changing rule the vertex v′

1
forces the vertex v2

to black and then the vertex v2 forces the vertex v1 to black and then the
vertex v1 forces the vertex v′

2
to black. Clearly the set {vn, v

′

n, v
′

1
} forms a

zero forcing set of V (T1) ∪ V (T ′

1
). In a similar manner we can prove that

{vn, v
′

n, v
′

3
, v′

1
} forms a zero forcing set of [V (T1)∪V (T ′

1
)]∪ [v(T2)∪v(T ′

2
)],

and so on. Therefore, the set Z = {vn, v
′

n, v
′

1
, v′

3
, v′

5
, . . . , v′n−2

} forms a
zero forcing set of Z[S(Fn)] and hence

Z[S(Fn)] 6 ⌊n/2⌋+ 2. (10)

To prove the reverse part assume there exist a zero forcing set consisting
of ⌊n/2⌋+ 1 vertices. Now we consider the following cases.

Case 1. The vertex v′n /∈ Z. Since deg(vi) = 4 for i 6= n and in S(Fn),
the vertex v′n is adjacent to all vertices of the friendship graph Fn except
the vertex vn. Therefore, in any color changing rule to force v′n we need
two more vertices from the set Al, a contradiction. If we take two more
vertices from the set Al then we get a zero forcing set. Therefore, it is
clear from lemma 21 that Z[S(Fn)] > ⌊n/2⌋+ 2.

Case 2. The vertex v′n ∈ Z. We have from the lemma 21 that we
need at least one vertex from Al to get a zero forcing set. With out loss
of generality assume that B = {v′

1
, v′

3
, . . . , v′n−2

} are the black vertices of
S(Fn). B ∪ v′n will never force vn to black, a contradiction. Therefore we
need at least one more vertex from Al to get a zero forcing set of S(Fn).
Hence Z[S(Fn)] > ⌊n/2⌋+ 2. 2

The generalized friendship graph F ∗

p is the graph obtained by joining
k copies of the cycle graph Cn, n > 3 and k > n with a common vertex v.
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The following theorem provides the zero forcing number of the generalized
friendship graph F ∗

p . Here p denotes the number of vertices in F ∗

p that is
p = k(n− 1) + 1.

Proposition 23. Let F ∗

p be the graph obtained by joining k copies of
the cycle graph Cn, n > 4 and k > n with a common vertex v. Then
Z(F ∗

p ) = k + 1.

Proof. Let v1, v2, . . . , vp be the vertices of F ∗

p and vp = v be the central
vertex. It is known that for the cycle graph Cn, Z(Cn) = 2. Now lemma 19
yields

Z(F ∗

p ) >
k∑

i=1

Z(Cn)− k + 1 = 2k − k + 1 = k + 1. (11)

To establish the reverse inequality consider one vertex from each cycle
graph Cn which is adjacent to the central vertex v. Denote the cycles
C1, C2, . . . , Ck in F ∗

p as follows.

C1 = v11, v
1

2, . . . , vp, v
1

1

C2 = v21, v
2

2, . . . , vp, v
2

1

...
...

...

Ck = vk1 , v
k
2 , . . . , vp, v

k
1 .

Consider the set of black vertices Z = {v1
1
, v2

1
, . . . , vk

1
} ∪ {vp}. Now we

can see that N(v1
1
) contains only one white vertex v1

2
. Therefore, v1

1
→ v1

2
,

v1
2
→ v1

3
and so on. Similarly we can see that N(v2

1
) contains only one

white vertex v2
2
. Therefore, v2

1
→ v2

2
, v2

2
→ v2

3
and so on. In the cycle

Ck we can see that N(vk
1
) contains only one white vertex vk

2
. Therefore,

vk
1
→ vk

2
, vk

2
→ vk

3
and so on. Now the set Z forms a zero forcing set and

hence
Z(F ∗

p ) 6 k + 1. (12)

Then the result is an immediate consequence of (11) and (12). 2

Proposition 24. Let F ∗

p be the graph obtained by joining k copies of
the cycle graph Cn, n > 4 and k > n with a common vertex v. Then
Z(S(F ∗

p )) 6 2k + 2.

Proof. First we note that Proposition 23 yields Z(F ∗

p ) = k + 1, and
Theorem 3 yields Z[S(F ∗

p )] 6 2 Z(F ∗

p ). By applying these two results we
get

Z(S(F ∗

p )) 6 2k + 2. (13)

2
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5. Z(Γ) and P (Γ) of the splitting graph of a graph

A path covering of a graph Γ is a set of vertex disjoint paths of Γ
containing all the vertices of Γ. The minimum number of paths in any
minimal path cover of Γ is called the path covering number of Γ and is
denoted by P(Γ).

Proposition 25 ([6]). For any connected graph Γ, P (Γ) 6 Z(Γ).

We can find the following open question in [9].

Problem 26. For what families of graphs does Z(Γ) = P(Γ)?

For brevity let us call these families of graphs as ZP-graphs. A graph Γ
is said to be ZP if Z(Γ) = P(Γ). Now the characterization of ZP-graphs
is an open problem. Trees and unicyclic graphs are ZP-graphs (see[9]). In
this section we prove more families of ZP-graphs.

Proposition 27. If Γ is the splitting graph of the path Pn on n > 3
vertices, then Z(Γ) = 2 = P(Γ).

Proposition 28. If Γ is the splitting graph of the star K1,n on n + 1-
vertices, then Z(Γ) = 2n− 2 = P(Γ).

Proof. With out loss of generality we can assume that Γ is the splitting
graph of the star K1,n. By Proposition 9 we have Z(Γ) = 2n− 2. Now we
prove P(Γ) = 2n− 2. We consider the following three cases.

Case 1. Suppose if we take two vertex disjoint path of length 1 (that
is the complete graph K2) to cover the graph Γ, then it must include the
vertices u and w (refer Figure 2). If we include u and w in these vertex
disjoint paths, then their remains 2n − 2 uncovered vertices. To count
these vertices in the path covering we have to choose each of them as
independent paths. In this case the total number of paths we need to
cover the entire vertices in Γ is 2n− 2 + 2 = 2n.

Case 2. Suppose if we take two vertex disjoint paths of length 2 (that
is the graph P3, the path on three vertices) to cover the graph Γ (Take two
vertices from part-A and the vertex u as the path P1. Similarly take any
two vertices from part-B and the vertex w as the path P2 (refer Figure 2)).
As in Case-1, the total number of paths we need to cover the entire vertices
in Γ is 2n+ 2− 6 + 2 = 2n− 2.

Case 3. Suppose if we consider a path of length 3 (that is the graph
P4, the path on four vertices) as a path to cover the graph Γ, then it is not
possible to choose a path of length 2 or 3 as a path to cover the vertices.
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Now as in Case-1, the total number of paths we need to cover the entire
vertices in Γ is 2n+ 2− 4 + 1 = 2n− 1.

From the above three cases, we can conclude that the minimum number
of vertex disjoint paths possible to cover the vertices in Γ is occurred in
Case-2 and is 2n− 2. Therefore, P(Γ) = 2n− 2. 2

6. Conclusion and Open Problems

In the paper we address the problem of determining the zero forcing
number of graphs and their splitting graphs. In Section 2, we give upper
bounds on the zero forcing number of the splitting graph of a graph. In
Section 3, we have found several classes of graphs in which Z[S(Γ)] =
2Z(Γ). Section 4 provides classes of graphs in which Z[S(Γ)] < 2Z(Γ). In
Section 5, we have proved more families of graphs does Z(Γ) = P (Γ).

There are few questions that remains open, for example see the follow-
ing.

Problem 29. Characterize the graphs Γ for which 2Z(Γ) = Z[S(Γ)]?

We know that the above equality is true for many classes of graphs. For
example, consider the paths and the cycles. Another challenging question
which we have not proved is the following.

Problem 30. Characterize the graphs Γ for which P [S(Γ)] = Z[S(Γ)]?

We have proved that for the paths and the star the above equality
holds.
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