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Abstract. Let J(R) denote the Jacobson radical of a ring R.
We call a ring R as J-symmetric if for any a, b, c ∈ R, abc = 0 implies
bac ∈ J(R). It turns out that J-symmetric rings are a common
generalization of left (right) quasi-duo rings and generalized weakly
symmetric rings. Various properties of these rings are established
and some results on exchange rings and the regularity of left SF-rings
are generalized.

1. Introduction

All rings considered in this paper are associative ring with identity
and R denotes a ring. The symbols J(R), N(R), Z(R), E(R) respectively
stand for the Jacobson radical, the set of all nilpotent elements, the set
of all central elements and the set of all idempotent elements of R. We
also denote the set {a ∈ R : a2 = 0} by N2(R), the ring of n× n upper
triangular matrix over R by Tn(R) and the left (right) annihilator of
any element a ∈ R by l(a) (r(a)). R is abelian if all its idempotents are
central. R is left quasi-duo if every maximal left ideal of R is an ideal.
As usual, a reduced ring is a ring without non zero nilpotent elements.
R is semiprimitive if J(R) = 0. R is semicommutative if l(a) is an ideal
of R for any a ∈ R. It is well known that R is semicommutative if and
only if for any a ∈ R, r(a) is an ideal of R. R is symmetric if for any
a, b, c ∈ R, abc = 0 implies acb = 0. R is reversible if ab = 0 implies
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ba = 0. It is clear that symmetric rings are reversible and reversible rings
are semicommutative.

Various generalizations of symmetric rings have been done by many
authors over the last several years. R is weak symmetric ([5]) if for any
a, b, c ∈ R, abc ∈ N(R) implies acb ∈ N(R). R is central symmetric ([4])
if for any a, b, c ∈ R, abc = 0 implies bac ∈ Z(R). R is generalized weakly
symmetric (GWS) ([11]) if for any a, b, c ∈ R, abc = 0 implies bac ∈ N(R).
It follows that the class of GWS rings contains the class of weak symmetric
rings. Again, it is known that central symmetric rings are GWS ([11]).

2. Main results

Definition 1. A ring R is J-symmetric if for any a, b, c ∈ R, abc = 0
implies bac ∈ J(R).

Proposition 1. Following conditions are equivalent for a ring R:
1) R is J-symmetric.
2) For any a, b, c ∈ R, abc = 0 implies acb ∈ J(R).

Proof. (1) ⇒ (2). Let a, b, c ∈ R such that abc = 0 but acb /∈ J(R). Then
we get a maximal left ideal M ⊆ R such that acb /∈ M so that M+Racb =
R. Therefore 1 = x+ yacb for some x ∈ M , y ∈ R. Now (ya)bc = 0. As R
is J-symmetric, byac ∈ J(R). Thus (1− x)2 = yac(byac)b ∈ J(R) ⊆ M .
Then using x ∈ M we get 1 ∈ M , a contradiction.

(2) ⇒ (1). If a, b, c ∈ R such that abc = 0 and bac /∈ J(R), then there
exists a maximal left ideal M ⊆ R such that M +Rbac = R which gives
1 = x+ybac for some x ∈ M , y ∈ R. Now ab(cy) = 0. Then by hypothesis,
acyb ∈ J(R). Therefore (1 − x)2 = yb(acyb)ac ∈ M , whence 1 ∈ M , a
contradiction. Hence R is J-symmetric.

Proposition 2. Let R be a J-symmetric ring and abc = 0, then for each
maximal left ideal M of R, a ∈ M or bc ∈ M .

Proof. If a /∈ M , then M + Ra = R which implies that x + ya = 1 for
some x ∈ M, y ∈ R. Then using abc = 0 we get (x− 1)bc = 0. As R is J
symmetric, bc(x− 1) ∈ J(R) ⊆ M which leads to bc ∈ M .

Corollary 1. Let R be a J-symmetric ring, then N2(R) ⊆ J(R).

Corollary 2. Let R be a J symmetric ring, then for any a, b, c ∈ R,
abc = 0 implies cab ∈ J(R).

The proof of the following proposition is trivial.
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Proposition 3. The following conditions are equivalent for a ring R:

1) For any a, b, c ∈ R, abc = 0 implies cab ∈ J(R).
2) For any a, b, c ∈ R, abc = 0 implies bca ∈ J(R).

Proposition 4. If R is a ring such that for any a, b, c ∈ R, abc = 0
implies cba ∈ J(R), then R is J symmetric.

Proof. Let a, b, c ∈ R, abc = 0 but bac /∈ J(R). Then there exists a
maximal left ideal M ⊆ R such that 1 = x + ybac for some x ∈ M ,
y ∈ R. Now ab(cy) = 0. Then by hypothesis we get cyba ∈ J(R). Hence
(1− x)2 = yba(cyba)c ∈ M leading to 1 ∈ M , a contradiction. Hence R is
J-symmetric.

Proposition 5. If R is a left quasi-duo ring and abc = 0, then for each
maximal left ideal M of R, a ∈ M or b ∈ M or c ∈ M .

Proof. Let M be a maximal left ideal of R and a /∈ M , then M +Ra = R
which implies that x+ ya = 1 for some x ∈ M, y ∈ R leading to xbc = bc.
As R is left quasi-duo and x ∈ M , we get bc ∈ M . If b /∈ M , then
M+Rb = R yielding u+vb = 1 for some u ∈ M, v ∈ R, whence 1−vb ∈ M
and so (1− vb)c ∈ M . Therefore using bc ∈ M we obtain c ∈ M .

Proposition 6. A left quasi-duo ring is J-symmetric.

Proof. Let R be a left quasi duo ring and abc = 0 and M be a maximal
left ideal of R. It follows from Proposition 5 that a ∈ M or b ∈ M or
c ∈ M . As R is left quasi-duo, we get bac ∈ M . Therefore bac ∈ J(R)
which proves that R is J-symmetric.

Proposition 7. Central symmetric rings are J-symmetric.

Proof. Let R be a central symmetric ring which is not J-symmetric. Then
there exists a, b, c ∈ R such that abc = 0 but bac /∈ J(R) so that there
exists a maximal left ideal M ⊆ R such that 1 = x+ybac for some x ∈ M ,
y ∈ R. Now for any r1, r2 ∈ R, (ab)(cr1)1 = 0 and (r2a)bc = 0. Hence
cr1ab, br2ac ∈ Z(R). Therefore

(1− x)4 = (ybac)4 = ybacyba(cybac)ybac = ybacyba(baccy)ybac

= ybacybabacc(yybac) = ybacybabacc(bacyy)

= y(b(acybab)ac)cbacyy = ycba(b(acybab)ac)cyy

= ycbaba(c(yb)ab)accyy = ycbab(c(yb)ab)aaccyy

= ycb(abc)ybabaaccyy = 0.

This leads to 1 ∈ M , a contradiction. Hence R is J-symmetric.
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Proposition 8. Generalized weakly symmetric rings are J-symmetric.

Proof. Let R be a generalized weakly symmetric ring and abc = 0. If R
is not J-symmetric, then there exists a maximal left ideal M of R such
that 1 = x + ybac for some x ∈ M , y ∈ R. As R is generalized weakly
symmetric and abcy = 0, bacy ∈ N(R) so that (bacy)k = 0 for some
positive integer k. Therefore

(1− x)k+1 = (ybac)k+1 = y(bacy)kbac = 0 ∈ M.

This together with x ∈ M implies that 1 ∈ M , a contradiction. Hence R
is J-symmetric.

Corollary 3. Weak symmetric rings are J-symmetric.

Remark 1. For a field F and n > 1, R = Tn(F) is weak symmetric ([5],
Proposition 2.3) and hence GWS and J-symmetric. As R is not abelian,
R is neither central symmetric nor semicommutative. Also, it is worth
mentioning here that an abelian ring need not be J-symmetric.

Take

R =

{(

a b
c d

)

: a, b, c, d ∈ Z, a− d ≡ b ≡ c ≡ 0 (mod 2)

}

Then E(R) = {0, I} where I is the identity matrix over Z. Therefore R

is abelian. Consider A =

(

0 2
0 0

)

. Then A2 = 0 but A /∈ J(R) as for

K =

(

2 2
2 2

)

, I −KA is not a unit in R. Therefore N2(R) * J(R), hence

R is not J-symmetric.

A ring R is directly finite if for any a, b ∈ R, ab = 1 implies ba = 1.

Proposition 9. Every J-symmetric ring is directly finite.

Proof. Let a, b ∈ R such that ab = 1. Take e = ba, then e2 = e. If
c = b(1− e), then c2 = 0 so that by Corollary 1, c ∈ J(R) which implies
that ac ∈ J(R) and hence 1− ac = 1− ab(1− e) = e is invertible which
leads to e = ba = 1.

Recall that a ring R is left min-abel if (1− e)Re = 0 for any e ∈ E(R)
satisfying Re is a minimal left ideal of R.

Lemma 1. For any e ∈ E(R), J(eRe) = eJ(R)e
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Theorem 1. Let R be a J-symmetric ring. Then
(1) If e ∈ E(R) such that ReR = R, then e = 1.
(2) If e ∈ E(R) and M be a maximal left ideal of R, then either e ∈ M

or (1− e) ∈ M .
(3) Ra+R(ae− 1) = R for any a ∈ R and e ∈ E(R).
(4) R is left min-abel.
(5) For any e ∈ E(R), eRe is J-symmetric.

Proof. (1) Since R is J-symmetric and Re(1− e) = 0, eR(1− e) ⊆ J(R).
By hypothesis,ReR = R which implies that R(1−e) = ReR(1−e) ⊆ J(R),
whence 1− e ∈ J(R) so that e = 1.

(2) Follows from Proposition 2 as e(1− e) = 0.
(3) Assume Ra+R(ae− 1) 6= R for some a ∈ R and e ∈ E(R), then

there exists a maximal left ideal M of R such that Ra+R(ae− 1) ⊆ M .
If e ∈ M , then ae ∈ M , hence 1 = −(ae− 1)+ae ∈ M , a contradiction. If
e /∈ M , then 1− e ∈ M implying a− ae = a(1− e) ∈ M . As ae− 1 ∈ M ,
this leads to 1 ∈ M , a contradiction. Hence Ra+R(ae− 1) = R for each
a ∈ R and e ∈ E(R).

(4) Let e ∈ E(R) and Re be a minimal left ideal and (1− e)Re 6= 0.
Then R(1− e)Re = Re. Now e ∈ eRe = eR(1− e)Re ⊆ J(R) which is a
contradiction. Therefore (1− e)Re = 0 and R is left min-abel.

(5) Let e ∈ E(R) and eae, ebe, ece ∈ eRe with (eae)(ebe)(ece) = 0.
By hypothesis, (ebe)(eae)(ece) ∈ J(R) and so e(ebe)(eae)(ece)e =
(ebe)(eae)(ece) ∈ eJ(R)e = J(eRe) by Lemma 1.

Converse of (5) of Theorem 1 need not be true. The following example
shows this fact.

Example 1. Take R = M2(F), where F is a field and consider the idempo-

tent e =

(

1 0
0 0

)

. It is easy to check that eRe =

(

F 0
0 0

)

is J-symmetric

but R is not.

Proposition 10. If R is a J-symmetric ring and idempotents can be
lifted modulo J(R), then R/J(R) is abelian.

Proof. Let R = R/J(R) and a ∈ E(R). As idempotents can be lifted
modulo J(R), there exists e ∈ E(R) such that e = a. For any x ∈ R, write
h = xe−exe. Then h2 = 0 and hence by Corollary 1, h ∈ J(R). Therefore
xe = exe, that is xa = axa. Similarly ax = axa. Hence R is abelian.

Proposition 11. If R/J(R) is symmetric, then R is J-symmetric.
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Proof. Let a, b, c ∈ R such that abc=0. Then abc = 0. As R/J(R) is
symmetric, bac = 0 which yields bac ∈ J(R). Therefore R is J-symmetric.

Proposition 12. Direct product of arbitrary family of J-symmetric rings
is J-symmetric.

Proof. For any arbitrary family of rings {Ri : i ∈ I}, we know that
J
(
∏

i∈I Ri

)

=
∏

i∈I(J(Ri)). Hence the result easily follows.

Corollary 4. A ring R is J-symmetric if eR and (1−e)R are J-symmetric
for any central idempotent e.

Example 2. A homomorphic image of a J-symmetric ring need not be
J-symmetric

Consider Z2(y), the rational functions field of polynomial ring Z2[y]
and R = Z2(y)[x] be the ring of polynomials in x over Z2(y) subject to the
relation xy + yx = 1. Now by ([4], Example 2.11), R is central symmetric
and therefore J-symmetric. Let L = x2R, which is a maximal ideal of R.
Consider R = R/L. Now (x)2 = 0. So 0 6= x ∈ N2(R). But R being a
simple ring, we have J(R) = 0. Thus we have N2(R) * J(R), hence R, a
homomorphic image of R is not J-symmetric.

The next two propositions gives the condition on an ideal of a ring
which forces the ring to be J-symmetric.

Proposition 13. Let I be a nil ideal of a ring R such that R/I is J-
symmetric. Then R is J-symmetric.

Proof. Let a, b, c ∈ R such that abc = 0. Then abc = 0 in R/I. Since R/I
is J-symmetric, bac ∈ J(R/I). Then for any r ∈ R, there exists t ∈ R such
that 1− t(1− rbac) ∈ I ⊆ J(R) since I is nil. It follows that (1− rbac) is
left invertible and hence bac ∈ J(R).

Proposition 14. Let I be an ideal of a J-symmetric ring S and let R
be a subring of S containing I. Then R/I is J-symmetric implies R is
J-symmertic.

Proof. Let a, b, c ∈ R such that abc = 0 in R ⊆ S. Since S is J-symmetric,
bac ∈ J(S). Then for any r ∈ R ⊆ S, there exists s ∈ S such that
s(1 − rbac) = 1. Now abc = 0 in R/I. Since R/I is J-symmetric, bac ∈
J(R/I). Therefore there exists t ∈ R such that (1− (1− rbac)t) ∈ I. This
yields s− s(1− rbac)t ∈ I and so s− t ∈ I ⊆ R. This implies s ∈ R and
hence (1− rbac) is left invertible in R so that bac ∈ J(R).
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Proposition 15. Subdirect product of arbitrary family of J-symmetric
rings is J-symmetric.

Proof. Let R be a subdirect product of a family of J-symmetric rings
{Ri}i∈I . Then for each i ∈ I, we have epimorphism φi : R → Ri and
hence

∏

i∈I R/Ker(φi) ≃
∏

i∈I Ri is J-symmetric. The map

Φ : R −→
∏

i∈I

R/Ker(φi), Φ(r) = (r +Ker(φi))i∈I

is a monomorphism. Then R ∼= Im(Φ). Also Im(Φ)/Φ(Ker(φi)) ≃
R/Ker(φi) is J-symmetric. Now Φ(Ker(φi)) ⊆ Im(Φ) ⊆

∏

i∈I R/Ker(φi).
Hence by Proposition 14, Im(Φ) ∼= R is J-symmetric.

Theorem 2. The following conditions are equivalent for a ring R:
(1) R is J-symmetric.
(2) Tn(R) is J-symmetric for any n > 2.
(3) R[x]/(xn) is J-symmetric for any n > 2.

(4) Sn(R) =





























a a12 . . . a1n
0 a . . . a2n
...

...
. . .

...
0 0 . . . a











: a, aij ∈ R, i < j 6 n



















is J-sym-

metric for any n > 2.

Proof. Let

I =





























0 a12 a13 . . . a1n
0 0 a23 . . . a2n
...

...
...
. . .

...
...

0 0 . . . . . . 0











: aij ∈ R, i < j 6 n



















.

Then I is a nil ideal of Tn(R) as well as Sn(R).
(2) ⇒ (1), (3) ⇒ (1), (4) ⇒ (1) are trivial.
(1) ⇒ (2). Tn(R)/I is isomorphic to direct product of n-copies of R.

Hence by Proposition 12 and Proposition 13, Tn(R) is J-symmetric.
(1) ⇒ (3). Since Sn(R)/I ≃ R, it follows that Sn(R) is also J-

symmetric.
(1) ⇒ (4). R[x]/(xn) ≃ Vn(R) where

Vn(R) =





























a0 a1 a2 . . . an−1 an
0 a0 a1 . . . an−1

...
...

...
...
. . .

...
0 0 0 0 . . . a0











: ai ∈ R, i = 0, 1, 2, · · ·n



















.
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As K = I ∩ Vn(R) is a nil ideal of Vn(R) and Vn(R)/K ≃ R, Vn(R)
is J-symmetric.

If R is J-symmetric then Mn(R) need not be J-symmetric. The fol-
lowing example shows this fact:

Example 3. Let F be a field and consider R = M2(F). Now J(M2(F)) =

M2(J(F)) = 0. If A =

(

0 0
1 0

)

,B=

(

0 1
0 0

)

, C =

(

1 1
0 0

)

, then ABC = 0,

but BAC 6= 0.

R is (von Neumann) regular if for any a ∈ R, there exists some b ∈ R
such that a = aba. R is strongly regular if for any a ∈ R, there exists some
b ∈ R such that a = a2b. It is known that R is strongly regular if and
only if R is reduced regular. R is left SF-ring if its simple left modules
are flat. In 1975, Ramamurthy initiated the study of SF-rings in [10]. It is
known that regular rings are left SF-rings. However, till date, it is unknown
whether left SF-rings are regular. The regularity of left SF-rings satisfying
certain additional conditions have been proved by various authors over
the last four deacades (see, [6], [9], [10], [11], [14]). The strong regularity
of left (right) quasi-duo left SF-rings, central symmetric left SF rings are
proved respectively in [6], [11]. These results are generalized as follows:

Theorem 3. A J-symmetric left SF-ring is strongly regular.

Proof. R/J(R) is a left SF-ring by ([6], Proposition 3.2). Let b2 ∈ J(R)
such that b /∈ J(R). We claim that Rr(b) + J(R) 6= R. If this is not
true, then 1 = c+

∑

riti, where c ∈ J(R), ri ∈ R, ti ∈ r(b). This yields
b = cb +

∑

ritib. Now for each i, (tib)
2 = ti(bti)b = 0 and hence by

Corollary 1, tib ∈ J(R). Therefore
∑

ritib ∈ J(R) yielding b ∈ J(R), a
contradiction to b /∈ J(R). Therefore Rr(b) + J(R) 6= R and so there
exists a maximal left ideal M of R containing Rr(b) + J(R). Since R is
a left SF-ring and b2 ∈ J(R) ⊆ M , by ([6], Lemma 3.14), there exists
some d ∈ M such that b2 = b2d, that is b − bd ∈ r(b) ⊆ M , whence
b ∈ M . Hence, again there exists some e ∈ M such that b = be. Then
1−e ∈ r(b) ⊆ M , so that 1 ∈ M , contradicting M 6= R. Therefore R/J(R)
is reduced. Hence by ([6], Remark 3.13), R/J(R) is strongly regular. This
implies that R is left quasi-duo. Therefore by ([6], Theorem 4.10), R is
strongly regular.
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R is clean if every element of R can be written as a sum of an
idempotent and a unit. R is exchange if for any a ∈ R, there exists
e ∈ E(R) such that e ∈ Ra and (1 − e) ∈ R(1 − a). In [7], Nicholson
proved that every clean ring is exchange. Exchange rings need not be
clean but under certain additional conditions exchange rings turns out
to be clean (see [1], [2], [3], [7], [11], [12]). It is known that left (right)
quasi-duo exchange rings are clean ([12]). Also GWS exchange rings are
clean ([11]). These results are extended to J-symmetric rings as follows:

Theorem 4. Let R be a J-symmetric exchange ring. Then R is clean.

Proof. Let x ∈ R. By hypothesis, there exists e ∈ E(R) such that e ∈ Rx
and (1 − e) ∈ R(1 − x). It is easy to see that e = yx and 1 − e =
z(1− x) for some y, z ∈ R such that y = ey and z = (1− e)z. Therefore
(ze)2 = 0 = [y(1− e)]2 and so by Corollary 1, ze, y(1− e) ∈ J(R). Now
1−ze−y(1−e) = (e−zx+z)−ze−y(1−e) = yx−zx+z−ze−y+ye =
(y − z)(x− (1− e)). As ze, y(1− e) ∈ J(R), 1− ze− y(1− e) is a unit
so that that x − (1 − e) is left invertible. Since a J- symmetric ring is
directly finite, it follows that x − (1 − e) is a unit and hence x is clean
which implies that R is clean

R has stable range one if for any a, b ∈ R satisfying aR + bR = R,
there exists y ∈ R such that a+ by is a unit. It is known that left (right)
quasi-duo exchange rings have stable range one. In [11], Wei proved that
GWS exchange rings have stable range one. Observing that a J-symmetric
ring R satisfies eR(1−e) ⊆ J(R) for any e ∈ E(R) and using ([8], Theorem
5.4(1)), we get the following theorem which is a generalization of these
existing results.

Theorem 5. A J-symmetric exchange ring have stable range one.
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