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of Fn is bounded from above by independent constant d and degree
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of such pairs with invertible decomposition Fn = G1

nG2
n . . . Gk

n,
i.e. the decomposition which allows to compute the value of F n−1

in given point p = (p1, p2, . . . , pn) in a polynomial time O(n2).
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n of nonbijective polynomial maps of
affine space Kn such that composition FnF ′
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of K∗n unchanged such that deg(Fn) is bounded by independent
constant but deg(F ′

n) is of an exponential size and there is a decom-
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nG2
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1. Foreword

Professor Sushchansky was well respected member of the community
of algebraists in the former Soviet Union. His impact on the development
of infinite group theory and permutation group theory in Ukraine and
Poland is a very valuable one. It is difficult to overestimate his educational
and research influence on students and graduate students of the Depart-
ment of Mechanics and Mathematics of Kiev State Taras Shevchenko
University. Many of them chose to work in Mathematics as their future
profession because ofa friendly and efficient help of V. Sushchansky during
their first individual research projects. During his work in Kiev State
Taras Shevchenko University and Silesian Technical University professor
V. Suschansky supervised many PhD theses, conducted joint research
with colleagues, organised work of Research Seminars, Workshops and
Conferences

I have a privilege to know V. Suschansky as my University lecturer,
supervisor of research seminar and a colleague. In 1970 L. A. Kaluzhnin
and V. I Sushchansky organized research seminar for undergraduate
students at the department of mathematics and mechanics of Kiev State
Taras Shevchenko University. The topic was algebraic combinatorics
and permutation group theory. Supervisors of this seminar thought that
the combination of individual students research with studies of modern
mathematics has to be started at the first year of university program.
It was informal seminar not listed in the official schedule of studies.
V. A. Vyshensky quite often join the supervisors and assisted them in the
discussion of student presentations.

Students refereed shapters or smaler units from Marshall Hall’s “Com-
binatorics” on classical results on block design. The manuscript of P. Dels-
art “Algebraic Approach to Association Schemes of Coding Theory” was
used together with well known books “Permutation groups”, and “Permu-
tation groups through invariant relations”. Time to time students refereed
some chapters of “Group Theory” by Otto Shmidt. In fact the seminar
was a continuation of research studies started by O. J. Schmidt in Kiev.

Due to V. I. Sushchansky seminar participants got skills of professional
work in mathematics, such as step by step check of proofs, construction
of their own mathematical arguments, construction of counterexamples,
break of research tasks into natural chain of subtasks. I would rather
say that L. A. Kaluzhnin was responsible for seminar ideology but the
working engine was V. I. Sushchansky.
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Rather large group of students participators later finished their PhD
theses. Sergij Ovsienko made a valuable contributed to the development
of the Department of Algebra as a professor of Kiev University. Olexander
Ganushkin continued his service at this department. Felix Lazebnik is a
profesor of Delaware University (USA), Michiel Musychuk is a professor
of Bar Ilan University (Israel). Not all participants became algebraists.
Julia Mishura is a Head of Probability Department of Kiev University,
Juriy Kondratiev is a Professor of Bielefeld University. Part of seminarists
chose Computer Science: Platon Beletsky is a leading specialist of Quick
Turn Corporation (Silicon Valley, California), Volodymir Medvedev works
in Canada, V. Zdan-Poushkin and Ju. Dmitruk are working in Kiev as
specialists in Applied Informatics. Irina Pankratova is a Teacher and
Administrator of specialised High Schools in Physics and Mathematics
(Specialised Boarder School in Physics and Mathematics and Sliceum N39).

All of them are grateful to Vitaliy Ivanovich Sushchansky as their
devoted teacher.

Activity of above mentioned research seminar was closely connected
with applied research project in Computer Science of Science Research Divi-
sion of Kiev University conducted by L.A. Kaluzhnin and V.I. Sushchansky
for the collaboration with Institute of Cybernetics (National Academy
of Science of Ukraine, Department of Anatoliy Oleksandrovich Stogniy).
The title of this Project was “Algebraic theory of combinatorial objects
and its applications”. Since the middle of 70-th till the completion of
the project in 1986 Vitaliy Suschansky was the Principal Investigator
of the program. From the very beginning the project was conducted in
cooperation with All Union Institute of System Studies (Moskow). This
cooperation was coordinated by V. I. Suschanskiy (Kiev University group),
Mykola Myhailovych Glazunov (Institute of Cybernetics in Kiev) and
Igor Oleksandrovich Faradjev (Head of Department at the Institute of
System Studies). The valuable contribution to the project was added
by Myhailo Haimovich Klin who was a PhD student of L.A. Kaluzhnin
and enthusiastic developer of Algebraic Combinatorics. In the framework
of the project various methods of presentation of finite distance regular
metrics and corresponding permutation groups in the computer memory,
various methods of generation of permutation groups were investigated.

The project was completed in 1985, but the continuation of this rese-
arch and further steps in this direction were implemented by a research
school created by Vital Ivanovich Sushchanskiy. Some results of the above
mentioned project reflected in volume [17] published by Institute of Cyber-
netics of National Academy of Science, two volumes published by Institute
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of System Studies (Moscow), some papers in Ukrainian Mathematical
Journals and Cybernetics Journal. I have to mention that in the Soviet
Union only one handbook for students on Permutation Group Theory
written by L. A. Kaluzhnin and V. I. Sushchansky titled as “Transforma-
tion and Permutation” was published. The research of our department of
Algebra and Discrete Mathematics is mainly directed to applications of
the Permutation Group Theory and Algebraic Combinatorics to develop
cryptographic algorithms. We together with many other colleagues from
Ukraine, Poland, USA and other countries continue research started in
Kiev by L.A. Kaluzhnin and V. I. Sushchansky.

2. On post quantum and multivariate cryptography

and algebraic graph theory

Post Quantum Cryptography serves for the research on asymmetrical
cryptographical algorithms which can be potentially resistant against
attacks based on the use of a quantum computer.

The security of currently popular algorithms are based on the com-
plexity of the following 3 known hard problems: integer factorisation,
discrete logarithm problem, discrete logarithm for elliptic curves.

Each of these problems can be solved in polynomial time by Peter
Shor’s algorithm for theoretical quantum computer.

Despite that the known nowadays small experimental examples of
quantum computer are not able to attack currently used cryptographical
algorithm, cryptographers have already started research on postquantum
security. They have also take into account the new results of general
complexity theory.

The history of international conferences on Post Quantum Crypto-
graphy (PQC) started in 2006.

We have to notice that Post Quantum Cryptography differs from
Quantum Cryptography, which is based on the idea of usage of quantum
phenomena to reach better security.

Modern PQC is divided into several directions such as Multivariate
Cryptography, Lattice based Cryptography, Hash based Cryptography,
Code based Cryptography, studies of isogenies for superelliptic curves.

The oldest direction is Multivariate Cryptography (see [1]) which
uses polynomial maps of affine space Kn defined over a finite commu-
tative ring into itself as encryption tools. It exploits the complexity of
finding a solution of a system of nonlinear equations from many variables.
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Multivariate cryptography uses as security tools a nonlinear polynomial
transformations of kind x1 → f1(x1, x2, . . . , xn), x2 → f2(x1, x2, . . . , xn),
. . . , xn → fn(x1, x2, . . . , xn) acting on the affine space Kn, where fi ∈
K[x1, x2, . . . , xn], i = 1, 2, . . . , n are multivariate polynomials given in
standard form, i. e. via a list of monomials in a chosen order. Important
ideas in this direction are observed in [2]. The density of map F is the
maximal number den(F ) of monomial terma of fi, i = 1, 2, . . . , n. We
say that den(F ) is polynomial if this parameter has size O(nd) for some
positive constant d. The degree deg(F ) of map F is the maximal value of
degrees fi, i = 1, 2, . . . , n.

Let F be the map of Kn to itself which has polynomial density of
size C1nd1 and polynomial degree of size C2nd2 . Then the value of F on
tuple (b1, b2, . . . , bn) can be computed by O(nd1+d2+1) basic operation of
the ring.

Current task is a search for an algorithm with a resistance to cryp-
toanalytic attacks based on an ordinary Turing machine. Multivariate
cryptography has to demonstrate practical security algorithm which can
compete with RSA, Diffie-Hellman protocols popular methods of elliptic
curve cryptography (see [1], [2]).

This is still a young promising research area with the current lack
of known cryptosystems with the proven resistance against attacks with
the use of the ordinary Turing machines. Studies of attacks based on
Turing mashine and Quantum computer have to be investigated separately
because of different nature of two machines, deterministic and probabilistic
respectively.

Let K be a commutative ring. S(Kn) stands for the affine Cremona
semigroup of all polynomial transformations of affine space Kn.

Multivariate cryptography started from studies of potential for the
special quadratic encryption multivariate bijective map of Kn, where K
is an extention of finite field Fq of characteristic 2. One of the first such
cryptosystems was proposed by Imai and Matsumoto, cryptanalysis for this
system was invented by J. Patarin. The survey on various modifications
of this algorithm and corresponding cryptanalysis the reader can find
in [1]. Various attempts to build a secure multivariate public key were
unsuccessful, but the research of the development of new candidates for
secure multivariate public keys is going on (see for instance [3] and further
references).

Applications of Algebraic Graph Theory to Multivariate Cryptography
were recently observed in [4]. This survey is devoted to algorithms based on
bijective maps of affine spaces into itself. Applications of algebraic graphs
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to cryptography started from symmetric algorithms based on explicit
constructions of extremal graph theory and their directed analogue. The
main idea is to convert an algebraic graph in finite automaton and to use
the pseudorandom walks on the graph as encryption tools. This approach
can be also used for the key exchange protocols. Nowadays the idea of
”symbolic walks” on algebraic graphs when the walk on the graph depends
on parameters given as special multivariate polynomials in variables
depending from plainspace vector brings several public key cryptosystems.
Other source of graphs suitable for cryptography is connected with finite
geometries and their flag system. Bijective multivariate sparse encryption
maps of rather high degree based on walks in algebraic graphs were
proposed in [5].

One of the first usage of non bijective map of multivariate cryptography
was in oil and vinegar cryptosystem proposed in [6] and analysed in [7].
Nowadays this general idea is strongly supported by a publication [8]
devoted to security analysis of direct attacks on modified unbalanced
oil and vinegar systems. This algorithm was patented. It looks like such
systems and rainbow signatures schemes may lead to promising Public
Key Schemes of Multivariate Encryption defined over finite fields. Non
bijective multivariate sparse encryption maps of degree 3 and > 3 based
on walks on algebraic graphs D(n, K) defined over general commutative
ring and their homomorphic images were proposed in [9].

The new cryptosystems with non bijective multivariate encryption
maps on the affine space Zm

n into itself was presented at the internatio-
nal conference DIMA 2015 (Discrete Mathematics and its applications,
Minsk, 2015). It uses the plainspace Z∗

m
n, where n = k(k − 1)/2, k > 2

can be arbitrary natural number. The private key space is formed by
sequence of general multivariate polynomials from Zm[x1, x2, . . . , xk−1]
and sequence of parameters li, i = 1, 2, . . . , k − 1 which are mutually
prime with φ(m). The properties of the encryption map depends heavily
on the prime factorisation of m. This non bijective encryption map is the
deformation of special computation generated by Schubert automaton
of ”k − 1 dimensional projective geometry” over Zm. This method does
not use the partition of variables into groups, non bijective nature of the
map caused by zero devisors of composite integer m. In fact the idea of
multiple ”hidden RSA” is used in [10].

Other algorithm which exploits ”hidden RSA” idea is described in [11].
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3. On Eulerian public key schemes

We refer to the equation xα = b in the field Fq as Eulerian equation if
(α, q − 1) = 1. It is well known that this equation has a unique solution.

We say that multivariate map F : Fq
n → Fq

n is Eulerian map over a
field if F is an injective on Ω = Fq

∗n and equation F (x) = b, x ∈ Ω has
exactly one solution.

Similar idea of Eulerian map over Zm is presented in [10] and [11].
In this paper we suggest an encryption scheme based on the following

idea of diagonal Eulerian transformation of the affine space over Fq. We
say that the polynomial map G of Fq

n to Fq
n is multiplicatively injective

if its restriction on Fq
∗n is injective. So bijective polynomial maps and

Eulerian maps are multiplicatively injective.
Let us consider a transformation τA,i1,i2,...,in of F ∗

q
n to itself of kind

xi → yi, where

yi1
= xi1

a11 ,

yi2
= xi1

a21xi2

a22 ,

. . .

yin = xi1

an1xi2

an2 . . . xin

ann ,

where (aii, q − 1) = 1 for i = 1, 2, . . . , n, 0 6 ai,j < q − 1 and sequence
L of elements i1, i2, . . . , in is a permutation on {1, 2, . . . , n}. Let A be a
triangular matrix with entries ai,j as above. We refer to a map of kind
τA,LS, where S is a monomial linear transformation xi → λixπ(i) for
which λi ∈ Fq

∗, i = 1, 2, . . . , n and π is a permutation on {1, 2, . . . , n}
as monomial Eulerian map EτA,L,S . We say that τ is Eulerian element
if it is a composition of several monomial Eulerian maps. It is clear
that τ sends variable xi to a certain monomial term. The decomposition
of τ into product of Eulerian monomial transformations τ1 = τA1,L1,S1

,
τ2 = τA2,L2,S2

, . . . , τk = τAk,Lk,Sk
allows us to find the solution of equations

τ(x) = b for x ∈ F ∗

q
n. Really we have to find bk from the condition

τk(bk) = b, compute bk−1 from the condition τk−1(bk−1) = bk, . . . , x = b1

from the condition τ1(b1) = b2. Assume that a polynomial transformation
F of Fq

n written in standard form has a polynomial degree d (maximal
degree of monomial terms) and polynomial density. We can take a bijective
affine map T of Fq

n to itself and form the map G = τFT of finite degree
bounded by some linear function in variable n. We refer to G as Eulerian
deformation of F . If F has a density of a size O(nt) then the density of G
is O(nt+1).
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It is clear that the Eulerian deformation of multiplicatively injective
map over the finite field is also multiplicatively injective transformation.

Let us consider the asymmetrical encryption scheme based on the
pair F , D, where F is multiplicatively injective transformation of Fq

n and
D is the data (private key) which allows to solve the equation F (x) = b
for x ∈ Ω in a polynomial time.

As usual key holder Alice has (F, D) and public user Bob has only
the map F in standard form. So Bob forms plaintext p ∈ Ω and sends
the ciphertext c = F (p) to Alice. Alice uses D and solves F (x) = c for
unknown tuple x for the decryption.

Let us consider the modification of the above scheme via Eulerian
deformation G = τFT , Alice will use new data D′ obtained by adding
maps τ , S, T to D. Alice sends the encryption rule G to public user
Bob. Bob sends c = G(p). Alice computes d = T −1c. She forms tuple of
unknowns y = (y1, y2, . . . , yn). She uses data D to get the solution b of
F (y) = d. Finally, she computes the b′ as S−1(b) and gets the plaintext
as a solution of Eulerian system τx = b′. This scheme can be applied to
various known pairs (F, D), where F is a bijective map. For instance we
can take a stable cubical transformation of Kn into itself defined into [12]
or [13] in case when K = Fq for chosen parameter q or nonstable maps
of [6].

In this paper we concentrate on Eulerian maps, when D contains
information on triangular system of Eulerian equations over Fq of kind

h1(xi1
) = a1xi1

α11 + b1 = c1,

h2(xi1
, xi2

) = a2xi1

α21xi2

α22 + b2(xi1
) = c2,

. . .

hs(xi1
, xi2

, . . . , xis) = asxi1

αs1xi2

αs2 . . . xis

αss +bs(xi1
, xi2

, . . . , xis−1
)=cs,

where b1 ∈ Fq, b2 ∈ Fq[x1], . . . , bs ∈ Fq[x1, x2, . . . , xs−1], aj , j = 1, 2, . . . , s
are nonzero elements of Fq, i1, i2, . . . , is is a permutation on {1, 2, . . . , s},
(αii, q − 1) = 1, i = 1, 2, . . . , s.

We refer to the map F : xj → hj(xi1
, xi2

, . . . , xis), j = 1, 2, . . . , s as
triangular Eulerian map.

Assume that αii, i = 1, 2, . . . , s are unknown. Other coefficients are
available together with the solution d1, d2, . . . , ds. Then finding αii, i =
1, 2, . . . , s can be done via consequtive solution of discrete logarithm
problem:

d1
x = (c1 − b1)/a1 and x = α11,
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d2
x = (c2 − b2(d1))/(a2d1

α11)

and

x = α22, . . . , ds
x = (cs − bs(d1, d2, . . . , ds−1))/(asd1

α11d2
α22 . . . d

αs−1,s−1

s−1 ).

In the case when parameter q is large the determination of discrete
logarithm is a known hard problem.

Notice that parameters αi,j (as well as ai,j of the diagonal affine
transformation) will be unknown for the public user Bob in the described
above cryptosystem. So we can talk about hidden discrete logarithm.

Example 1. Let us consider a cryptosystem based on the deformation
of written above Eulerian triangular map F of Fq

n. The map F is de-
fined by parameters a1, a2, . . . , an from Fq

∗, triangular matrices A and
a list of elements b1 ∈ Fq,b2(z1) ∈ Fq[z1], b3(z1, z2) ∈ Fq[z1, z2], . . . ,
bn(z1, z2, . . . , zn−1) ∈ Fq[z1, z2, . . . , zn−1]. Polynomials bi of constant de-
grees ti can be specially chosen to make the density of F of prescribed
size O(nd) for certain constant d. We can choose matrix A to make the
degree of F bounded by some constant t.

Alice takes sequence of triangular matrices A1, A2, . . . , Ak and linear
orders L1, L2, . . . , Lk on {1, 2, . . . , n} to form Eulerian diagonal transfor-
mations τAi,Li

of constant degree ti.
She takes strings λ1

i, λ2
i, . . . , λn

i and permutations πi to form
monomial linear transformations Si, i = 1, 2, . . . , k. Alice chooses ma-
trix B and vector c to form bijective affine transformation T sending
x = (x1, x2, . . . , xn) into xB + c.

Alice computes the polynomial map

G = τA1,L1
S1τA2,L2

S2 . . . τAk,Lk
SkFT

and writes G in standard form. The degree of G is bounded by t1t2 . . . tkt
and its density is of size O(nt+1). Alice sends the standard form of G to
public user Bob.

Bob writes a plaintext p = (p1, p2, . . . , pn) ∈ Fq
∗n. He computes the

ciphertext G(p) and sends it to Alice.
Alice uses her knowledge on the decomposition

G = τA1,L1
S1τA2,L2

S2 . . . τAk,Lk
SkFT.

So she computes c0 = T −1(c). She solves the equation F (z) = c0 for z.
Notice that the solution ck is an element of F ∗

q. Alice gets the solution
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ck−1 of the equation τAk,Lk
(z) = Sk

−1(ck). She creates inductively ck−j as
a solution of τAk−j+1,Lk−j+1

(z) = Sk−j+1
−1(ck−j+1) for j = 2, 3, . . . , k − 1.

We can see that c1 is the plaintext.

Example 2. Let K be a commutative ring. We define A(n, K) as bipartite
graph with the point set P = Kn and line set L = Kn (two copies of a
Cartesian power of K are used).

We will use brackets and parenthesis to distinguish tuples from P
and L. So (p) = (p1, p2, . . . , pn) ∈ Pn and [l] = (l1, l2, . . . , ln) ∈ Ln. The
incidence relation I = A(n, K) (or corresponding bipartite graph I) is
given by condition pIl if and only if the equations of the following kind
hold.

p2 − l2 = l1p1

p3 − l3 = p1l2

p4 − l4 = l1p3

p5 − l5 = p1l4

. . .

pn − ln =

{

p1ln−1 for odd n

l1pn−1 for even n

Let us consider the case of finite commutative ring K, |K| = m.
As it instantly follows from definition the order of our bipartite graph

A(n, K) is 2mn. The graph is m-regular. Really the neighbour of a given
point p is given by above equations, where parameters p1, p2, . . . , pn are
fixed elements of the ring and symbols l1, l2, . . . , ln are variables. It is
easy to see that the value for l1 could be freely chosen. This choice
uniformly establishes values for l2, l3 . . . , ln. So each point has precisely
m neighbours. In a similar way we observe the neighbourhood of the line,
which also contains m neighbours. We introduce the colour ρ(p) of the
point p and the colour ρ(l) of line l as parameters p1 and l1 respectively.
Graphs A(n, K) with colouring ρ belong to the class of linguistic graphs
defined in [14]. In the case of a linguistic graph Γ the path consisting of
its vertices v0, v1, v2, . . . , vk is uniquely defined by initial vertex v0 and
colours ρ(vi), i = 1, 2, . . . , k of other vertices from the path.

So the following symbolic computation can be defined. Take the symbo-
lic point x = (x1, x2, . . . , xn) where xi are variables and symbolic key which
is a string of polynomials f1(x), f2(x), . . . , fs(x) from K[x]. Form the
path of vertices v0 = x, v1 such that v0Iv1 and ρ(v1) = f1(x1), v2 such that
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v1Iv2 and ρ(v2) = f2(x1), . . . , vs such that vs−1Ivs and ρ(vs) = fs(x1).
We use term symbolic point to point computation in the case of even k and
talk on symbolic point to line computation in the case of odd k. We notice
that the computation of each coordinate of vi via variables x1, x2, . . . , xn

and polynomials f1(x), f2(x), . . . , fi(x) needs only arithmetical ope-
rations of addition and multiplication. Final vertex vs (point or line)
has coordinates (h1(x1), h2(x1, x2), h3(x1, x2, x3), . . . , hn(x1, x2, . . . , xn)),
where h1(x1) = fs(x1).

Assume that K = Fq (m = q) and the equation of kind fs(x) = b
has at most one solution under condition that x ∈ F ∗

q. Then the map
H : xi → h(x1, x2, . . . , xi), i = 1, 2, . . . , n is a multiplicatively injective
map. If the equation of a kind fs(x) = b, x ∈ F ∗

q has the unique solution
then H is bijection.

In the case of finite parameter s and finite densities of fi(x), i =
1, 2, . . . , s the map H also has finite density. If all parameters deg(fi(x))
are finite then the map H has a linear degree. For simplicity we set
fs(x) = axr + b, where (r, q − 1)) = 1. It means that we can sub-
stitute kernel map F in the case of example 1 by map H. The map
G = τA1,L1

S1τA2,L2
S2 . . . τAs,LsSkHT written in standard form has a

linear density and a constant degree.

Let Ng(x) be the operator on P ∪ L be the operator sending vertex
(x1, x2, . . . , xn) (point or line) to its neighbour of colour g(x1). In the case
of symbolic key defined via choice of f1(x) and recurrent relations of kind
fi+1(x) = gi(fi(x)), i = 1, 2, . . . , s − 1 the map H is a composition of
N1 = Nf1(x), N2 = Ng1

, N3 = Ng2
, . . . , Ns = Ngs−1

. So in the case of
bijective map N1N2 . . . Ns is an example of invertible decomposition of
H in a sense of [4].

The following cases of maps with prescribed density can be also used
for the implementations.

1) Let in the case of even s we have fi(x) = h(x) + bi for odd
i = 1, 3, . . . , s−1 where h(x) has a chosen degree α. For even i = 2, 4, . . . , s
we set fi(x) = x + ci. From results of [15] we can deduce that degree of
H is 2α + 1. It is easy to see that H is bijective. Let T1 be bijective affine
transformation of the free module Fq

n. One can take the composition
H1 = T1H. Independently from the size of s = l(n) the degree of H1 is
t = 2α + 1. So its density is O(nt).

It means that we can substitute kernel map F in the case of example
1 by map T1H. The map G = τA1,L1

S1τA2,L2
S2 . . . τAs,LsSsH1T written

in a standard form has density O(nt+1).
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2) Let us choose odd parameter s. As in the case above fi(x) =
h(x) + bi for odd i = 1, 3, . . . , s and for even i = 2, 4, . . . , s − 1 equalities
fi(x) = x + ci hold. We set h(x) = axr + b, a ∈ Fq

∗. So the map H is
multiplicatively injective. We can check that the degree of H is t = α + 2.
Let T2 be a bijective affine transformation of Fq

n of kind x1 → λx1, x2 =
l2(x1, x2, . . . , xn), x3 = l3(x1, x2, . . . , xn), . . . , xn = ln(x1, x2, . . . , xn),
where λ ∈ Fq

∗ and li ∈ Fq[x1, x2, . . . , xm] are of degree 1. We set H2 =
T2H. The encryption map G = τA1,L1

S1τA2,L2
S2 . . . τAs,LsSsH2T has

density O(nα+3).

Modified examples 1 and 2. One can change the field Fq in examples
1 and 2 for ring Zm, where m is some composite number. It leads to the
change of F ∗

q for Z∗

m, integer q − 1 for φ(m), where φ is Euler function,
graph A(n, Fq) for A(n, Zm). Detailed description is in [16].

Example 3 (From Eulerian deformation to Eulerian disturbance). Let
F be a triangular Eulerian map as in Example 1, τ is Eulerian Element
which is a composition of Eulerian monomial maps τ1, τ2, . . . , τk let S be
some permutational map and G be a general multiplicatively injective
map.

We refer to a transformation G′ = τFSG as Eulerian disturbance
of G. Notice that G′ is also multiplicatively injective map. Assume that
parameter q is of polynomial size O(nd) . Notice that one can form
H = τFS as the map of prescribed polynomial density and prescribed
polynomial degree. If degree of G is bounded by constant then G′ is a
map of polynomial degree and density.

Let us investigate degree of H−1 in the case of bijective H. In this
case H sends (x1, x2, . . . , xl) to (y1, y2, . . . , yl) given by rules

b1x(i1)
α1 + r1 = yj1

,

b2xi2

α2 + r2(xi1
) = yj2

,

b3xi3

α3 + r3(xi1
, xi2

) = yj3
,

. . .

blxi3

αl + rl(xi1
, xi2

, . . . , xil−1
) = yjl

,

where αi are mutually prime with qm−1, r1 ∈ Fqm , ri, i > 1 are polynomial
expressions, i1, i2, . . . , il and j1, j2, . . . , jl form permutation of symbols
from M = {1, 2, . . . , l} and bi 6= 0 for i = 1, 2, . . . , l.

Let us assume that ri+1 = R(xi)R
′(xi, xi−1, . . . , x1), where R ∈ Fq[xi]

are polynomials of degree > 1. The inverse map for H is defined by
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recurrent rules

(b1
−1yj1 − r1)β1 = xi1

(b2
−1yi2 − r2(xi1

))β2 = xi2

. . .

(bn
−1yjl − rl(xi1

, xi2
, . . . , xil−1

)βl = xil
.

where βiαi = 1mod(qm − 1) for i = 1, 2, . . . , n.

Notice that elimination of xi1
from the second equation gives us xi2

written as polynomial variables y1, y2, . . . , yn of degree > β1β2. Elimi-
nation of xi2

produces polynomial expression of xi3
of degree > β1β2β3.

The continuation of this process produces the standard form for H−1

of degree > β1β2 . . . βl. If all parameters of βi are > 2 then elimination
process gives H−1 as a map of exponentially large degree. Of course
presentation of permutation H−1 in polynomial form is not unique, but
we have serious ground to believe that even in the case of existence of
alternative presentation of this map as polynomial map of polynomial
degree and density it is very hard to find such a presentation explicitly.

Notice that the degree of H−1 obtained via natural non linear Jordan
Gauss elimination can be exponential even in the case when all parameters
αi equal 1. We just present the following example yn = axn + b, a 6= 0,
yn−1 = xn−1 +xn

2, yn−2 = xn−2 +x2
n−1, . . . , y2 = x2 +x3

2, y1 = x1 +x2
2.

It is easy to see that in the written above case xn is a linear expression from
yn, xn−1 is a quadratic expression from yn and yn−1, xn−2 is an expression
of degree 4 from yn, yn−1, yn−2, . . . , x1 is an expression of degree 2n−1

from yn, yn−1, . . . , y1. So in this case the degree of H−1 is 2n−1.

Implemented examples

I1. We suggest the cryptosystem with the usage of map H given by
relations yn = axn+b, a 6= 0, yn−1 = xn−1+xn

2, yn−2 = xn−2+x2
n−1+xn

2,
. . . , y2 = x2+x3

2+x4
2+· · ·+xn

2, y1 = x1+x2
2+x2

3+· · ·+xn
2 in the case

of arbitrary commutative rings K. It is implemented for rings Z27 , Z28 ,
F27 and F28 . These choices of ring allow to use one to one correspondence
of ASCEE alphabet or binary alphabet of sizes 27 and 28 and elements
of chosen ring and encrypt files with extensions .txt, .doc, .jpg and etc.
It is easy to see that the degree of H−1 is 2n−1. The cryptosystem uses
operators Ng(x) = Nα on the set of vertices P ∪ L of graph A(n, K)
sending vertex (x1, x2, . . . , xn) (point or line) to its neighbour of colour
g(x1) = x1 + α. Alice has to choose string α1, α2, . . . , αs for some even
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parameter s, s 6 n such that αi + αi+1 are regular ring elements for
i = 1, 2, . . . , s − 1 and form the composition N of Nα1 , Nα2 , . . . , Nαs .
Additionally she chooses affine transformation τ of P = Kn. She computes
the map G = HNτ of degree 6 6 and sends it to Bob. The density of H
is bounded by n, cubical map Nτ has density O(n3). It means that the
density of G is 0(n4).

Assume that Bob writes message (p) = (p1, p2, . . . , pn) computes the
ciphertext (c) = G(p) and sends it to Alice. She computes c′ = τ−1(c).
Alice can do it in time T1 = O(n2). Secondly Alice computes recursively
N−αs(c′) = c1, N−αs−1(c1) = c2, . . . , N−α1(c) = cs = r. It takes her time
T2 = 2ns elementary operations. We can assume that s 6 n. Alice uses
equations of the definition of H and computes p = H−1(r) recursively
with T3 = O(n2) operations of addition and multiplications. Decryption
time is evaluated by T1 + T2 + T3 and takes Alice O(n2) elementary
operations.

I2. Other algorithm for general commutative ring Kis the following.
Alice uses transformation H given by relations yn = axn, a 6= 0, yn−1 =
xn−1xn, yn−2 = xn−2xn−1xn, . . . , y2 = x2x3x4 . . . xn, y1 = x1x2x3 . . . xn

in the cases of commutative ring K = F28 . The cryptosystem uses the
transformations N and τ from previous example (I1). The plain space
here will be K∗n. Notice that there is natural map H ′ given by rela-
tions xn = a−1yn − b, xn−1 = yn−1xn

q−2, xn−2 = yn−2xq−2
n−1xn

q−2, . . . ,
x1 = y1x2

q−1x3
q−2x4

q−2 . . . xn
q−2. It is easy to see that degree of H ′ has

exponential size.
Alice chooses string α1, α2, . . . , αs for some even parameter s, s 6 n

such that αi + αi+1 6= 0 for i = 1, 2, . . . , s and takes transformation
N = Nα1Nα2 . . . Nαs together with affine transformation τ . She forms
”tame chaotical map” G = HNτ of degree O(n) and of the density O(n3).
Notice that G′ = τ−1N−1H ′ has exponential degree. The composition
GG′ acts identically on K∗n.

Alice computes the map HNτ in its standard form and sends this
map to Bob. He writes plaintext p ∈ K∗n and computes the ciphertext
c = G(p) in polynomial time O(n5) and sends it back to Alice.

The decryption process is the following. Firstly Alice applies τ−1 to
ciphertext c. It takes O(n2) operations. After that she computes N−αs ,
N−αs−1 , . . . , N−α1 . Incidence equations allows her to make each of these
s steps with 2n elementary transformations. Finally Alice takes vector
c′ = τ−1N−1(c) ∈ K∗n uses equations for H an computes the value p of H ′

in c′ with the usage of division together with addition and multiplication.
This step takes less than n2 elementary operations. We can see that
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recursive decryption takes time O(n2). It is implemented in the cases of
fields from {F2n |n = 7, 8} and various arithmetical rings Zm.

Remark 1. Decryption algorithm of Alice in examples I1 and I2 can be
used in a symmetric mode as a stream cipher. Users can take constant
parameter s and sparce affine transformation τ which takes time O(n)
in execution. Transformation N can be modified as yn = axn, a 6= 0,
yn−1 = xn−1xn, yn−2 = xn−2xn−1, . . . , y2 = x2x3, y1 = x1x2x3 . . . xn

(case of I2) and yn = axn+b, a 6= 0, yn−1 = xn−1+xn
2, yn−2 = xn−2+x2

n−1,
. . . , y2 = x2 + x3

2, y1 = x1 + x2
2 + x3 . . . xn

2 (in the case of I1). In
these forms total cipher execution takes time O(n). Computer simulation
demonstrates good mixing properties.

Modifications of I2 and I1 in cases of rings Zm and Fq. One can
take H given by equations

yn = a1xn
βn , yn−1 = a2x

βn−1

n−1 xn
δn ,

yn−2 = a3x
βn−2

n−2 xn−1
δn−1 , . . . , y2 = an−1x2

β2x3
δ3 ,

y1 = anxβ1

1 x2
δ2(x3x4 . . . xn)δ1 ,

where (βi, q − 1) = 1, 1 6 βi 6 q − 1, 0 6 δi 6 q − 1, i = 1, 2, . . . , n
in the case of finite field Fq and (βi, φ(m)) − 1, 1 6 βi 6 φ(m) − 1,
0 6 δi 6 φ(m) − 1, i = 1, 2, . . . , n in the case of commutative ring Zm.

Let us assume that parameters q and m are constants. If δ1 = 0, then
degree of H is constant bounded by 2q and 2m in the case of a field and a
ring respectively. In the case of field degree of the map H ′ has exponential
size in the case of βi > 1 for i = 1, 2, . . . , n.

4. Regular valued functions and bijective encryption aps

with Eulerian disturbance

We refer to a polynomial function f(x1, x2, . . . , xr) ∈ K[x1, x2, . . . , xr],
r > 0, where K is a commutative ring, as regular valued function if the
value f(a1, a2, . . . , an) is a regular element from K∗. We say that regular
valued f is separable if f = f(x1)f(x2) . . . f((xr). Natural example of
regular valued function in the case of K = Z2n is a function of kind
f = 2g + a, where g is an arbitrary element of K[x1, x2, . . . , xr.

We consider mor general totality of biregular valued functions F such
that f(a1, a2, . . . , an) ∈ K∗ for (a1, a2, . . . , an) ∈ K∗n.
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In this section we generalise the concept of Eulerian triangular map.
We define standard regular (biregular) Jordan-Eulerian map H sending a
tuple (x1, x2, . . . xn) to

(y1, y2, . . . , yn) = (h1(x1), h2(x1, x2), . . . , hn(x1, x2, . . . , xn)),

where

h1(x1) = x1
α1r0 + b0,

h2(x1, x2) = a2(x1)xi2

α2r1(x1) + b1(x1),

. . .

hn(x1, x2, . . . , xn) = (x1, x2, . . . , xn−1, xn
αn)rn−1(x1, x2, . . . , xn−1)

+ bn−1(x1, x2, . . . , xin−1
),

where b0, r0 ∈ K, b1, r1 ∈ K[x1], . . . , bn−1, rn−1 ∈ K[x1, x2, . . . , xn−1], rj ,
j = 0, 1, 2, . . . , n−1 are regular (biregular) valued functions (αii, q−1) = 1,
i = 1, 2, . . . , s.

We refer to the map F : xj → hj(xi1
, xi2

, . . . , xis , j = 1, 2, . . . , s as
a triangular Eulerian map.

We refer to F = π1Hπ2, where π1 and π2 are permutational linear
maps on Kn as regular (biregular) Jordan-Eulerian map. We say that F
is homogeneous if all bi are 0 constant functions.

Notice that regular homogeneous Jordan-Eulerian function defines a
map from Kn to K∗n, the restriction of biregular homogeneous Jordan -
Euler function on K∗n is a transformation of this set.

Example. Let us consider homogeneous separable regular valued map
G over Z2m of kind

yjn = xin , yjn−1
= xin−1

(2xin + 1), yjn−2
= xin−2

(2xin−1
+ 1),

yjn−3
= xin−3

(2xin−2
+ 1), . . . , yj2

= xi2
(2xi3

+ 1),

yj1
= x1(2xi2

+ 1),

where i1, i2, . . . , in and j1, j2, . . . , jn are two permutations of symbols
1, 2, . . . , n.

This map is quadratic. It is clear that φ(2m) = 2m−1 and the inverse
to regular a ∈ Z2m is a2m−1

−1. The inverse map G−1 is a map of kind
xin = yjn , xin−1

= (2yjn +1)2m−1
−1yjn−1

, xin−2
= (2(2yjn +1)2m−1

−1yjn−1
+

1)2m−1
−1yjn−2

, . . . . Recurrent computations gives us xi1
as expression of

kind f(yj1
, yj2

, . . . , yjn) of exponential degree > 2n(m−1) and large density.
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