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Galois orders of symmetric differential operators
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Dedicated to the memory of Sergey Ovsienko

Abstract. In this survey we discuss the theory of Galois
rings and orders developed in ([20], [22]) by Sergey Ovsienko and the
first author. This concept allows to unify the representation theories
of Generalized Weyl Algebras ([4]) and of the universal enveloping
algebras of Lie algebras. It also had an impact on the structure theory
of algebras. In particular, this abstract framework has provided a
new proof of the Gelfand-Kirillov Conjecture ([24]) in the classical
and the quantum case for gln and sln in [18] and [21], respectively.
We will give a detailed proof of the Gelfand-Kirillov Conjecture in
the classical case and show that the algebra of symmetric differential
operators has a structure of a Galois order.

1. Motivation

Throughout the paper k will denote an algebraically closed field of zero
characteristic. All considered rings are algebras over k. In representation
theory one often considers the following question: given an embedding
of algebras Γ ⊆ U , relate representations of U and Γ. The functors
of restriction and induction are very powerful tools in this study. In
particular, in the representation theory of Lie algebras a concept of
a Harish-Chandra module relates the universal enveloping algebra of
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a reductive Lie algebra U and the universal enveloping algebra of its
reductive subalgebra Γ [9]. On the other hand, when Γ is the universal
enveloping algebra of a Cartan subalgebra, one obtains the so called
generalized weight representations. The classification of irreducible weight
modules whose weight spaces are finite dimensional was done in [13]
and [31]. The problem remains open in general. To approach this problem,
Drozd, Futorny and Ovsienko introduced the category of Gelfand-Tsetlin
modules over U(gln) with respect to the Gelfand-Tsetlin subalgebra (a
certain maximal commutative subalgebra) ([10]). This approach was
inspired by a remarkable paper of Gelfand and Tsetlin ([24]) which gave
a construction of irreducible representations of gln using as a basis a
combinatorial object — Gelfand-Tsetlin tableaux, very much in the spirit
of the representation theory of the symmetric groups [26]. A similar idea
was used by Okunkov and Vershik in [37]. Using the natural embedding
of Sm−1 in Sm one introduces a subalgebra analogous to the Gelfand-
Tsetling subalgebra in the gln case. Namely, in this case U is kSn and Γ
is the maximal commutative subalgebra generated by the Jucys-Murphy
elements:

(1i) + . . . + (i − 1 i) i = 1, . . . , n.

Then Specm Γ parametrizes the irreducible representations of Sn, and
the Young tableaux can be recovered.

For an account of the recent research in this area, including gener-
alizations for Lie algebras of types B, C and D, see [34]. An excellent
exposition of the classical material can be found in [41].

To understand better the phenomena of the Gelfand-Tsetlin formulas,
the notion of an astract Harish-Chandra subalgebra and Harish-Chandra
module were introduced for an arbitrary associative algebras in [11]. In [20]
it was noticed that using the Gelfand-Tsetlin formulas one can embed
U(gln) into the skew group ring over a field L (a similar construction was
also done by Khomenko [28]), where L is a finite Galois extension of the
field of fractions of the Gelfand-Tsetlin subalgebra.

The appearence of skew group rings is also a phenomenon in the
representation theory of another class of algebras - the Generalized Weyl
Algebras [4]. In particular cases of the first Weyl Algebra and U(sl2)
(see [6]), and their quantum analogues, it is known that their irreducible
modules are completely described modulo a classification of irreducible
elements in certain skew polynomial rings in one variable over a skew
field.
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The main motivation of the development of this theory was an evolu-
tion of the ideas in [11] in the “semi-commutative” case for a pair of an
associative algebra and its commutative subalgebra, and understanding
of the role of skew group rings in the representation theory of infinite
dimensional algebras. A key concept introduced in [20] is a notion of a
noncommutative Galois order for skew monoid rings (cf. [33], Chapter 5).
Known examples of Galois algebras include:

• Generalized Weyl algebras over integral domains with infinite order
automorphisms, which include algebras,such as the n-th Weyl al-
gebra An, the quantum plane, the q-deformed Heisenberg algebra,
quantized Weyl algebras, the Witten—Woronowicz algebra among
the others;

• The universal enveloping algebra U(gln) with respect to its Gelfand—
Tsetlin subalgebra.

• It was shown in [16], [19] that shifted Yangians and finite W -
algebras associated with gln are Galois orders with respect to the
corresponding Gelfand—Tsetlin subalgebras;

• Certain invariant rings on the differential operators on the torus [20].

Representation theory of Galois orders was developed in [22]. In
the case of gln the Galois order structure of the universal enveloping
algebra led to a significant breakthrough in its representation theory in
the remarkable paper [38].

2. Basic definitions

Let R be a ring, M a monoid acting on R by ring automorphisms.
Consider the skew monoid ring R ∗ M. Let G be a finite group acting on
M by conjugation:. We can define an action of G on R ∗ M as g(rm) =
g(r)g(m), g ∈ G, r ∈ R, m ∈ M. We denote the ring of invariants by the
action of G by K.

Any element of R ∗ M can be written in the form x =
∑

m∈M xmm.
Define supp x as the set of those m ∈ M for which xm is not zero.

From now on we will restrict ourselves to the following case: R will be a
field L, a finite Galois extension of a field K such that G = Gal(L, K). The
monoid M will be assumed to have the following property: if m, m′ ∈ M

and their restrictions to K coincide, then m = m′.

Definition. A finitely generated Γ-ring U embedded in K is called a
Galois ring over Γ if KU = KU = K.

Note that Γ is not required to be central in U .
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3. Structure of Galois rings

In this section we recall the structure theory of Galois rings follow-
ing [20]. A very useful characterization of Galois rings in the following

Proposition 1. [[20], Proposition 4.1] Assume that a Γ-ring U ⊂ K =
(L ∗ M)G is generated by u1, . . . , uk. If

⋃k
i=1 supp ui generates M as a

monoid then U is a Galois ring. In particular, if LU = L ∗ M then U is
a Galois ring.

Theorem 1 ([20], Theorem 4.1). Let U be a Galois ring over Γ in K,
S = Γ \ {0}. Then

• U ∩ K is a maximal commutative subalgebra in U and the center of
U ∩ KK.

• S is a left and right Ore denominator set, and the localization of U
by S both at the left and the right are isomorphic to K.

Definition. A Galois ring is called a right (left) Galois order over Γ if
for every right (left) finite dimensional K vector space W ⊂ K, W ∩ Γ is
a finitely generated right (left) Γ-module. If it is both left and right, we
will simply say Galois order.

We have the following caracterization of Galois orders.

Proposition 2. Let U is a Galois ring over Γ.
• If Γ is noetherian and U a left (right) projective Γ-module then U

is a left (right) Galois order.
• If Γ is a finitely generated domain over k and U a Galois order

over Γ then Γ is a Harish-Chandra algebra in U .

4. Noncommutative Noether’s Problem and the Gelfand-

Kirillov Conjecture

In this section we show how the theory of Galois rings can be used
to prove the Gelfand-Kirillov Conjecture for gln. The noncommutative
version of the the classical Noether’s problem will also be required.

Definition. Let V be a finite dimensional vector space, of dimension
n over k, G a finite subgroup of GL(V ). It acts on S(V ∗) by k-algebra
automorphisms: g.f(v) = f(g−1v), g ∈ G, f ∈ S(V ∗), v ∈ V . After
fixing a basis of V , S(V ∗) can be identified with k[x1, . . . , xn], where
x1, . . . , xn are the duals of the basis elements in V ∗. Automorphisms of
the polynomial algebra arising this way will be called linear.



V. Futorny, J. Schwarz 39

Hence the group G acts also on the field of rational functions K =
k(x1, . . . , xn) by extension. Then one can ask:

Noether’s Problem ([36]). If G is a finite group of linear automorphisms,
when KG is a purely transcendental extension of k?

The following are some important cases when the Noether’s Problem
has a positive solution:

• n = 1, n = 2 or n = 3 (these are classical results due to Luroth,
Castelnuovo and Burnside).

• When V is a direct sum of one dimensional G-submodules. In
particular, for abelian G (Theorem of Fischer).

• The action of G by pseudo-reflections (by the Chevalley-Shephard-
Todd Theorem)

• for alternating groups A3, A4 and A5 (by Maeda), permuting vari-
ables as usual. The question remains open for n > 5.

There are also counter-examples to the Noether’s Problem, cf. [40], [15].

We will introduce now the Noncommutative Noether’s Problem for
the Weyl algebra, An(k) with generators xi, ∂i, i = 1, . . . , n, subject to
the relations xixj = xjxi, ∂i∂j = ∂j∂i and ∂ixj − xj∂i = δij for all i, j.
Recall that An(k) is a left and right noetherian simple domain which
admits a total ring of fractions (skew field), Fn(k), called the Weyl field.
For our purposes it will be useful to identify the Weyl algebra with the
ring of differential operators on the polynomial algebra in n variables.

Let A be a finitely generated commutative, regular k-algebra. Then
the ring of differential operators D(A) on A is the subalgebra of Endk(A)
generated by the k-linear derivations of A and the scalar multiplications
la that sends x → ax, ∀a ∈ A. The set of multiplications gives an
isomorphism of A with a subring of D(A), allowing A to be viewed as a
subring of it.

For our purposes it will be useful to identify the Weyl algebra with the
ring of differential operators on the polynomial algebra in n variables. Let
V a finite dimensional vector space of dimension n, G be a finite subgroup
of GL(V ). As previously, this induces an action on S(V ∗) = k[x1, . . . , xn].
This action can be extended to the ring of differential operators on
S(V ∗): if d is such an operator, g.d(x) = g(d(g−1x)), where x ∈ S(V ∗).
This induces a k-automorphism of the Weyl algebra An(k). Such k-
automorphisms will be called linear.

The following Noncommutative Noether’s Problem was formulated by
Alev and Dumas, [3].
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Noncommutative Noether’s Problem. For a finite group of linear
automorphisms G, when Fn(k)G is isomorphic to Fn(k)?

Some cases with known positive solution for the Noncommutative
Noether’s Problem are:

• For n = 1 or n = 2 and arbitrary G (Alev, Dumas, [3]).
• When V is a direct sum of one dimensional G-submodules (Alev,

Dumas, [3]).
• When G acts by pseudo-reflections (Eshmatov, Futorny, Ovsienko,

Schwarz, [12]).

Positive solution of the Noncommutative Noether’s Problem in the
context of the structure theory of Galois rings provides a new proof of
the celebrated Gelfand-Kirillov conjecture for the gln and sln cases.

The Gelfand-Kirillov conjecture [24] states that if g be a finite di-
mensional algebraric Lie algebra then the skew field of fractions of the
universal enveloping algebra U(g) is isomorphic to a Weyl field over a
purely transcendental extension (of finite transcendence degree) of k. The
important cases with a positive solution are:

• g = gln, sln or nilpotent [24];
• g is solvable [5], [27], [32];
• g has dimension at most 8 [2].

The first counter-example to this conjecture was found by Alev, Ooms,
Van den Bergh in [1]. For simple finite dimensional Lie algebras the
question was almost solved by Premet [39]: the conjecture is true for
algebras of type A and G2, unkown for type C and false for all other
types.

We are going to present two proofs of the Noncommutative Noether’s
Problem in the case of the symmetric group. One of them is a simplified
version of the proof found in [16] and [12], while the other is elementary —
it involves only the Cramer’s rule.

Let ∆ = (
∏

i<j(xi − xj))
2 . It is clearly an Sn-invariant element and

Fn(k) = Frac An(k)∆, the skew field of fractions of the localized algebra
by ∆. In the following we denote the polynomial algebra in n variables
just by Λ for the sake of simplicity. The following holds:

Proposition 3.

• Let S be any multiplicatively closed set in Λ. Then D(ΛS)=(D(Λ))S.
• (D(Λ)∆)Sn ∼= ((D(Λ))Sn)∆.
• (Λ∆)Sn = (ΛSn)∆.
• Frac An(k)Sn ∼= (Frac An(k))Sn.
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Proof. The first item follows from Theorem 15.1.25 of [33]. For the second
statement note that if d ∈ (D(Λ)∆)Sn , then d1 = ∆kd ∈ D(Λ)Sn for some
k > 0. The third item is proved similarly. The fourth statement follows
from [35], Theorem 5.3(4).

Now we need the following crucial lemma:

Lemma 1. (D(Λ∆))Sn = D(ΛSn

∆ ).

Proof. First we follow [12]. Recall that if X is a normal irreducible affine
variety and G a finite group of automorphisms that acts freely on X then
D(X)G ∼= D(O(X/G)) (cf. [8]). This applies to Sn acting on Λ∆, and
hence the lemma follows.

Now we show how to obtain this result algebraically. Note that Sn has
no non-trivial inner automorphisms. Therefore, An(k)Sn

∆ is simple by [35],
Corollary 2.6.

Let σi be the i-th symmetrical polynomial in x1, . . . , xn, i = 1, . . . , n,
ΛSn = k[σ1, . . . , σn] ⊂ Λ. Let M be the n × n matrix whose ij’s entry is
∂j(σi), and let J be it’s determinant.

Claim. J =
∏

i<j(xi − xj).

Indeed, J has degree n(n−1)/2. Clearly,
∏

i<j(xi−xj) divides J . Since
both have the same degree we have J = a

∏

i<j(xi − xj) for some scalar a.

Note that in both polynomials the monomial xn
1 xn−1

2 . . . xn appears with
coefficient 1. So a = 1.

Let d ∈ D(Λ∆)Sn , and f ∈ ΛSn

∆ . For all π ∈ Sn, π(d(f)) = (π.d)(πf) =

d(f), that is, d(f) also belongs to ΛSn

∆ . In this way, by restricting the

domain, we have a ring homomorphism φ : D(Λ∆)Sn → D(ΛSn

∆ ). We
need is to show it is an isomorphism. The injectivity follows from the
simplicity of D(Λ∆)Sn , as shown above. We discuss the surjectivity of φ.
The ring D(ΛSn

∆ ) is generated over ΛSn

∆ by ∂′

1, . . . , ∂′

n such that ∂′

i(σj) = δij ,
i, j = 1, . . . , n. Hence, it is enough to construct Sn-invariant differential
operators d1, . . . , dn : Λ∆ → Λ∆, whose restriction onto ΛSn

∆ coincide with
∂′

1, . . . , ∂′

n above.
Let

Ei =



















0
...
1
...
0



















,
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be a vector of size n, with 1 in the position i and 0 elsewhere, and let

Fi =









fi1

...
fin









be a solution of the system MFi = Ei. By the Kramer rule, fij ∈ Λ∆,
1 6 i, j 6 n.

Let di =
∑n

k=1 fik∂k. We have di(σj) = δij , and that di ∈ D(Λ∆) =
D(Λ)∆. What is left is to show that di is Sn-invariant.

It is sufficient to show that for any π ∈ Sn we have πfij = fiπ(j) for
1 6 i, j 6 n, since π(∂i) = ∂π(i). We shall use the Kramer’s rule. Let vi

be the vector








∂i(σ1)
...

∂i(σn)









.

It is clear that π(vi) = vπ(i) and

fij =
det(v1, . . . , Ei, . . . , vn)

det(v1, . . . , vn)
,

with Ei in the j’s position.
Then

πfij =
det(vπ(1), . . . , Ei, . . . , vπ(n))

det(vπ(1), . . . , vπ(n))

= sign(π) det(v1, . . . , Ei, . . . , vn)/ sign(π) det(v1, . . . , vn),

now with Ei in the position π(j). This clearly equals fiπ(j).

Now we are in the position to prove the Gelfand-Kirillov conjecture.

Proof of the Gelfand-Kirillov conjecture. The Galois ring structure of the
universal enveloping algebra U(gln) over the Gelfand-Tsetlin subalgebra
Γ implies the embedding of U(gln) into the tensor product

AS1
1 ⊗ AS2

2 ⊗ . . . ⊗ A
Sn−1

n−1 ⊗ k[t1, . . . , tn]Sn ,

where Ak is a certain localization of the k-th Weyl algebra Ak. Since
(Fk)Sk ≃ Frac(ASk

k ) ≃ Fk by the Noether’s Problem, we have that

Frac(U(gln)) ≃ F1 ⊗ . . .⊗Fn−1 ⊗k(y1, . . . , yk) ≃ F (n(n−1)
2

⊗k(y1, . . . , yk),

that U(gln) is birationally equivalent to Am over k(y1, . . . , yn), m =
n(n − 1)/2 (see [18], Proposition 5.2 for details).
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5. Symmetric differential operators

Let ti = ∂ixi ∈ An(k), i = 1, . . . , n. It is well known that k[t1, . . . , tn]
is a maximal commutative algebra of An(k), and An(k) is a free left and
right module over k[t1, . . . , tn] (which can be seen, for example, using
the theorem from [17]). In this section we construct a new example of a
Galois order given by the algebra of symmetric differential operators. Set
Γ = k[x1, . . . , xn]Sn .

Theorem 2. Γ is a Harish-Chandra subalgebra of An(k)Sn and An(k)Sn

is a Galois order over Γ.

Proof. By the result of Levasseur and Stafford ([29], Theorem 5) we
have that An(k)Sn is generated as an algebra by k[x1, . . . , xn]Sn and
k[∂1, . . . , ∂n]Sn . Denote K = Frac Γ and L = Frac k[x1, . . . , xn]. Let Z

n

be generated by δ1, . . . , δn, acting on L in the following way: δi(tj) = tj −
δij . Consider an action of Sn on Z

n by conjugation, and set K = (L∗Zn)Sn .
Recall that An(k)Sn is simple. Hence we have an embedding

An(k)Sn → K

induced by the homomorphism An(k) → L ∗Zn, which sends xi to δi and
∂i to tiδ

−1
i .

Consider the elements x1 + . . . + xn and ∂1 + . . . + ∂n. Their images
in K have supports that generate Z

n as a monoid. So, by Proposition 1,
An(k)Sn is a Galois ring over Γ. Moreover, the canonical embedding of Γ
modules

An(k)Sn → An(k)

splits, with inverse being the symmetrizer map 1
n!

∑

π∈Sn
π. Since An(k)

is free over k[t1, . . . , tn], and the latter algebra is free over Γ we have that
An(k)Sn is a left and right projective Γ module. Applying Proposition 2 we
conclude that An(k)Sn is a Galois order over Γ and Γ is a Harish-Chandra
subalgebra.

We finish with the following conjecture.

Conjecture. An(k)Sn is a free left (right)- module over Γ.

Remark. One way to prove the conjecture above would be to use the
analog of the Kostant theorem from [17]. For that one would need to show
in particular that the associated graded algebra of An(k)Sn is a complete
intersection ring. However, we were communicated by Gregor Kemper,
that this fails already for n = 3.
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