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Abstract. The notion of a topological Ramsey space was

introduced by Carlson some 30 years ago. Studying the topological

Ramsey space of variable words, Carlson was able to derive many

classical combinatorial results in a unifying manner. For the class

of spaces generated by algebras, Carlson had suggested that one

should attempt a purely combinatorial approach to the study. This

approach was later formulated and named Ramsey algebra. In this

paper, we continue to look at heterogeneous Ramsey algebras, mainly

characterizing various Ramsey algebras involving matrices.

1. Introduction

The notion of a Ramsey algebra came as an offshoot of Carlson’s
pioneering work on (topological1) Ramsey spaces [2] when he suggested
that the class of Ramsey spaces induced by algebras can be singled out
and be studied combinatorially. Of particular importance was the space
of multivariable words. By making the right choices of alphabets, Carlson
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1What is known as a topological Ramsey space in the modern literature is known

simply as a Ramsey space in Carlson’s original work. The adjective “topological" is
added through Todorocevic’s extension [13] of Carlson’s work on the subject.
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derived a wide array of classic combinatorial results as corollaries to a result
of his concerning the topological Ramsey space of multivariable words,
results which were otherwise derived on independent grounds. Among
those classical results were the Hales-Jewett theorem, Ellentuck’s theorem,
and Hindman’s theorem in particular.

The initiating studies on Ramsey algebras can be found in the papers
[5], [8], and [9]. In [9], the second author addresses a question of Carlson
concerning the existence of idempotent ultrafilters for Ramsey algebras.
A precise connection between the notion of a (topological) Ramsey space
and the notion of a Ramsey algebra can be found in Section 4 of [11].
As the name implies, Ramsey algebras are algebras possessing a certain
homogeneity property as is the case with any Ramsey-type result. We will
give a precise definition for what is meant by a (heterogeneous) Ramsey
algebra in the next section.

An algebra consists of a nonempty domain and a collection of opera-
tions on the domain. In this paper, we will look at the Ramsey algebraic
aspects of various reducts of the matrix algebra consisting of matrix
addition and multiplication, the field operations, and the determinant
operation. We will study generalizations to wider classes of algebras and
derive the properties concerning matrices as corollaries. Proofs that are
omitted in this paper can mostly be found in a parallel paper [10] uploaded
to arxiv.org; that parallel submission does not differ in content and outline
from this, except that it contains most proofs we have chosen to omit
here.

2. Preliminaries

The set of positive integers will be denoted by N and ω the set of
nonnegative integers. The domain of an operation f will be denoted by
Dom(f) and the image set Im(f). The identity function on any set A

is denoted by idA. A function f is said to be an operation on {Aξ}ξ∈I
if Dom(f) =

∏

ξ∈J Aξ for some finite J ⊆ I and the codomain of f is
Aξ for some ξ ∈ I. Let {Aξ}ξ∈I be a family of nonempty sets with I

the indexing set and let F be a family of operations on {Aξ}ξ∈I . The
structure ({Aξ}ξ∈I ,F) is called a heterogeneous algebra or algebra in short.
If I is a singleton, the algebra is referred to as a homogeneous algebra for
emphasis. The family {Aξ}ξ∈I is called the domain of the algebra and
each member of the family a phylum. Every ~e ∈ ωI is called a sort and,

if ~b ∈ ω
(

⋃

ξ∈I Ai

)

, then ~b is said to be ~e-sorted if ~b(i) ∈ A~e(i) for each
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i ∈ ω. If the lists of phyla or operations are not long, we will write them
out explicitly. For instance, if I = {0, 1} and F = {◦,+,×}, the algebra
would be written (A1, A0, ◦,+,×).

Following Carlson’s convention, we require that the phyla in a given
algebra be pairwise disjoint. This allows the sort of any sequence in the
context of a given algebra be unique.

We will call an operation f heterogeneous if f : Aξ1×· · ·×AξN → AξN+1

and there exist i, j ∈ {1, . . . , N + 1} such that Aξi 6= Aξj .
For notational convenience, we will sometimes write an n-tuple x̄ =

(x1, . . . , xn) in the notation of a sequence ~x = 〈x1, . . . , xn〉 so that, for
instance, if f is an operation whose domain is the Cartesian product of
n sets, then f(~x) will mean the same thing as f(x̄). The concatenation
operation of sequences will be denoted by ∗. Now, let F be a family of
functions on {Aξ}ξ∈I . Define F0 = F ∪ {idAξ

: ξ ∈ I} and, suppose that
Fk has been defined, let

Fk+1 = Fk ∪ {f : ϕ(f)},

where ϕ(f) is the statement that there exist some N -ary operation g ∈ F
and some h1, . . . , hN ∈ Fk such that f(~x) = g(h1(~x1), . . . , hN (~xN )) and
~x1 ∗ · · · ∗ ~xN = ~x = 〈x1, . . . , xn〉, where n is the arity of f . Then, we have
the following definition:

Definition 1 (Orderly Term). Denote the set
⋃

k∈ω Fk by OT(F). Each
member of OT(F) is called an orderly term over F .

Example 1. Consider the addition + and multiplication × operations on
matrices. The composition f(x1, x2, x3, x4) = ×(+(x1, x2),+(x3, x4)) =
(x1 + x2)(x3 + x4) is an orderly composition over {+,×}. Another exam-
ple is g(x1, x2, x3, x4) = ×(+(×(x1, x2), x3), x4) = (x1x2 + x3)x4. How-
ever, the compositions h(x1, x2, x3) = +(x2,×(x1, x3)) = x2 + x1x3 and
k(x1, x2, x3) = ×(×(x3,+(x2, x1)), x4) = (x3(x2 + x1))x4 are not.

Definition 2 (Reduction 6F ). Let ({Aξ}ξ∈I ,F) be an algebra and let

~a,~b ∈ ω
(

⋃

ξ∈I Aξ

)

. Then ~a is said to be a reduction of ~b, written ~a 6F
~b,

if for each j ∈ ω, there exist a subsequence ~bj of ~b and an fj ∈ OT(F)
such that

1) ~a(j) = fj(~bj) and

2) ~b0 ∗~b1 ∗ · · · forms a subsequence of ~b.

Note that if ~a is a subsequence of ~b, then ~a 6F
~b. We will make free

use of this fact throughout. Also note that 6F is a transitive relation and,
if G ⊆ F are families of operations and ~a 6G

~b, then ~a 6F
~b.
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Definition 3. Let ({Aξ}ξ∈I ,F) be an algebra and ~e ∈ ωI. For each ~e-

sorted sequence ~b, define

FR~e
F (
~b) =

{

~a(0) : ~a 6F
~b and ~a is ~e-sorted

}

. (1)

We are now ready for the notion of a heterogeneous Ramsey algebra.

Definition 4 (~e-Ramsey Algebra). Suppose that ({Aξ}ξ∈I ,F) is an alge-
bra and ~e ∈ ωI. Then ({Aξ}ξ∈I ,F) is said to be an ~e-Ramsey algebra if,

for each ~e-sorted sequence ~b and each X ⊆ A~e(0), there exists an ~e-sorted

reduction ~a of ~b such that FR~e
F (~a) is either contained in or disjoint from X.

Such a sequence ~a is said to be homogeneous for X (with respect to F).

We now look at some examples.

Theorem 1 (Hindman). (N,+) is a Ramsey algebra. More generally,
every semigroup is a Ramsey algebra.

The next theorem can be found in [5] as Theorem 5.5.

Theorem 2. The following are not Ramsey algebras:

1) Infinite rings without zero divisors.
2) Infinite rings of characteristic zero with identity.

Vector spaces are examples of heterogeneous algebras. A vector space
is an algebra with two phyla A1, A0, the former of which we set to be the
set of vectors and the latter the underlying scalar field. Classification of
Ramsey vector spaces can be found as Theorem 6.1 in [11].

Let I be the indexing set of some algebra. Define

Ω = {~e ∈ ωI : if ~e(i) = ξ for some i, then ~e(i) = ξ for infinitely many i}.

Further, for each ξ ∈ I, the set of all ~e ∈ Ω such that ~e(0) = ξ will be
denoted by Ωξ. For sorts ~e ∈ Ω, the sets defined by Eq. 1 has the following
characterization:

c ∈ FR~e
F (
~b) ⇐⇒ c = f(τ) (2)

for some f ∈ OT(F) with codomain A~e(0) and some finite subsequence τ

of ~b. In particular, in the case of homogeneous algebras, the sets given by
Eq. 1 can be characterize as

FRF (~b) = {f(τ) : f ∈ OT(F), τ a subsequence of ~b}. (3)
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We will mainly be concerned with Ramsey algebraic properties involv-
ing sorts of the class Ω since results concerning sorts of this class is more
uniform. The following theorem, which appears as Theorem 5.3 of [11],
gives a precise formulation of this uniformity:

Theorem 3. Let A =
(

⋃

ξ∈I Aξ,F
)

be an algebra, J ⊆ I, and define

~e ∈ ΩJ
η if and only if ~e ∈ Ω, ~e(0) = η, and {~e(i) : i ∈ ω} = J . Then A

is an ~e-Ramsey algebra for some ~e ∈ ω if and only if A is an ~e-Ramsey
algebra for all ~e ∈ ω.

Before ending this section, we mention a fact concerning subalgebras.
If A = ({Aξ}ξ∈I , F) is an algebra, then a subalgebra A′ = ({A′

ξ}ξ∈I ,F
′)

of A is an algebra such that A′
ξ ⊆ Aξ for each ξ ∈ I and, for each f ′ ∈ F ′,

there exists an f ∈ F with f : Aξ1 × · · · × Aξn → Aξn+1
such that

f ′ = f ↾
(

A′
ξ1
× · · · ×A′

ξn

)

(restriction property).

Proposition 1. For any sort ~e, every subalgebra of an ~e-Ramsey algebra
is an ~e-Ramsey algebra.

Proof. Suppose ~e is a sort, A = ({Aξ}ξ∈I ,F) is an ~e-Ramsey algebra,
and A′ = ({A′

ξ}ξ∈I ,F
′) is a subalgebra of A. Let X ⊆ A′

~e(0) and let an

~e-sorted sequence ~b of
⋃

ξ∈I A
′
ξ be given.

Since A′
ξ ⊆ Aξ, ~b is also a sequence of

⋃

ξ∈I Aξ. Thus, pick an ~e-sorted

~a 6F
~b homogeneous for X, i.e. FR~e

F (~a) ⊆ X or FR~e
F (~a) ⊆ A~e(0) \ X.

Since the terms of ~b consist of elements of
⋃

ξ∈I A
′
ξ, the terms of ~a are also

members of
⋃

ξ∈I A
′
ξ by the restriction and closure properties of operations

within a subalgebra, whereby ~a 6F ′
~b. In addition, FR~e

F (~a) = FR~e
F ′(~a) ⊆

A′
~e(0). Consequently, we have FR~e

F ′(~a) ⊆ X or FR~e
F ′(~a) ⊆ A′

~e(0) \X.

3. Ramsey-type theorems for various matrix algebras

Throughout the paper, the set of n× n square matrices over a field F

will be denoted by Mn(F). Addition and multiplication of matrices will
be denoted by + and ×, respectively. Addition and multiplication of field
elements will come with a subscript F. The field F will be assumed to be
of characteristic 0 throughout; in such a case, the rational numbers are
embedded within F, hence we will speak freely of the isomorphic copies of
the integers, the nonnegative integers, or the rationals in the F in question
simply as the integers and so on. Throughout, we fix the indexing in such
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a way that the set F of scalars receives the index 0 while the set V of
vectors receives the index 1.

Assumption 1. The field F is assumed to be infinite with characteristic 0
throughout this section.

In this section, we begin the study of the Ramsey-algebraic properties
of various matrix algebras. We call the algebra (Mn(F), F, +, ×, +F, ×F,
| ∗ |) the full matrix algebra and any reduct of it is known as a matrix
algebra. We will be studying these algebras by looking at slightly more
general algebras.

Assumption 2. The algebras A = (A0, A1,F) studied in this section are
of the form F = G0 ∪ G1 ∪H, where G0 consists of operations on A0, G1

consists of operations on A1, and H consists only of unary operations
from A1 into A0 and is assumed to be nonempty. We will also denote the
algebra (A0,G0) by A0 and the algebra (A1,G1) by A1.

Situations when H is empty can be found in Theorem 5.2 (1) of [11]. It
states that, for each i = 0, 2 and each ~e ∈ Ωi, the algebra (A0, A1,G0,G1)
is an ~e-Ramsey algebra if and only if Ai is a Ramsey algebra. This leads
to the following corollary.

Corollary 1. Let n ∈ N, ~e ∈ Ω, and let A′ be a reduct of the full matrix
algebra not containing the determinant operation. Then A′ is an ~e-Ramsey
algebra if and only if G~e(0) consists of at most one of the two ring operations
pertaining to A~e(0).

Proof. The proof is immediate; we only need to look at the appropriate
A0 or A1 to decide if A′ is a Ramsey algebra. Of a priori importance
is the fact that any ring of matrices (Mn(F),+,×) is not a Ramsey
algebra. This hinges upon the fact that F can be embedded into Mn(F)
as diagonal matrices all of whose diagonal elements are equal to some
field element r. Diagonal matrices of this form thus form a subalgebra
of (Mn(F),+,×) and, since the subalgebra (F,+F,×F) is not a Ramsey
algebra, (Mn(F),+,×) is not a Ramsey algebra either.

We have, therefore, identified the Ramsey algebraic properties of all
reducts of the full matrix algebra for which the determinant operation is
absent.

As per Assumption 1, the algebras of concern are such that any het-
erogeneous operations are unary from A1 into A0. This condition allows
us to derive the following theorem.
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Theorem 4. For each ~e ∈ Ω1, A is an ~e-Ramsey algebra if and only if
A1 is a Ramsey algebra.

Proof. (⇒) Suppose that A is an ~e-Ramsey algebra and ~β is an infinite se-
quence of A1. Pick any ~e-sorted sequence~b so that ~β forms the subsequence
of ~b all of whose terms belong in A1.

By hypothesis, let ~a 6F
~b be ~e-sorted and homogeneous for X. We

observe that, if ~α is the subsequence of ~a all of whose terms are members of
A1, then (1) ~α 6G1

~β and (2) ~α is homogeneous for X. This is so because
every orderly term over F with codomain A1 must have as domain a
Cartesian power of A1. It then follows that (A1,G1) is a Ramsey algebra.

(⇐) Suppose (A1,G1) is a Ramsey algebra. Given X ⊆ A1 and an
~e-sorted sequence ~b, let ~β be the subsequence of ~b consisting of elements
of A1. By hypothesis, pick an ~α 6G1

~β homogeneous for X. In fact, by
carefully going through the definition of reduction, we can pick such an
~α so that, for any ~e-sorted ~a such that ~α is the subsequence of ~a whose
terms are members of A1, we have ~a 6F

~b.

Thus, again by the observation we made in the (⇒) case, we have that
FR~e

F (~a) = FRG1
(~α), whence the homogeneity of ~a for X is established.

Theorem 4 offers a complete answer as to when a matrix algebra is an
~e-Ramsey algebra in the case when ~e ∈ Ω1:

Corollary 2. Let n ∈ N. For any ~e ∈ Ω1, all reducts of the full matrix
algebra (Mn(F), F, +, ×, +F, ×F, | ∗ |) is an ~e-Ramsey algebra except for
those reducts that keep both matrix operations.

Proof. This is because (Mn(F),+) and (Mn(F),×) are Ramsey algebras
(because they are semigroups) and, since F is embedded in (Mn(F), +,
×), it is not a Ramsey algebra by Theorem 2.

Thus, we should now focus on the situations when ~e ∈ Ω \ Ω1 as well
as when H is nonempty. Henceforth, we make the following assumption:

Assumption 3. H is assumed to be a singleton and its sole member will
be denoted by h henceforth.

The determinant operation is a homomorphism from the set of matrices
equipped with matrix multiplication to the multiplicative group of the
underlying field. Suppose that two homogeneous algebras A0 and A1

have the same signature, i.e. if there exists a one-to-one correspondence
between G0 and G1 such that, if F ∈ G1 is an n-ary operation, then the
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corresponding operation f ∈ G0 is also n-ary. Then h : A1 → A0 is said
to be a homomorphism from A1 into A0 if for each corresponding n-ary
operation F ∈ G1 and f ∈ G0, and for all (a1, . . . , an) in the domain of f ,

h(F (a1, . . . , an)) = f(h(a1), . . . , h(an)). (4)

Lemma 1. Suppose that ~e ∈ Ω0 and h is a homomorphism from A1 into
A0. If ~α ∈ ωA1 and the ~e-sorted sequence ~a are related by Eq. 3, then for
each N -ary f ∈ OT(F) having codomain A0 and each n1 < · · · < nN , there
exists an N -ary F ∈ OT(G1) such that f(~a(n1), . . ., ~a(nN )) = h(F (~α(n1),
. . ., ~α(nN ))). In addition, FR~e

F (~a) = {h(c) : c ∈ FRG1
(~α)}.

Proof. We prove the lemma by induction on the generation of f . For the
base case, we consider f ∈ G0 ∪ {h} ∪ {idA0

}. If f = idA0
, then

f(~a(i)) = idA0
(h(~α(i))) = h(idA1

(~α(i)))

which clearly shows that f(~a(i)) is in the stipulated form. For f = h,
the proof is similar. Thus, suppose now that f is an N -ary operation
belonging in G0 and n1 < · · · < nN . Let F be the corresponding operation
in G1 under the homomorphism h. Then

f(~a(n1), . . . ,~a(nN )) = f(h(~α(n1)), . . . , h(~α(nN )))

= h (F (~α(n1), . . . , ~α(nN ))) ,

which again is in the stipulated form. The last base case to consider is
when f = h, but this is immediate.

Next, for the inductive step, suppose that f is such that f(~a(n1),
. . ., ~a(nN )) = G(G1(τ1), . . ., GN (τN )), where G ∈ G0 ∪ {h} ∪ {idA0

}
and τ1 ∗ · · · ∗ τN = 〈~a(n1), . . . ,~a(nN )〉. For each finite subsequence τ =
〈~a(m1), . . . ,~a(mM )〉 of ~a, let τ̃ denote the finite subsequence 〈~α(m1), . . .,
~α(mM )〉 of ~α. We omit the case when f = h as the proof is immediate.
Thus, by induction hypothesis, let F1, . . . , FN ∈ OT(G1) be such that
Gi(τi) = h(Fi(τ̃i)) for each i ∈ {1, . . . , N}. Then, denoting by G′ ∈ G1 the
operation corresponding to G under the homomorphism h, we now have

f(~a(n1), . . . ,~a(nN )) = G(G1(τ1), . . . , GN (τN ))

= G(h(F1(τ̃1)), . . . , h(FN (τ̃N )))

= h(G′(F1(τ̃1), . . . , FN (τ̃N ))).

Since G′, F1, . . . , FN ∈ OT(G1) and σ1 ∗ · · · ∗ σN = 〈~α(n1), . . . , ~α(nN )〉, it
follows that f(~a(n1), . . ., ~a(nN )) can be expressed in the stipulated form.
This completes the induction proof of the first conclusion of the lemma.

The other conclusion of the lemma can now be deduced easily.
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Theorem 5. Suppose that A1 is a Ramsey algebra and h is a homomor-
phism. Then, A is an ~e-Ramsey algebra for each ~e ∈ Ω0.

Proof. Suppose that ~e ∈ Ω0, ~b is an ~e-sorted sequence, and X ⊆ A0. Let
~β be the subsequence of ~b whose terms are members of A1. As such,
let ~α 6G1

~β be homogeneous for h−1[X]. Take note that the relation
~α 6F

~β 6F
~b holds by the transitivity of 6F and the fact that G1 ⊆ F .

Now let the ~e-sorted sequence ~a be defined by

~a(i) =

{

~α(i) if ~e(i) = 1,
h(~α(i)) otherwise.

Noting that ~a 6F ~α, we have ~a 6F
~b by the transitivity of 6F . We may

now apply Lemma 1. Namely, each member of FR~e
F (~a) is the image of some

c ∈ FRG1
(~α) under h since h is a homomorphism. From this, we conclude

that FR~e
F (~a) ⊆ X or FR~e

F (~a) ⊆ A0 \X depending respectively on whether
FRG1

(~α) ⊆ h−1[X] or FRG1
(~α) ⊆ A1 \ h

−1[X]. This is a statement about
the homogeneity of ~a for X, hence A is an ~e-Ramsey algebra.

Corollary 3. (Mn(F),F,×F,×, | ∗ |) is an ~e-Ramsey algebra for each
~e ∈ Ω0 and n ∈ ω.

Noting that FR~e
∅(~a) ⊆ FR~e

G(~a) for any family of operation G, we see
that a slight modification of the proof above yields the following theorem.
See Theorem 3.2 of [10] for a complete proof.

Theorem 6. Suppose that ~e ∈ Ω0. If G0 = ∅ and A1 is a Ramsey algebra,
then A is an ~e-Ramsey algebra.

Corollary 4. For each ~e ∈ Ω0 and n ∈ ω, the algebras (Mn(F),F, | ∗ |),
(Mn(F),F,+, | ∗ |), and (Mn(F),F,×, | ∗ |) are ~e-Ramsey algebras.

If the heterogeneous operation h is a one-to-one function, then we may
deduce a result on the negative spectrum:

Theorem 7. Suppose that A1 is not a Ramsey algebra as witnessed by ~β

and X1 and that h is one-to-one on FRG1
(~β). Then, A is not an ~e-Ramsey

algebra for all nonconstant ~e ∈ Ω0.

Proof. Let ~e ∈ Ω0 be nonconstant. Begin by defining an ~e-sorted sequence
~b as follows:

~b(i) =

{

~β(i) if ~e(i) = 1,

h(~β(i)) otherwise.
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Observe that, for every ~e-sorted ~a 6F
~b, the subsequence ~α consisting of

terms belonging in A1 is such that ~α 6G1
~β and, therefore, FRG1

(~α) 6⊆
X and FRG1

(~α) 6⊆ A1 \ X by hypothesis. Consequently, since ~e is not
constant, we see that FR~e

F (~a) is such that FR~e
F (~a) 6⊆ h(X ∩ FRG1

(~β))

and FR~e
F 6⊆ A0 \ h(X ∩ FRG1

(~β)) owing to the fact that h is a one-to-one
function. Hence, A is not an ~e-Ramsey algebra.

Note that the theorem above requires that ~e being nonconstant. If ~e is
constant, then the conclusion depends solely on whether A0 is a Ramsey
algebra or not.

Corollary 5. Neither (Mn,F,+,×, | ∗ |), (Mn,F,+,×,+F, | ∗ |), (Mn,
F, +, ×, ×F, | ∗ |), nor the full matrix algebra is an ~e-Ramsey algebra for
any nonconstant ~e ∈ Ω0.

Proof. (A sketch.) Note that matrix ring has zero divisors, so we cannot
apply Theorem 2 directly. However, since our field F of interest are of
characteristic 0, we may take as bad sequence ~b the sequence of diagonal
matrices whose diagonal elements are terms of the bad sequence 〈22

i

〉i∈ω
as given by Example 2.4.1 of [6]. Hence | ∗ | will be one-to-one on FRG1

(~β)
and the conclusion follows from the theorem above.

We have another result of the negative nature, but first we need a
lemma.

Lemma 2. Suppose that h is a homomorphism, ~β ∈ ω Im(h), ~e ∈ Ω0, and
~b is ~e-sorted such that ~β(i) = h(~b(i)) if ~e(i) = 1 and ~b(i) = ~β(i) otherwise.
Then we have:

1) If f is an N -ary member of OT(F) having codomain A0, then
for each n1 < · · · < nN , there exists F ′ ∈ OT(G0) such that

f
(

~b(n1), . . . ,~b(nN )
)

= F ′
(

~β(n1), . . . , ~β(nN )
)

.

2) If ~u 6F
~b and ~u ∈ ωA0, then ~u 6G0

~β.

For this lemma, 2) follows easily from 1), which can be obtained by
an application of Lemma 1.

Theorem 8. Suppose that h is a homomorphism and suppose that A0 is
not a Ramsey algebra. If there exists a sequence ~β ∈ ω Im(h) and a set
X ⊆ A0 witnessing the failure of A0 being a Ramsey algebra, then A is
not an ~e-Ramsey algebra for all ~e ∈ Ω0 .

This theorem appears correspondingly as Theorem 3.5 in [10]. Although
a proof can be found in the accompanying paper, the reader who is familiar
with the technique above should now be able to derive the result.
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Corollary 6. (Mn,F,+F,×F, | ∗ |) and (Mn,F,×,+F,×F, | ∗ |) are not
~e-Ramsey algebras for any ~e ∈ Ω0.

4. More on matrix algebras

In this section, we tackle the remaining matrix algebras obtainable as
reducts of the full matrix algebra (Mn(F), F, +,×,+F, ×F, | ∗ |). With
the exception of 1., Theorem 9, results in this section are of a negative
nature. Note again that the case with ~e ∈ Ω1 follows from Theorem 4.

We begin with a lemma from which, either in its full power or special
cases of it, many results can be derived as we shall see. We will make use
of the uniqueness of binary representation of the positive integers (UBR).

Lemma 3. Let 0 < i1 < · · · < iL and 0 < j1 < · · · < jM < k1 < · · · < kN
be integers. Then,

(

22
i1
+ · · ·+ 22

iL

)2
6=

(

22
j1
+ · · ·+ 22

jM

)2
+
(

22
k1

+ · · ·+ 22
kN

)2
. (5)

Proof. Let Γ denote the set {1, . . . , L}. Expanding the left hand side of
Inequality 5, we obtain

∑

(p,q)∈Γ2

22
ip+2iq =

∑

p∈Γ

22(2
ip ) +

∑

p,q∈Γ,p 6=q

2 · 22
ip+2iq

=
∑

p∈Γ

22
ip+1

+
∑

p,q∈Γ,p 6=q

22
ip+2iq+1. (6)

Call this quantity, a positive integer, N1. Similar expansion of the right
hand side of Inequality 5 gives us

∑

r∈{1,...,M}

22
jr+1

+
∑

r,s∈{1,...,M},r 6=s

22
jr+2js+1

+
∑

u∈{1,...,N}

22
ku+1

+
∑

u,v∈{1,...,N},u 6=v

22
ku+2kv+1

=
∑

r∈{1,...,M}

22
jr+1

+
∑

u∈{1,...,N}

22
ku+1

+
∑

r,s∈{1,...,M},r 6=s

22
jr+2js+1 +

∑

u,v∈{1,...,N},u 6=v

22
ku+2kv+1. (7)

Call this integer N2.
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Note that the exponents in the sum of Eq. 6 are pairwise distinct,
hence Eq. 6 is the binary expansion of N1. Similarly, Eq. 7 is the binary
expansion of N2. Thus, if N1 is to equal N2, they must have the exact
same binary expansion. In the case L2 6= M2 + N2, clearly N1 6= N2

because the total number of summands in Eq. 6 is L2 while the total
number of summands in Eq. 7 is M2 +N2. Thus, N1 6= N2 in this case.

On the other hand, suppose that L2 = M2 + N2. We compare the
sums

∑

p∈{1,...,L} 2
2ip+1

and
∑

r∈{1,...,M} 2
2jr+1

+
∑

u∈{1,...,N} 2
2ku+1

. By
inspecting exponents, we conclude that for N1 to equal N2, it is required
by UBR that both sums are a fortiori equal. However, this leads to
L = M +N , contradicting L2 = M2 +N2 since neither M or N is 0.

Theorem 9. 1) If n = 1, then the algebra (Mn(F),F,+,+F, | ∗ |) is
an ~e-Ramsey algebra for every ~e ∈ Ω0.

2) If n > 1, then the algebra (Mn(F),F,+,+F, | ∗ |) is not an ~e-Ramsey
algebra for every nonconstant ~e ∈ Ω0.

Proof. We give the proof of Case (2), which uses the full statement of
Lemma 3. Case (1) can be obtained by noting that 1 × 1 matrices are
essentially field elements.

For each i ∈ ω, let Di be the diagonal matrix all of whose diagonal
elements are 22

i

and, given any ~e ∈ Ω0, let

~b(i) =

{

Di if ~e(i) = 1,
1 otherwise.

Note that, if ~a 6F
~b is ~e-sorted, then each matrix term of ~a is of the form

Di1 + · · · +DiM for some i1 < · · · < iM and the determinant of such a

term is given by
(

22
i1 + · · ·+ 22

iM

)n

, which is a member of FR~e
F (~a) as

we appeal to Eq. 2.
Therefore, define X ⊆ F by

X =
{(

22
i1
+ · · ·+ 22

iM

)n

∈ ω : i1 < · · · < iM

}

.

Thus, note that, for each ~a 6F
~b that is ~e-sorted, the intersection X ∩

FR~e
F (~a) is nonempty.
Now, let k1 < k2 be such that ~a(k1) = Di1 + · · ·+DiM and ~a(k2) =

Dj1 + · · ·+DjN . Then
(

22
i1 + · · ·+ 22

iM

)n

+
(

22
j1 + · · ·+ 22

jM

)n

, which

is a member of FR~e
F (~a) again by Eq. 2, is not a member of X. This is

because the quantity cannot be expressed in the form of 22
l1 + · · ·+ 22

lM
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owing to Fermat’s Last Theorem for n > 2, while for n = 2, the result is
the content of Lemma 3.

We end this section with a list of results whose proofs can be obtained
using the techniques we have seen in this section. Each corresponding
statement in the manuscript [10] is listed in brackets behind the statement
here.

Theorem 10. The following are not ~e-Ramsey algebras for every non-
constant ~e ∈ Ω0:

1) (Mn(F),F,×,+F, | ∗ |) [Theorem 4.1],
2) (Mn(F),F,+F, | ∗ |) [Theorem 4.2],
3) (Mn(F),F,+,×F, | ∗ |) [Theorem 4.3],
4) (Mn(F),F,+,+F,×F, | ∗ |) [Theorem 4.3],
5) (Mn(F),F,×F, | ∗ |) [Theorem 4.4].

Conclusion

This paper was aimed at further understanding heterogeneous Ramsey
algebras. Specifically, we have looked at heterogeneous algebras consisting
of two phyla with some “disjoint” set of operations and some heterogeneous
unary operations mapping members of a phylum to another. Special cases
are when the heterogeneous unary operations are homomorphisms. Such
algebras are motivated from the various matrix algebras that we have
studied and, as corollaries, we derived results pertaining to the matrix
algebras of concern.

While the paper has shed more light on the behavior of heterogeneous
Ramsey algebras, algebras for which heterogeneous operations are present
remain elusive. The only heterogeneous algebras admitting such operations
that have been studied are vector spaces and the results can be found in
[11]. A combined look at these two works should be a good starting point
for further investigation.
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