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Abstract. The aim of this paper investigates some com-

binatorial characteristics of minimal key and antikey of closure

operations. We also give effective algorithms finding minimal keys

and antikeys of closure operations. We estimate these algorithms.

Some remarks on the closeness of closure operations class under the

union and direct product operations are also studied in this paper.

Introduction

Functional dependencies (FDs) play an important role the relational
database theory. The equivalence of the family of FDs is one of the hottest
topics that get a lot of attention and interest currently. There are many
equivalent descriptions of the family of FDs. Based on the equivalent
descriptions, we can obtain many important properties of the family of
FDs. The closure operation is an equivalent description of family of FDs
([1]). A closure operation here is a map between the elements of a partial
ordered set that verifies three axioms: extension, order-preservation and
idempotence. In recent years, the closure operations have been widely
studied (e.g. see [2, 7–9]). Closed set, minimal key and antikey of closure
operations are the interestring concepts and significant. Such as the family
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of closed sets of a closure operation forms a closure system (or meet-
semlattice). Recently the closure operations have also been applied in
data mining (e.g. see [5, 6]).

This paper investigates some characteristics of minimal key and antikey
of closure operations as well as the closeness of closure operations class
under some basic operations. The paper is organized as follows. After an
introduction section, in Section 2, we introduce the notions of closure oper-
ation, minimal key and antikey of closure operation. Section 3 we present
some characteristics of minimal key and antikey of closure operation. The
algorithms for finding all minimal key and antikey of closure operations
are studied in Section 4 and 5. The closeness of closure operations class
under the union and direct product operations is studied in Section 6.

1. Definitions and preliminaries

This section introduces the notions of Sperner system, closure operation,
closure system, closed set, minimal key and antikey of closure operation.
The notions and results in this section can be found in [3, 4, 8, 9].

Let U be a finite set, and denote P(U) its power set. A family S ⊆ P(U)
is called a Sperner system on U if for any X,Y ∈ S implies X 6⊆ Y .

The mapping f : P(U) → P(U) is called a closure operation on U if
it satisfies the following conditions

(C1) (Extensivity) X ⊆ f(X)

(C2) (Monotonicity) X ⊆ Y implies f(X) ⊆ f(Y )

(C3) (Idempotency) f(f(X)) = f(X)

for every X,Y ⊆ U .

We denote by Cl(U) the set of all closure operations on U .

Let f ∈ Cl(U) and X ⊆ U . Set X is called closed of f if f(X) = X.
The family of closed sets is denoted Closed(f). Therefore, Closed(f) =
{X ⊆ U : f(X) = X}. It is easy to see that U ∈ Closed(f) and X,Y ∈
Closed(f) ⇒ X ∩ Y ∈ Closed(f). Then we also can rewrite Closed(f) =
{f(X) : X ⊆ U}.

A family S of subsets of U is called a closure system (or Moore family,
meet-semilattice) on U if it satisfies the following conditions

(S1) U ∈ S;

(S2) ∀A ⊆ P(U),∅ 6= A ⊆ S ⇒
⋂

A ∈ S.

It can be seen that, if S is a closure system, and we define fS(X) as

fS(X) =
⋂

{Y ∈ S : X ⊆ Y }
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then fS ∈ Cl(U). Conversely, if f ∈ Cl(U), then there is exactly one
closure system S on U so that f = fS , where

S = {X ⊆ U : f(X) = X}.

Thus Closed(f) is a closure system. This means that there is a 1-1
correspondence between closure operations and closure systems.

Example 1. The following mappings are basic closure operations:
(1) A maximal mapping m : P(U) → P(U) is determined by m(X) =

U for every X ⊆ U . Then Closed(m) = {U}.
(2) An identity mapping i : P(U) → P(U) is determined by i(X) = X

for every X ⊆ U . Then Closed(i) = P(U).
(3) A translation mapping tM : P(U) → P(U) is determined by

tM (X) = M ∪X, where M is a given subset of U and for every X ⊆ U .
Then Closed(tM ) = {M ∪X : X ⊆ U}.

It can be seen that if M = U then tM = m. The case if M = ∅ then
tM = i.

Now let f ∈ Cl(U). A subset K ⊆ U is called a minimal key of f if it
satisfies the following conditions

(K1) f(K) = U
(K2) ∀a ∈ K : f(K \ {a}) 6= U .
Denote Key(f) the set of all minimal keys of f . It is easy to see that U

is the unique minimal key of f if and only if f(X) = X for every X ⊆ U ,
i.e. f = i.

A subset K−1 ⊆ U is called a antikey of f if it satisfies the following
conditions

(AK1) f(K−1) 6= U
(AK2) ∀a ∈ U \K−1 : f(K−1 ∪ {a}) = U .
Denote Antikey(f) the set of all antikeys of f . It it clear that Key(f)

and Antikey(f) are Sperner systems on U . It is easy to see that K−1 6= U
and Antikey(f) can describe by Key(f) as follows:

Antikey(f) = {K−1 ⊂ U : (K ∈ Key(f) ⇒ K 6⊆ K−1) and

((K−1 ⊂ Y ) ⇒ (∃K ∈ Key(f))(K ⊆ Y ))}.

Obviously, Key(f) and Antikey(f) are uniquely determined by one
another.

Example 2. Using the definition of minimal key and antikey, we can
easily imply the minimal keys and antikeys of the basic closure operations
as follows:
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(1) Key(m) = {∅},Antikey(m) = ∅;
(2) Key(i) = {U},Antikey(i) = {U \ {a} : a ∈ U};
(3) Key(tM ) = {U \M},Antikey(tM ) = {U \ {a} : a ∈ U \M}.

2. Closed set, minimal key and antikey

Now we denote by MAX(S) the family of maximal elements of family
S ⊆ P(U). Then the antikey of closure operations have the following basic
characteristic.

Theorem 1. Let f ∈ Cl(U). Then

Antikey(f) = MAX(Closed(f) \ {U}).

Proof. Suppose that K−1 ∈ Antikey(f) and K−1 ⊂ f(K−1). According
to the definition of antikey we have K−1 6= U and U = f(f(K−1)) =
f(K−1). Thus K−1 is a key of f . This contradicts the fact K−1 is an
antikey of f . Hence f(K−1) = K−1, or K−1 ∈ Closed(f) \ {U}. On
the other hand, if there is a Y ∈ Closed(f) \ {U} such that Y ⊃ K−1,
then f(Y ) = U 6= Y . This contracdicts the fact that Y is a closed set.
Consequently, K−1 ∈ MAX(Closed(f) \ {U}).

The case if K−1 ∈ MAX(Closed(f) \ {U}) and there is a K ∈ Key(f)
such that K ⊂ K−1, then f(K−1) = U . Therefore K−1 = U . This
contracdicts the suppose that K−1 6= U . Moreover, it can be seen that if
there exists Y ⊆ U such that K−1 ⊂ Y , then f(Y ) = U . Consequently,
K−1 ∈ Antikey(f).

So relying on Closed(f) we also can find effectively the set of antikeys
of closure operation f .

Example 3. Let us consider the mapping f : P(U) → P(U), with
U = {a, b, c, d}, as follows:

X f(X) X f(X) X f(X) X f(X)

∅ ∅ {d} {d} {b, c} U {a, b, d} U

{a} {a} {a, b} U {b, d} {b, d} {a, c, d} {a, c, d}

{b} {b} {a, c} {a, c} {c, d} {c, d} {b, c, d} U

{c} {c} {a, d} {a, d} {a, b, c} U U U

It is easy to see that f ∈ Cl(U). Then Key(f) = {{a, b}, {b, c}} and
Closed(f)={∅, {a}, {b}, {c}, {d}, {a, c}, {a, d}, {b, d}, {c, d}, {a, c, d}, U}.

By Theorem 1, we obtain Antikey(f) = {{b, d}, {a, c, d}}.
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The minimal key and antikey of closure operations have the following
correlation.

Proposition 1. Let f ∈ Cl(U). Then

⋃

Key(f) = U \
⋂

Antikey(f).

Proof. It is clear that if a ∈
⋃

Key(f), then there exists a K ∈ Key(f)
such that a ∈ K. Let M = K \{a}. It can be seen that M does not contain
any minimal keys of f . Hence, there exists an antikey K−1 ∈ Antikey(f)
such that M ⊆ K−1. It is easy to see that a /∈ K−1. Consequently, we
obtain that a ∈ U \K−1, or a ∈ U \

⋂

Antikey(f).
Now assume that a /∈

⋃

Key(f) and let K−1 ∈ Antikey(f). Obviously,
if a /∈ K−1 then K−1∪{a} contains a minimal key K ∈ Key(f). Thus,K ⊆
K−1. This contracdicts the fact that K−1 is a antikey of f . Consequently,
we have a ∈ K−1.

3. Finding the set of all antikeys of closure operations

In this section, we present the algorithm for finding all antikeys of
closure operations.

Algorithm 1. (Finding all antikeys)
Input: f ∈ Cl(U) with Key(f) = {K1,K2, . . . ,Km}.
Output: Antikey(f).
Step 1: From K1 we construct a family T1 = {U \ {a} : a ∈ K1}.

It is obvious that T1 = Antikey(g1) such that Key(g1) = {K1}, where
g1 ∈ Cl(U).

Step j+1 (j = 1, 2, . . . ,m−1): Suppose that Tj = Fj ∪{X1, . . . , Xtj},
where X1, . . . , Xtj are elements of Tj containing Kj+1 and Fj = {Y ∈ Tj :
Kj+1 6⊆ Y }. For all i (i = 1, 2, . . . , tj) we construct Antikey(gj+1) such
that Key(gj+1) = {Kj+1}, where gj+1 ∈ Cl(Xi), in an analogous way as
T1 in Step 1, which are the maximal subsets of Xi not containing Kj+1.
We denote them by Y i

1 , . . . , Y
i
ri

(i = 1, 2, . . . , tj). Let

Tj+1 = Fj ∪ {Y i
p : Y ∈ Fj ⇒ Y i

p 6⊆ Y, 1 6 i 6 tj , 1 6 p 6 ri}.

Step m+ 1: Let Antikey(f) = Tm.

Because Key(f) and Antikey(f) are uniquely determined by one an-
other, the determination of Antikey(f) based on Algorithm 1 does not
depend on the order of K1,K2, . . . ,Km.
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Lemma 1. Tm = Antikey(f).

Proof. (Proof by induction) It is clear that T1 = Antikey(g1) such that
Key(g1) = {K1}, where g1 ∈ Cl(U). Now we assume Tl = Antikey(gl)
such that Key(gl) = {K1, . . . ,Kl}, where l > 1. We have to prove that
Tl+1 = Antikey(gl+1) such that Key(gl+1) = {K1, . . . ,Kl+1}.

Firstly, we show that if Y ∈ Tl+1, then Y is the subset of U not
containing Kt (t = 1, 2, . . . , l + 1) and being maximal for this property,
i.e. Y ∈ Antikey(gl+1). Indeed, suppose that Y ∈ Tl+1. If Y ∈ Fl, then Y
does not contain the elements Kt (t = 1, 2, . . . , l) and Y is maximal for
this property and at the same Kl+1 6⊆ Y . Therefore, Y is a maximal subset
of U not containing Yt (t = 1, 2, . . . , l + 1). Clearly, if Y ∈ Tl+1 \ Fl, then
there is a Y i

p (1 6 i 6 tj , 1 6 p 6 ri) such that Y = Y i
p . Our construction

shows that Kt 6⊆ Y i
p for all t (t = 1, 2, . . . , l + 1). On the other hand

Y i
p = Xi \ {b} for some b ∈ Kl+1. It is obvious that Kl+1 ⊆ Y i

p ∪ {b}. If
a ∈ U \Xi then, by the inductive hypothesis, for Xi ∪ {a} there exists Ks

(s = 1, 2, . . . , l) such that Ks ⊆ Xi∪{a}. Note that Y i
p ∪{a, b} = Xi∪{a}

and Xi does not contain K1, . . . ,Kl. Thus, a ∈ Ks. Then, if Ks \{a} ⊆ Y i
p

then Ks ⊆ Y i
p ∪{a}. Case, for every Ks (s = 1, 2 . . . , l) with Ks ⊆ Xi∪{a}

and Ks 6⊆ Y i
p , we have b ∈ Ks. Therefore, Ks \ {a, b} ⊆ Y i

p . Consequently,
there exists a Y ′ ∈ Fl such that Y i

p ⊆ Y ′. This contradicts Y ∈ Tl+1 \ Fl.
So there is a Ks (1 6 s 6 l) such that Ks ⊆ Y i

p ∪ {a}.

Next we show that every Y ⊆ U not containing the elements Kt

(t = 1, 2, . . . , l + 1) and being maximal for this property is an element
of Tl+1. Assume that Y is the maximal subset of U not containing Yt
(t = 1, 2, . . . , l + 1). By the inductive hypothesis, there is a Z ∈ Tl
such that Y ⊆ Z. The first case, if Kl+1 6⊆ Z then Z does not contain
K1, . . . ,Kl+1. Because Y is the maximal subset of U not containing Kt

(t = 1, 2, . . . , l + 1), we obtain Y = Z. This implies Y ∈ Fl. Consequently,
we have Y ∈ Tl+1. The second case, if Kl+1 ⊆ Z then Z = Xi holds for
some i ∈ {1, 2, . . . , tj} and Y ⊆ Y i

p holds for some p ∈ {1, 2, . . . , ri}. Then,
if there exists a Y ′ ∈ Fl such that Y i

p ⊂ Y ′, then we also have Y ⊂ Y ′.
This contradicts the definition of Y . Thus, Y i

p ∈ Tl+1. Furthermore Y i
p

does not contain K1, . . . ,Kl+1. Therefore, Y = Y i
p . This means that

Tl+1 = Antikey(gl+1).

Denote |U | = n, Tj = Fj ∪ {X1, . . . , Xtj} and lj be the number of
elements of Tj . Note that if Fj = ∅, then lj = tj .
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Lemma 2. The worst-case time complexity of Algorithm 1 is

O(n2

m−1
∑

j=1

tjuj)

where

uj =

{

lj − tj if lj > tj ,

1 if lj = tj .

Proof. It is easy to see that for constructing Kj+1 the worst-case time
complexity of Algorithm 1 is

{

O(n2(lj − tj)tj) if lj > tj ,

O(n2tj) if lj = tj .

Therefore, the total time of Algorithm 1 in the worst-case is

O(n2

m−1
∑

j=1

tjuj)

where

uj =

{

lj − tj if lj > tj ,

1 if lj = tj .

It can be seen that when closure operation f has only a few minimal
keys, Algorithm 1 is very effective, it does not requires exponential time
in n. In cases for which lj 6 lm (for all q = 1, 2, . . . ,m− 1), the worst-case
time complexity of Algorithm 1 is not greater than O(n2m|Antikey(f)|2).
Hence, in these cases Algorithm 1 finds Antikey(f) in polynomial time in
n,m and |Antikey(f)|.

Example 4. Let U = {a, b, c, d, e, f} and f ∈ Cl(U) with Key(f) =
{{a, c, d}, {b, c, d}, {e, f}}.

According to Algorithm 1, we have

T1 = {{b, c, d, e, f}} ∪ F1, where F1 = {{a, b, d, e, f}, {a, b, c, e, f}};

T2 = {{a, b, d, e, f}, {a, b, c, e, f}, {c, d, e, f}} ∪ F2, where F2 = ∅;

T3 = {{a, b, d, f}, {a, b, d, e}, {a, b, c, f}, {a, b, c, e}, {c, d, f}, {c, d, e}}.

Consequently, the set of all antikeys of f is

{{a, b, d, f}, {a, b, d, e}, {a, b, c, f}, {a, b, c, e}, {c, d, f}, {c, d, e}}.
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4. Finding the set of all minimal keys of closure

operations

In this section, we firstly construct the following algorithm for finding
a minimal key of clsoure operations.

Algorithm 2 (H). (Finding a minimal key)
Input: f ∈ Cl(U) with AntiKey(f) = {K−1

1
,K−1

2
, . . . ,K−1

p }.
Output: K ∈ Key(f).
Step 1: We select a set X ⊆ U such that there exists an antikey

K−1

l ∈ Antikey(f) that X = K−1

l ∪ {a}, where a /∈ K−1

l . Suppose that
X = {a1, a2, . . . , aq}. Set T0 = X.

Step i+ 1 (i = 0, 1, . . . , q − 1): We compute

Ti+1 =

{

Ti \ {ai+1} if ∀K−1

j ∈ Antikey(f) : Ti \ {ai+1} 6⊆ K−1

j

Ti otherwise.

Step q + 1: Let K = Tq.

It is easy to see that the time comlexity of Algorithm 2 is O(|U |2 · p).
Therefore, our algorithm is very effective.

Lemma 3. The sets Ti (i = 0, 1, . . . , q) are the keys and Tq is a minimal
key of closure operation f .

Proof. (Prood by induction) It is easy to see that T0 is a key. If Ti is a
key and Ti+1 = Ti, then it is clear that Ti+1 is a key. If Ti+1 = Ti \ {ai+1}
and f(Ti+1) 6= U , then, by Theorem 1, there exists a K−1

j ∈ Antikey(f)

such that f(Ti+1) ⊆ K−1

j . Thus, Ti+1 ⊆ K−1

j . Which contradicts with the

fact ∀K−1

j ∈ Antikey(f) : Ti+1 6⊆ K−1

j . Therefore, Ti+1 is a key.
Now assume that Y ⊂ Tq. It is clear that if a /∈ Y , then f(Y ) 6= U . If

a ∈ Y , then there exists an ai ∈ X such that ai ∈ Tq \ Y . According to
Algorithm 2, there exists a K−1

t ∈ Antikey(f) such that Ti−1\{ai} ⊆ K−1
t .

Then we obtain

Y ⊆ Tq \ {ai} ⊆ Ti−1 \ {ai} ⊆ K−1
t .

Note that Tq ⊆ Ti (0 6 i 6 q − 1). This implies that f(Y ) 6= U .
Consequently, we have Tq ∈ Key(f).

Example 5. Let U = {a, b, c, d, e, f} and f ∈ Cl(U) with Antikey(f) =
{{b, c, e}, {a, b, f}, {b, c, f}, {a, d, e}, {a, d, f}, {b, d, e}, {a, c, e}, {b, d, f}}.
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Consider X = {a, d, f, c}. Then we have

T0 = {a, d, f, c}, T1 = {d, f, c}, T2 = {d, f, c},

T3 = {d, c}, T4 = {d, c}.

Hence, K = {d, c} is a minimal key of f .

Note that Algorithm 2 also give K ∈ Key(f) if X is an arbitrary
key of f . It is best to choose X such that |X| is minimal. The condition
∀K−1

j ∈ Antikey(f) : Ti\{ai+1} 6⊆ K−1

j in Algorithm 2 may be replaced by

the condition ∀K−1

j ∈ {K−1
t ∈ Antikey(f) : a ∈ K−1

t } : Ti\{ai+1} 6⊆ K−1

j .
Then Algorithm 2 will be more effective.

The following result is the basis for the algorithm to find all the
minimal keys of closure operations.

Lemma 4. Let f, f ′ ∈ Cl(U) such that Key(f ′) ⊆ Key(f). Suppose
that Antikey(f) = {K−1

1
,K−1

2
, . . . ,K−1

p }. Then Key(f ′) ⊂ Key(f) and
Key(f ′) 6= ∅ if and only if there exists a X ∈ Antikey(f ′) such that
X 6⊆ K−1

j , ∀j = 1, 2, . . . , p.

Proof. Assume that Key(f ′) 6= ∅ and Key(f ′) ⊂ Key(f). This implies
that there exists a minimal key K ∈ Key(f) \Key(f ′). It is easy to see
that Key(f ′) ∪ {K} is a Sperner system. Hence, there exists the biggest
set X such that K ⊆ X and Key(f ′) ∪ {X} is still a Sperner system.
This means X ∈ Antikey(f ′). Since K ∈ Key(f), we have K 6⊆ K−1

j ,

∀j = 1, 2, . . . , p. Consequently, X 6⊆ K−1

j , ∀j = 1, 2, . . . , p.
Conversely, assume that there exists a X ∈ Antikey(f ′) such that

X 6⊆ K−1

j , ∀j = 1, 2, . . . , p. Because Antikey(f ′) 6= ∅, we have Key(f ′) 6=

∅, and for all Y ∈ Key(f ′), Y 6⊆ X. Clearly, if there exists a K−1

j ∈

Antikey(f) such that K−1

j ⊂ X, then X is a key of f . If f(X) 6= U , then

by Theorem 1 there is a K−1

j ∈ Antikey(f) such that f(X) ⊆ K−1

j . Hence,

X ⊆ K−1

j , which contradicts the fact X 6⊆ K−1

j , ∀j = 1, 2, . . . , p. Thus, X
is a key of f . This means there exists a K ⊆ X and K ∈ Key(f)\Key(f ′).
Consequently, Key(f ′) ⊂ Key(f).

Based on Lemma 4 we present the algorithm for finding all minimal
keys of closure operations.

Algorithm 3. (Finding all minimal keys)
Input: f ∈ Cl(U) with Antikey(f) = {K−1

1
,K−1

2
, . . . ,K−1

p }.
Output: Key(f).
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Step 1: Using Algorithm 2 we construct a minimal key K1 ∈ Key(f).
We set Key(f1) = {K1} with f1 ∈ Cl(U).

Step i + 1 (i = 1, 2, . . .): We compute Antikey(fi) with fi ∈ Cl(U).
If there is a X ∈ Antikey(fi) such that X 6⊆ K−1

j , ∀j = 1, 2, . . . , p, then
by Algorithm 2 we determine a Ki+1 ∈ Key(f) and Ki+1 ⊆ X. Set
Key(fi+1) = Key(fi) ∪ {Ki+1}.

In the converse case, we set Key(f) = Key(fi). The algorithm stops.

It is easy to see that the time comlexity of Algorithm 3 is exponential
in the number of elements of set U .

We now consider again Example 5. We already know that K1 =
{d, c} ∈ Key(f). Set Key(f1) = {{d, c}}. Then we have Antikey(f1) =
{{a, b, d, e, f}, {a, b, c, e, f}}. Because {a, b, d, e, f} ∈ Antikey(f1) and
{a, b, d, e, f} 6⊆K−1

j for all K−1

j ∈Antikey(f) we consider X={a, b, d, e, f}.
Then we obtain

T0 = {a, b, d, e, f}, T1 = {b, d, e, f}, T2 = {d, e, f},

T3 = {e, f}, T4 = {e, f}, T5 = {e, f}.

Thus,K2 = {e, f} ∈ Key(f). We now set Key(f2) = Key(f1)∪{K2} =
{{c, d}, {e, f}}. Then we have

Antikey(f2) = {{a, b, c, e}, {a, b, c, f}, {a, b, d, e}, {a, b, d, f}}.

The same as above, we obtain K3 = {a, b} ∈ Key(f). Set Key(f3) =
Key(f2)∪{K3}={{c, d}, {e, f}, {a, b}}. It implies Antikey(f3)={{c, e, a},
{c, e, b}, {c, f, a}, {c, f, b}, {d, e, a}, {d, e, b}, {d, f, a}, {d, f, b}}.

We set Key(f) = Key(f3). Therefore, the set of all minimal keys of f is

{{c, e, a}, {c, e, b}, {c, f, a}, {c, f, b}, {d, e, a}, {d, e, b}, {d, f, a}, {d, f, b}}.

5. Some observations on closeness of the closure

operations

Let U be a finite set and Ma(U) denotes the set of all mappings
P(U) → P(U). We consider f1, f2 ∈ Ma(U). A mapping g : P(U) →
P(U) such that g(X) = f1(X) ∩ f2(X) for every X ⊆ U is called inter-
section of f1 and f2, denoted by g = f1 ∧ f2.

A mapping h : P(U) → P(U) defined by h(X) = f1(X) ∪ f2(X) for
every X ⊆ U is called union of f1 and f2, denoted by h = f1 ∨ f2.

A mapping k : P(U) → P(U) defined by k(X) = f1(f2(X)) for each
X ⊆ U is called composition of f1 and f2, denoted by k = f1f2.
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Let U1 and U2 be two disjoint finite sets, and two mappings f1 ∈
Ma(U1), f2 ∈ Ma(U2). A mapping l : P(U1 ∪ U2) → P(U1 ∪ U2) defined
by l(X) = f1(X ∩ U1) ∪ f2(X ∩ U2) for all X ⊆ U1 ∪ U2 is called a direct
product of f1 and f2, denoted by l = f1 × f2.

It is known [3,9] that the class of closure operations is closed under
intersection and direct product operations. However, the class of the
closure operations is not closed under union and composition operations.
Two sufficient and necessary conditions for the closure operations class
to be closed under the composition operation are proposed in [8]. In this
section we first show that the class of closure operations is not closed
under the union operation.

Proposition 2. The union of two closure operations is not a closure
operation.

Proof. We consider the following counterexample: let U = {a, b, c} and
two mappings fa, ga : P(U) → P(U), as follows:

fa(X) = X ∪ {a},

and

ga(X) =

{

X if a /∈ X

U otherwise

for every X ⊆ U .

Clearly, fa = t{a}. Therefore, it is easy to see that fa, ga ∈ Cl(U).

We now consider X = {b} and set h = fa ∨ ga. Then we get

h(X) = fa(X) ∪ ga(X) = {a, b} ∪ {b} = {a, b},

h(h(X)) = h({a, b}) = {a, b} ∪ U = U.

This implies that h /∈ Cl(U).

Note that it is easy to see h satisfies (C1) and (C2).

It can be seen that if f1, f2 ∈ Cl(U) and f1(X) ⊆ f2(X) or f2(X) ⊆
f1(X) for all X ⊆ U , then f1 ∨ f2 ∈ Cl(U).

It is known [3] that the closeness of closure operations class under
direct product operation is proved by the concept of represent matrix of
closure operations. However, in this section we shall prove this result only
by the definition of closure operation. The proof shows the essence of
closure operations.
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Proposition 3. The direct product of two closure operations is a closure
operation.

Proof. Suppose that f1 ∈ Cl(U1), f2 ∈ Cl(U2), U1 ∩ U2 = ∅ and U =
U1 ∪ U2. We shall prove f1 × f2 ∈ Cl(U).

Clearly, we first have X = (X ∩ U1) ∪ (X ∩ U2) for all X ⊆ U1 ∪ U2.
Furthermore, X ∩ U1 ⊆ f1(X ∩ U1) and X ∩ U2 ⊆ f2(X ∩ U2). This
implies that (X ∩ U1) ∪ (X ∩ U2) ⊆ f1(X ∩ U1) ∪ f2(X ∩ U2). Hence,
X ⊆ f1(X ∩ U1) ∪ f2(X ∩ U2).

Next, we have X∩U1 ⊆ Y ∩U1 and X∩U2 ⊆ Y ∩U2 for all X ⊆ Y ⊆ U .
Then by using (C2) of f1 and f2, we obtain f1(X ∩ U1) ∪ f2(X ∩ U2) ⊆
f1(Y ∩ U1) ∪ f2(Y ∩ U2).

Lastly, we set l = f1 × f2. Then we obtain

f1(l(X) ∩ U1) = f1((f1(X ∩ U1) ∪ f2(X ∩ U2)) ∩ U1)

= f1((f1(X ∩ U1) ∩ U1) ∪ (f2(X ∩ U2) ∩ U1))

= f1(f1(X ∩ U1) ∩ U1)

= f1(X ∩ U1).

By using the symmetry, we also have f2(l(X)∩U2) = f2(X∩U2). Thus,
we get l(l(X)) = f1(l(X)∩U1)∪f2(l(X)∩U2) = f1(X∩U1)∪f2(X∩U2) =
l(X).

Now let f1, f2, . . . , fn be closure operations on the disjoint ground
sets U1, U2, . . . , Un respectively. Then the direct product of f1, f2, . . . , fn,
denoted as f1 × f2 × · · · × fn, is defined as following

f1 × f2 × · · · × fn(X) =

n
⋃

i=1

fi(X) ∩ U

with X ⊆ U1 ∪ U2 ∪ · · · ∪ Un.
By the induction we also obtain the following result for n closure

operations.

Corollary 1. The direct product of n closure operations is a closure
operation.

6. Conclusion

The paper first proposes some combinatorial characteristics of minimal
key and antikey of closure operations. After that it give effective algorithms
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finding minimal keys and antikeys of closure operations. Lastly, the paper
investigates the closeness of closure operations class under the union and
direct product operations.
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