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Abstract. It is well-known [16] that the semigroup Tn of
all total transformations of a given n-element set Xn is covered by
its inverse subsemigroups. This note provides a short and direct
proof, based on properties of digraphs of transformations, that every
inverse subsemigroup of order-preserving transformations on a finite
chain Xn is a semilattice of idempotents, and so the semigroup of all
order-preserving transformations of Xn is not covered by its inverse
subsemigroups. This result is used to show that the semigroup of
all orientation-preserving transformations and the semigroup of all
orientation-preserving or orientation-reversing transformations of
the chain Xn are covered by their inverse subsemigroups precisely
when n 6 3.

1. Introduction

In a regular semigroup S every element α has an inverse β in S

meaning that α = αβα and β = βαβ. In an inverse semigroup S every
element of S has a unique inverse in S. An inverse β of an element α in a
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semigroup S is said to be a strong inverse of α if the subsemigroup 〈α, β〉
of S generated by α and β is an inverse subsemigroup of S. A semigroup
S is covered by its inverse subsemigroups precisely when every element
in S has a strong inverse in S.

This note addresses the following question: what regular semigroups
are covered by their inverse subsemigroups?

For example, the semigroup Tn of all total transformations of a given
n-element set Xn and the semigroup PT n of all total and partial transfor-
mations of Xn are both regular but not inverse. B. M. Schein [16] noted
that the above question was formulated in 1964 during the VI Vsesouznyi
Algebra Colloquium in Minsk, USSR, in terms of the semigroups Tn and
PT n. In his 1971 paper [16], B. M. Schein showed, generalizing the results
by L. M. Gluskin [9], that Tn and PT n are covered by their inverse sub-
semigroups. A detailed proof of this result may be found in P. M. Higgins’
book [11]. Note that this result does not hold for the semigroup of all total
transformations of an infinite set, see, for example, [11, Exercise 6.2.8].

Let Xn = {1, 2, · · · , n} be a chain with respect to the standard order,
and let On be the semigroup of all order-preserving transformations α on
Xn, that is transformations satisfying the condition xα 6 yα whenever
x < y, for all x, y ∈ Xn. Let {in} denote the identity permutation of
Xn. The semigroup On was introduced by A. Ya. Aizenstat [1], where
she gave a presentation for On \ {in} in terms of 2n − 2 idempotent
generators. She described in [2] the congruences on On. There is a large
body of literature on properties of the semigroup On. For example, it is
shown in [10] that the minimal number of generators of On \ {in} is n;
combinatorial properties of On were studied in [13], [12] and [14]. It is
well known that On is a regular semigroup.

It was shown recently by A. Vernitski [18] that all the inverse sub-
semigroups of On are semilattices. Indeed he proved that a finite inverse
semigroup can be represented by order-preserving mappings if and only
if it is a semilattice of idempotents. Vernitski’s paper is concerned with
the study of the pseudovariety of all finite semigroups whose inverse
subsemigroups consist of a single element, and the quasivariety of all
finite semigroups whose inverse subsemigroups are semilattices. The proof
uses the Krohn-Rhodes Theorem on wreath products of monoids. In the
present paper we provide a simple self-contained proof of the result based
on digraphs associated with transformations (Theorem 2.7).

A transformation α ∈ Tn is said to be orientation-preserving

(orientation-reversing) if the sequence (1α, 2α, . . . , nα) is a cyclic
permutation of a non-decreasing (non-increasing) sequence. The semigroup
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OPn of all orientation-preserving transformations and the semigroup Pn

of all orientation-preserving or orientation-reversing transformations were
introduced independently by D. B. McAlister [15] and P. M. Catarino
and P. M. Higgins [5]. Clearly, On is a subsemigroup of OPn, which in
turn is a subsemigroup of Pn.

For a transformation α ∈ Tn the rank of α, denoted by rank(α), is
the number of elements in the image set Xnα of α. It was shown in [4]
and [15] that OPn is generated by an idempotent in On of rank n − 1
and the cyclic group generated by the n-cycle (1, 2, 3, . . . , n). It was also
shown [15] that Pn is generated by an idempotent in On of rank n − 1
and the dihedral group Dn. It follows that minimal generating sets of
OPn and Pn have sizes 2 and 3 respectively. The semigroups OPn and
Pn are regular [5].

The introduction of the semigroups OPn and Pn generated a large
body of fruitful research by a number of authors. For example, P. M.
Catarino [4] exhibited a presentation of OPn in terms of 2n − 1 gen-
erators, by extending A. Ja. Aizenstat’s [1] presentation for On by a
single generator and 2n relations. R. E. Arthur and N. Ruškuc [3] gave a
presentation for OPn in terms of the minimal number of generators (two)
and n+2 relations. In the same article they also gave a presentation of Pn

on three generators and n + 6 relations. The congruences of OPn and Pn

were described by V. H. Fernandes, G. M. S. Gomes and M. M. Jesus [8].
The pseudovariety generated by all semigroups of orientation-preserving
transformations on a finite cycle was introduced and studied by P. M.
Catarino and P. M. Higgins in [6]. More recently, combinatorial properties
of semigroups of total and partial orientation-preserving transformations
were studied by A. Umar [17], and all maximal subsemigroups of OPn and
Pn were described by I. Dimitrova, V. H. Fernandez and J. Koppitz [7].

In the present paper we use the result that every inverse subsemigroup
of On is a semilattice of idempotents (Theorem 2.7 below) to show that
OPn and Pn are covered by their respective inverse subsemigroups if and
only if n 6 3.

2. Results

Every transformation α of Xn may be viewed as a digraph on n

vertices, in which for x, y ∈ Xn we have that xy is an arc of the digraph
of α precisely when xα = y. A comprehensive discussion on digraphs
associated with transformations may be found in [11, Section 1.6]; we
summarize here the results used in the proofs below.
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The orbits of a mapping α in Tn are the classes of the equivalence
relation ∼ on Xn defined by x ∼ y if and only if there exist non-negative
integers k, m such that xαk = yαm. The sets of vertices of connected
components of a digraph of α correspond to orbits of α. Each component
of a digraph of a transformation is functional, that is, it consists of a
unique cycle together with a number of trees rooted around this cycle. A
cycle on m distinct vertices of Xn is to be referred to as an m-cycle. If
the cycle of a component consists of a single vertex x, then x is a fixed
point of α, that is xα = x.

Lemma 2.1. Let α be a transformation in Tn and suppose that all the

cycles in the digraph of α are 1-cycles. Then for any positive integer k,

the orbits and fixed points of α and αk are identical.

Proof. Assume that x and y are in the same orbit with respect to some
power αk of α, that is x ∼ y with respect to αk. Then there exist positive
integers s and t such that x (αk)s = y (αk)t, whence x αks = y αkt and so
x ∼ y with respect to α. Conversely, assume that x ∼ y with respect to
α. By our assumption, the component C of the digraph of α containing
vertices x and y has a unique 1-cycle, say, with a vertex z. Therefore
z is a fixed point of α, and so x αt = y αt = z for any positive integer
t > l, where l is the length of the longest directed path in C. Hence
x αkl = y αkl = z or x (αk)l = y (αk)l. Thus x ∼ y with respect to αk also.
We conclude that the vertex set of C is a common orbit for all positive
powers of α. Moreover z is a fixed point of α if and only if the same is
true of all such powers.

The following result follows directly from Lemma 2.1.

Corollary 2.2. Let α be a transformation in Tn and suppose that all the

cycles in the digraph of α are 1-cycles. Let ε be an idempotent in Tn such

that ε = αr, for some positive integer r. Then the orbits and fixed points

of α and ε are identical.

Lemma 2.3. Let α be a transformation in Tn and suppose that all the

cycles in the digraph of α are 1-cycles. If β ∈ Tn is any strong inverse of

α then the orbits and fixed points of α and β are identical.

Proof. Observe that since β is a strong inverse of α, the subsemigroup
S = 〈α, β〉 of Tn generated by α and β is an inverse semigroup. Therefore
for any positive integer t we have that βt is the unique inverse of αt in S.
Taking t = r so that ε = αr is an idempotent as in Corollary 2.2 we have
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that βr is the unique inverse of αr = ε. Since an idempotent is its own
unique inverse in S, we have that βr = ε also, and so αr = βr. It follows
immediately from Lemma 2.1 that the orbits and fixed points of α, β and
ε are identical.

It follows from the definition of an order-preserving transformation on
a finite chain that the iterative sequence of images x, x α, . . . , x αk, . . . of
a point x ∈ Xn under a transformation α ∈ On must terminate in a fixed
point, whence it follows that the cycles of the components of the digraph
of α are merely fixed points. This observation leads to Proposition 2.4
below, see a proof in [12, Proposition 1.5]. From this we also note that the
semigroup On is aperiodic, meaning that all of its subgroups are trivial
as it follows from the previous observation that the cyclic subgroup of
the monogenic subsemigroup 〈α〉 of On has only one member.

Proposition 2.4 ([12, Proposition 1.5]). The cycle of each component

of α ∈ On consists of a unique fixed point.

Therefore, as it was noted in [12], the digraph of a mapping in On

consists of components, each of which is a directed tree with all arcs
directed towards the root, which represents a fixed point of the mapping.
The next result follows from Proposition 2.4 and Lemma 2.3.

Corollary 2.5. Let α, β be transformations in On. If β is a strong inverse

of α then α and β have the same orbits and their components have the

same roots.

Recall that any order-preserving transformation has a strong inverse
in Tn. However, as the next result shows, an order-preserving trans-
formation does not have an order-preserving strong inverse unless the
transformation is an idempotent.

Theorem 2.6. Let α ∈ On. Then

1) α has a strong inverse in On if and only if α is an idempotent.

2) If α is a non-idempotent with at least two fixed points, then α has

no strong inverse in OPn.

Proof. Since the first statement of the theorem is clearly true in the
forward direction, we assume that there exists a non-idempotent α ∈ On

that has a strong inverse β in OPn. Moreover, since an idempotent
transformation may be characterized as a transformation that fixes each
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element of its image, for a non-idempotent α there exist distinct u, v ∈ Xn

such that uα = v, vα 6= v. Let C be the component of the digraph of α

containing vertices u, v. Since C is a directed tree with all arcs directed
towards the root, say, z ∈ Xn, there exists a unique directed path in C

from u through v to z. Therefore there exist distinct vertices x, y distinct
from z in this path such that xα = y, yα = z, and zα = z. We may assume
without loss of generality that x < y. Then since α is order-preserving we
have that y = xα 6 yα = z, so that x < y < z since y 6= z.

Since β is an inverse of α, βα is an idempotent transformation with
image Xnβα = Xnα, so y ∈ Xnβα and yβα = y. Let w denote yβ. If
y 6 w, then since α is order-preserving we have that z = yα 6 wα =
yβα = y, a contradiction to our earlier observation that y < z. Therefore
we have yβ = w < y.

Assume first that β is order-preserving, so an application of β to both
sides of the inequality yβ < y yields yβ2 6 yβ < y, so yβ2 < y < z. By
using a similar argument we obtain that yβ3 < y < z, and indeed

yβm < y < z for any integer m > 2. (1)

Let k > 2 be chosen such that αk is an idempotent, say ε. Put m = k in
Equation (1) above. On one hand by Corollary 2.2 we have that yαk is the
root of the common component of y under α and under ε, so that yαk = z.
On the other hand we now obtain by Lemma 2.3 and Equation (1) that
yαk = yβk < y < z, a contradiction. It follows that if β ∈ On then α is
an idempotent, and so the first statement is proved.

Finally assume that α has at least two fixed points and β ∈ OPn.
Consider the (common) components C(1) and C(n) associated with
digraphs of α and β containing 1 and n respectively. Since the components
of α are intervals of the standard chain Xn (see Lemma 2.8 of [5]), it
follows that if C(1) = C(n) then α would have just one component and
so just one fixed point, contrary to hypothesis. Hence C(1) = {1, 2, . . . , i}
and C(n) = {j, j + 1, . . . , n}, for some i < j. But since these are also
components of β, and β maps each of its components into itself, it follows
that 1 β lies in C(1) and n β lies in C(n); in particular 1 β < n β, whence it
follows from Proposition 2.3 of [5] that β lies in On. But that contradicts
the first part of our theorem. Therefore α does not have a strong inverse
in OPn.

An immediate consequence of the above is the result of A. Vernitski [18,
Corollary 4].
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Theorem 2.7. Any inverse subsemigroup of On is a semilattice. The

union of all inverse subsemigroups of On is just the set of idempotents

of On, or equivalently, the set of group elements of On.

Next we apply the above results to the semigroups OPn of all
orientation-preserving transformations of Xn and Pn of all orientation-
preserving or orientation-reversing transformations of Xn. Let ORn

denote the set of all orientation-reversing transformations in Tn. It was
shown in [5] that Pn = OPn ∪ ORn,

OPn ∩ ORn = {α ∈ Tn : rank(α) 6 2},

OPn · ORn = ORn = ORn · OPn and (ORn)2 = OPn = (OPn)2. (2)

Note that for n 6 2 we have OPn = Tn and so every element of OPn

has a strong inverse in OPn. Now |OP3| = 24 (see [5], Corollary 2.7), and
T3 \ OP3 consists of the three transpositions, which reverse orientation.
It is easily seen that each member of OP3 has a strong inverse: indeed,
P3 = T3 (see [5]), and so P3 is covered by its inverse subsemigroups. Since
the elements of P3 and OP3 of rank at most two coincide, and the ranks
of a transformation and its inverse are the same, we only need to observe
that the three permutations in OP3 each have strong inverses in OP3 as
together they form a (cyclic) group.

Let θ denote the n-cycle (1, 2, 3, . . . , n) in OPn. As a consequence of
Theorem 2.7 we can prove the following result:

Lemma 2.8. A non-idempotent transformation in OPn with at least two

fixed points does not have a strong inverse in OPn.

Proof. Observe that if n 6 3 then any transformation in OPn with at
least two fixed points is an idempotent. Hence assume that n > 4. By
Theorem 4.9 in [5], the digraph of any member of OPn cannot have two
cycles of different length. It follows that all the cycles of α are fixed points.
By Corollary 4.12 in [5], the mapping α can be written as θ−mδθm for
some δ ∈ On and a non-negative integer m.

Now assume by way of contradiction that β ∈ OPn is a strong inverse
of α. Take the mapping

ϕ : OPn → OPn defined by κϕ = θmκθ−m

for κ ∈ OPn. Since θ is a permutation in OPn, the mapping ϕ is an
automorphism of OPn. Moreover, αϕ = δ and βϕ = θmβθ−m, so ϕ maps
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〈α, β〉 isomorphically onto 〈δ, θmβθ−m〉. Since, by our assumption, β is a
strong inverse of α, we have that 〈α, β〉 and 〈δ, θmβθ−m〉 are isomorphic
inverse subsemigroups of OPn and θmβθ−m is a strong inverse of δ.

We now note that α and its conjugate δ have the same number of
fixed points. Indeed for any x ∈ Xn we have that x α = x if and only if
x θ−mδθm = x, that is (x θ−m)δ = x θ−m. Thus δ ∈ On has at least two
fixed points, and by Theorem 2.6(2), δ does not have a strong inverse in
OPn, a contradiction.

Putting together the observations above that OPn is covered by
its inverse subsemigroups when n 6 3, and that if n > 4 then OPn

contains non-idempotent transformations with at least two fixed points,
an application of the above lemma yields the following result.

Theorem 2.9. The semigroup OPn is covered by its inverse subsemi-

groups if and only if n 6 3.

Example. In OP3 we have the pair of strong inverses α =

(

1 2 3
2 3 3

)

and β =

(

1 2 3
3 1 3

)

. We note that neither α nor β are idempotents,

and α is a member of O3, while β is a member of OP3. The semigroup
〈α, β〉 is the five-element combinatorial Brandt (inverse) semigroup, yet
neither of α nor β is a group element. Hence, although OPn is not covered
by its inverse subsemigroups, its set of strong inverses encompasses more
than its group elements (so that Theorem 2.7 is not true if On is replaced
by OPn). We note that α is a member of O3 and β is a member of the
semigroup of order-preserving mappings on the chain 3 < 1 < 2. This
however does not contradict Lemma 2.8 as both α and β have just one
fixed point.

If n 6 3, it is observed in [5] that Pn = Tn, and so Pn is covered by
its inverse semigroups. The result below demonstrates that these are the
only instances when this is true.

Theorem 2.10. The semigroup Pn of all orientation-preserving or ori-

entation reversing mappings is covered by its inverse subsemigroups if

and only if n 6 3.

Proof. Assume n > 4 and choose, using Theorem 2.6, a transformation
α ∈ OPn of rank at least 3 that has no strong inverse in OPn. Assume
β ∈ Pn is a strong inverse of α in Pn. Now any inverse of α has the same
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rank as α, so β ∈ ORn with rank at least 3. But then by [5, Corollary 5.2]
α = αβα ∈ OPn ·ORn ·OPn = ORn. Since the rank of α is at least 3, and,
in accordance with [5, Lemma 5.4], ORn∩OPn consists of transformations
of rank at most 2, α ∈ ORn \ OPn, a contradiction to the assumption
that α ∈ OPn. This completes the proof.
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