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Abstract. Assume that R is a complete Noetherian local
ring and M is a non-zero finitely generated R-module of dimension
n = dim(M) > 1. It is shown that any non-empty subset T of
Assh(M) can be expressed as the set of attached primes of the
top local cohomology modules Hn

I,J (M) for some proper ideals I, J
of R. Moreover, for ideals I, J =

⋂

p∈AttR(Hn

I
(M)) p and J ′ of R

it is proved that T = AttR(H
n
I,J(M)) = AttR(H

n
I,J′(M)) if and

only if J ′ ⊆ J . Let Hn
I,J(M) 6= 0. It is shown that there exists

Q ∈ Supp(M) such that dim(R/Q) = 1 and Hn
Q(R/p) 6= 0, for each

p ∈ AttR(H
n
I,J(M)). In addition, we prove that if I and J are two

proper ideals of a Noetherian local ring R, then AnnR(H
n
I,J (M)) =

AnnR(M/TR(I, J,M)), where TR(I, J,M) is the largest submodule
of M with cd(I, J, TR(I, J,M)) < cd(I, J,M), here cd(I, J,M) is
the cohomological dimension of M with respect to I and J . This
result is a generalization of [1, Theorem 2.3] and [2, Theorem 2.6].

Introduction

Assume that R is a Noetherian ring and I, J are two ideals of R and
M is an R-module. As a generalization of the usual local cohomology
modules, the local cohomology modules with respect to a system of ideals
was introduced, in [3]. As a special case of these extended modules, in [13],
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the local cohomology modules with respect to a pair of ideals is defined.
To be more precise, let

W (I, J) = {p ∈ Spec(R)|In ⊆ p+ J for some positive integer n}.

The (I, J)-torsion submodule ΓI,J (M) of M , which consists of all elements
x of M with Supp(Rx) ⊆ W (I, J), is considered. For an integer i, the
local cohomology functor H i

I,J with respect to (I, J) is defined to be the
i-th right derived functor of ΓI,J . The i-th local cohomology module of
M with respect to (I, J) is denoted by H i

I,J (M). When J = 0, then H i
I,J

coincides with the usual local cohomology functor H i
I with the support in

the closed subset V (I).

Recall that for an R-module K, a prime ideal p of R is said to be an
attached prime ideal of K if p = Ann(K/N) for some submodule N of
K. The set of attached prime ideals of K is denoted by AttR(K). When
K has a secondary representation, this definition agrees with the usual
definition of attached primes in [12].

Let R be a Noetherian local ring with maximal ideal m and M be a
finitely generated R-module of dimension n. The main theorem in Section
2, shows that if R is complete with respect to m-adic topology, then for
any non-empty subset T of Assh(M) there exist ideals I, J of R such
that T = AttR(H

n
I (M)) = AttR(H

n
I,J (M)) which is an another version of

Theorem 2.8 in [8]. Moreover we show that for each p ∈ AttR(H
n
I,J(M))

there exists Q ∈ Supp(M) such that dim(R/Q) = 1 and Hn
Q(R/p) 6= 0.

Let R be a Noetherian ring, I, J be two ideals of R and M be a non-
zero finitely generated R-module of dimension n. Let cd(I, J,M) denote
the supremum of all integers r for which Hr

I,J (M) 6= 0. We call this integer
the cohomological dimension of M with respect to ideals I, J , see [7]. In
Section 3, first we define TR(I, J,M) the largest submodule of M such
that cd(I, J, TR(I, J,M)) < cd(I, J,M) and we show that

TR(I, J,M) = Γa(M) =
⋂

cd(I,J,R/pj)=c

Nj ,

where 0 =
⋂n

j=1Nj denotes a reduced primary decomposition of the
zero submodule of M , Nj is a pj-primary submodule of M and a =
∏

cd(I,J,R/pj) 6=c pj . We show AnnR(H
n
I,J(M)) = AnnR(M/TR(I, J,M)),

which is a generalization of [1, Theorem 2.3] and [2, Theorem 2.6] and
some applications of this theorem are given.
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1. Attached prime ideals of top local cohomology

modules

In this section we assume that (R,m) is local and complete with
respect to m-adic topology, M is a non-zero finitely generated R-module
of dimension n > 1 and T is a non-empty subset of Assh(M).

Definition 1. Let K be an R-module, a prime ideal p of R is said to be
an attached prime ideal of K if p = Ann(K/N) for some submodule N of
K. The set of attached prime ideals of K is denoted by AttR(K).

Lemma 1. [1, Lemma 3.2] Let K be an R-module. Then the set of minimal
elements of V (AnnR(K)) coincides with that of AttR(K). In particular,
√

AnnR(K) =
⋂

p∈AttR(K) p.

Theorem 1. Let M be a non-zero finitely generated R-module of dimen-
sion n and T be a non-empty subset of Assh(M). Then the following
statements are true:

(i) If T ⊆ AttR(H
n
I (M)) for some ideal I, then T = AttR(H

n
I,J(M)),

where J =
⋂

p∈T p.
(ii) T = AttR(H

n
I (M)) = AttR(H

n
I,J(M)), where I, J are ideals of R

and J =
√

AnnR(Hn
I (M)).

Proof. (i) By assumption T is a non-empty subset of Assh(M). Set
J :=

⋂

p∈T p. We show that T = AttR(H
n
I,J(M)). Assume that q ∈

AttR(H
n
I,J(M)). Then by [6, Theorem 2.1] it follows that J ⊆ q. Thus

p ⊆ q for some p ∈ T . Hence, this fact that p, q are in Assh(M) shows
that p = q and so q ∈ T . Now, let q ∈ T . Then J ⊆ q and also
q ∈ AttR(H

n
I (M)). Therefore, q ∈ AttR(H

n
I,J(M)) by [6, Theorem 2.1].

(ii) In view of [8, Theorem 2.8] there exists an ideal I of R such that
T = AttR(H

n
I (M)). Thus by (i) and Lemma 1 the result follows.

Corollary 1. Let M be a non-zero finitely generated R-module of dimen-
sion n and let I1, I2, J1, J2 be ideals of R. Then the following statements
hold:

(i) If T ⊆ AttR(H
n
I1,J1

(M))∪AttR(H
n
I2,J2

(M)) is a non-empty set and
J =

⋂

p∈T p, then AttR(H
n
I1+I2,J

(M)) = T .
(ii) If T = AttR(H

n
I1,J1

(M)) ∪ AttR(H
n
I2,J2

(M)) is a non-empty set
and J =

⋂

p∈T p, then AttR(H
n
I1+I2,J

(M)) = AttR(H
n
I1,J1

(M)) ∪
AttR(H

n
I2,J2

(M)).
(iii) If T = AttR(H

n
I1,J1

(M)) ∩ AttR(H
n
I2,J2

(M)) is a non-empty set
and J =

⋂

p∈T p, then AttR(H
n
I1+I2,J

(M)) = AttR(H
n
I1,J1

(M)) ∩
AttR(H

n
I2,J2

(M)).
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Proof. Let p ∈ T and p ∈ AttR(H
n
I1,J1

(M)). Then p ∈ AttR(H
n
I1
(M)), by

[6, Theorem 2.1]. Thus dimR/p = n and by Lichtenbaum-Hartshorne
Vanishing Theorem dimR/(I1 + p) = 0. Since I1 + p ⊆ I1 + I2 + p, it
follows that dimR/(I1 + I2 + p) = 0 and so Hn

I1+I2
(R/p) 6= 0. Thus p ∈

AttR(H
n
I1+I2

(M)), by [9, Theorem A]. Therefore, T ⊆ AttR(H
n
I1+I2

(M))
and the result follows by Theorem 1(i).

Corollary 2. Let I, J be ideals of R and let M be a non-zero finitely
generated R-module of dimension n. If T = AttR(H

n
I (M)) and J ′ =

J +
⋂

p∈T p, then AttR(H
n
I,J(M)) = AttR(H

n
m,J ′(M)).

Proof. In view of [6, Theorem 2.1] and Lichtenbaum-Hartshorne Vanishing
Theorem, we have

AttR(H
n
I,J(M)) = {p ∈ Supp(M) ∩ V (J) :

√

I + p = m}.

Let p ∈ AttR(H
n
I,J(M)). Then p ∈ AttR(H

n
I (M)) and 0 6= Hn

I (R/p) ∼=
Hn

I+p(R/p) ∼= Hn
m(R/p). Hence, p ∈ AttR(H

n
m,J ′(M)). The proof of the

opposite inclusion is similar.

Theorem 2. Let M be a non-zero finitely generated R-module of di-
mension n and let I, J =

⋂

p∈AttR(Hn
I
(M)) p and J ′ be ideals of R. Then

AttR(H
n
I,J(M)) = AttR(H

n
I,J ′(M)) if and only if J ′ ⊆ J .

Proof. Let AttR(H
n
I,J(M)) = AttR(H

n
I,J ′(M)). Then Theorem 1 shows

that AttR(H
n
I (M)) = AttR(H

n
I,J(M)). Hence, by [6, Theorem 2.1]

J ′ ⊆
⋂

p∈AttR(Hn
I,J′

(M))

p =
⋂

p∈AttR(Hn
I,J

(M))

p =
⋂

p∈AttR(Hn
I
(M))

p = J.

Conversely, if J ′ ⊆ J , then by [6, Theorem 2.1] we have

AttR(H
n
I (M)) = AttR(H

n
I,J(M)) ⊆ AttR(H

n
I,J ′(M)) ⊆ AttR(H

n
I (M)).

So the result follows.

Theorem 3. Let M be a non-zero finitely generated R-module of dimen-
sion n and let I, I ′ and J =

⋂

p∈AttR(Hn
I
(M)) p be ideals of R such that

I ⊆ I ′. Then Att(Hn
I,J(M)) = Att(Hn

I′,J(M))

Proof. Assume that p ∈ Att(Hn
I,J(M)). Thus [6, Theorem 2.1] shows

that p ∈ Att(Hn
I (M)) and J ⊆ p. By assumption and [10, Proposition
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1.6], AttR(H
n
I (M)) ⊆ AttR(H

n
I′(M)) so that p ∈ Att(Hn

I′(M)) and p ∈
Att(Hn

I′,J(M)). Thus Att(Hn
I,J(M)) ⊆ Att(Hn

I′,J(M)). Therefore,

J ⊆
⋂

p∈Att(Hn
I′,J

(M))

p ⊆
⋂

p∈Att(Hn
I,J

(M))

p = J

which shows that Att(Hn
I,J(M)) = Att(Hn

I′,J(M)).

Theorem 4. Let M be a finitely generated R-module of dimension n and
I, J be ideals of R such that Hn

I,J (M) 6= 0. Then there exists Q ∈ Supp(M)
such that dim(R/Q) = 1 and Hn

Q(R/p) 6= 0, for each p ∈ AttR(H
n
I,J (M)).

Proof. By assumption T = AttR(H
n
I,J(M)) 6= ∅. Then in view of [8,

Theorem 2.8] we have T = AttRH
n
a (M) for some ideal a of R. Now,

[8, Proposition 2.1] shows that there exists an integer r such that for
all 1 6 i 6 r there exists Qi ∈ Supp(M) with dim(R/Qi) = 1 such
that

⋂

p∈T p 6⊆ Qi. In addition, we may assume that a =
⋂r

i=1Qi. Let
p ∈ AttRH

n
I,J(M). Then p ∈ AttRH

n
a (M) and so Hn⋂r

i=1
Qi
(R/p) 6= 0.

Now, by setting b =
⋂r−1

i=1 Qi and c = Qr we have the following long exact
sequence

Hn
b+c(R/p) → Hn

b (R/p)⊕Hn
c (R/p) → Hn

b∩c(R/p) → 0,

where Hn
b∩c(R/p) = Hn

Q1∩···∩Qr
(R/p) 6= 0. So Hn

b (R/p) ⊕Hn
c (R/p) 6= 0.

Therefore Hn
b (R/p) 6= 0 or Hn

c (R/p) 6= 0. If Hn
c (R/p) 6= 0 we are done.

Otherwise, one can set b =
⋂r−2

i=1 Qi and c = Qr−1 and with repeat this
method, to get the result.

Corollary 3. Let M be a finitely generated R-module of dimension n > 1
and I, J be ideals of R such that Hn

I,J(M) 6= 0. Then there exists Q ∈
Supp(M) such that dim(R/Q) = 1 and AttR(H

n
Q,J(M)) 6= ∅.

2. Annihilators of top local cohomology modules

In this section (R,m) is a Noetherian local ring with maximal ideal m
and I, J are two proper ideals of R.

Let M be a non-zero finitely generated R-module and let cd(I, J,M)
denote the supremum of all integers r for which Hr

I,J(M) 6= 0. We call
this integer the cohomological dimension of M with respect to ideals
I, J . When J = 0, we have cd(I, 0,M) = cd(I,M) which is just the
supremum of all integers r for which Hr

I (M) 6= 0. In [7, Corollary 3.3] a
characterization of cd(I, J,M) is provided.
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Lemma 2. [7, Proposition 3.2] Let M and N be two finitely generated R-
modules such that Supp(N) ⊆ Supp(M). Then cd(I, J,N) 6 cd(I, J,M).

Definition 2. Let M be a non-zero finitely generated R-module of coho-
mological dimension c. We denote by TR(I, J,M) the largest submodule
of M such that cd(I, J, TR(I, J,M)) < cd(I, J,M).

It is easy to check that TR(I, J,M) = ∪{N : N 6 M, cd(I, J,N) <
cd(I, J,M)}. When J = 0, this definition coincides with that of [1, Defi-
nition 2.2].

Lemma 3. Let M be a non-zero finitely generated R-module of dimension
n such that n = cd(I, J,M). Then TR(m,M) ⊆ TR(I,M) ⊆ TR(I, J,M).

Proof. For the first inclusion let x /∈ TR(I,M). Then cd(I, J,Rx) = n
and so Hn

I (Rx) 6= 0. Thus dim(Rx) = n. Hence, by Grothendieck’s
Vanishing Theorem Hn

m(Rx) 6= 0 and x /∈ TR(m,M). Let x /∈ TR(I, J,M).
Then cd(I, J,Rx) = n and so Hn

I,J(Rx) 6= 0. Thus AttR(H
n
I,J(Rx)) 6= ∅

and AttR(H
n
I (Rx)) 6= ∅ by [6, Theorem 2.1]. Hence, Hn

I (Rx) 6= 0 and
cd(I, Rx) = n. Therefore, x /∈ TR(I,M).

Theorem 5. Let M be a non-zero finitely generated R-module with coho-
mological dimension c = cd(I, J,M). Then

TR(I, J,M) = Γa(M) =
⋂

cd(I,J,R/pj)=c

Nj .

Here 0 =
⋂n

j=1Nj is a reduced primary decomposition of the zero submodule
of M , Nj is a pj-primary submodule of M and a =

∏

cd(I,J,R/pj) 6=c pj.

Proof. First we show the equality Γa(M) =
⋂

cd(I,J,R/pj)=cNj . To do this,

the inclusion
⋂

cd(I,J,R/pj)=cNj ⊆ Γa(M) follows easily by the proof of [11,

Theorem 6.8(ii)]. In order to prove the opposite inclusion, suppose, the con-
trary is true. Then there exists x ∈ Γa(M) such that x /∈

⋂

cd(I,J,R/pj)=cNj .

Thus there exists an integer t such that x /∈ Nt and cd(I, J,R/pt) = c.
Now, as x ∈ Γa(M), it follows that there is an integer s > 1 such that
asx = 0, and so asx ⊆ Nt. Because of x /∈ Nt and Nt is a pt-primary
submodule, it yields that a ⊆ pt. Hence, there is an integer j such that
pj ⊆ pt and cd(I, J,R/pj) 6 c − 1. Therefore, in view of Lemma 2, we
have

cd(I, J,R/pt) 6 cd(I, J,R/pj) 6 c− 1,
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which is a contradiction. Now, we show that TR(I, J,M) = Γa(M). Let
x ∈ TR(I, J,M). Then in view of Lemma 2, cd(I, J,Rx) 6 c− 1. Let p be
a minimal prime ideal of AnnR(Rx), it follows that cd(I, J,R/p) 6 c− 1.
So

a ⊆
⋂

cd(I,J,R/pj)6c−1

pj ⊆
⋂

p∈AssR(Rx)

p =
√

AnnR(Rx).

Thus there exists an integer k > 1 such that ak ⊆ AnnR(Rx). Hence,
akx = 0 and x ∈ Γa(TR(I, J,M)). Thus TR(I, J,M) = Γa(TR(I, J,M)).
Now, we have TR(I, J,M) = Γa(TR(I, J,M)) ⊆ Γa(M). We show that
Γa(M) ⊆ TR(I, J,M), to do this, we show cd(I, J,Γa(M)) 6 c − 1. Let
p ∈ Supp(Γa(M)). Then a ⊆ p and there exists pj ⊆ p such that
cd(I, J,R/pj) 6 c − 1. Thus by Lemma 2, cd(I, J,R/p) 6 c − 1. Hence,
cd(I, J,Γa(M)) 6 c − 1 by [7, Theorem 3.1]. Therefore, TR(I, J,M) =
Γa(M).

Corollary 4. Let M be a non-zero finitely generated R-module of dimen-
sion n with cohomological dimension c = cd(I, J,M). Then the following
statements are true:

(i) AssR(TR(I, J,M)) = {p ∈ AssR(M) : cd(I, J,R/p) 6 c− 1},
(ii) AssR(M/TR(I, J,M)) = {p ∈ AssR(M) : cd(I, J,R/p) = c}. If

n = c, then AssR(M/TR(I, J,M)) = AttR(H
n
I,J(M)).

Proof. By Theorem 5, TR(I, J,M) = Γa(M), where
∏

cd(I,J,R/pj)6c−1 pj

= a. So by [4, Section 2.1, Proposition 10] we have

AssR(TR(I, J,M)) = AssR(M) ∩ V (a).

Now (i) follows from Lemma 2.
In order to show (ii), use [5, Exercise 2.1.12] and [6, Theorem 2.1].

Corollary 5. Let M be a non-zero finitely generated R-module of dimen-
sion n such that n = cd(I, J,M). Then there exists a positive integer t
such that J tM ⊆ TR(I, J,M).

Proof. Let 0 =
⋂n

j=1Nj denote a reduced primary decomposition of the
zero submodule of M , where Nj is a pj-primary submodule of M . In view
of Theorem 5, TR(I, J,M) =

⋂

cd(I,J,R/pj)=nNj . If cd(I, J,R/pj) = n,

then Hn
I,J(R/pj) 6= 0. Thus J ⊆ pj =

√

AnnR(M/Nj) by [13, Theorem

4.3]. Hence, there exists a positive integer tj such that J tjM ⊆ Nj . Let
t = max{tj : cd(I, J,R/pj) = n}. Then J tM ⊆

⋂

cd(I,J,R/pj)=nNj =

TR(I, J,M).
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Theorem 6. Let M be a non-zero finitely generated R-module of dimen-
sion n = cd(I, J,M). Then

AnnR(H
n
I,J(M)) = AnnR(M/TR(I, J,M)).

Proof. By Corollary 5, J tM ⊆ TR(I, J,M) for some integer t > 1 and
by [13, Proposition 1.4(8)], H i

I,J(M) ∼= H i
I,Jt(M) for all i > 0. Then we

can assume that JM ⊆ TR(I, J,M). First we show that TR(I,M/JM) =
TR(I, J,M)/JM . Let x ∈ M and consider the exact sequence

0 → Rx ∩ JM → Rx →
Rx

Rx ∩ JM
→ 0

that induce an exact sequence

· · · → Hn
I,J(Rx ∩ JM) → Hn

I,J(Rx) → Hn
I,J(

Rx

Rx ∩ JM
) → 0. (∗)

If x + JM ∈ TR(I,M/JM), then Hn
I,J(Rx/Rx ∩ JM) ∼= Hn

I (R(x +
JM)) = 0, by [13, Corollary 2.5]. As Rx ∩ JM ⊆ TR(I, J,M) it follows
that Hn

I,J (Rx ∩ JM) = 0. Hence, Hn
I,J (Rx) = 0. So that x ∈ TR(I, J,M).

If x ∈ TR(I, J,M), then Hn
I,J(Rx) = 0. Thus Hn

I,J(Rx/Rx ∩ JM) =
Hn

I (R(x+ JM)) = 0 by (∗). Therefore, x+ JM ∈ TR(I,M/JM). Now,
from the exact sequence

0 → JM → M →
M

JM
→ 0

we have the exact sequence

· · · → Hn
I,J(JM) → Hn

I,J(M) → Hn
I,J(

M

JM
) → 0.

Since JM ⊆ TR(I, J,M), it follows that Hn
I,J(JM) = 0 and so we have

Hn
I,J(M) ∼= Hn

I,J(M/JM). Thus Hn
I,J(M) ∼= Hn

I (M/JM). Therefore,

AnnR(H
n
I,J(M)) = AnnR(H

n
I (M/JM)) = AnnR(

M/JM

TR(I,M/JM)
)

= AnnR(
M/JM

TR(I, J,M)/JM
) = AnnR(M/TR(I, J,M)),

see [1, Theorem 2.3].

Corollary 6. Let M be a non-zero finitely generated R-module of di-
mension n = cd(I, J,M) and JM ⊆ TR(I,M). Then AnnR(H

n
I (M)) =

AnnR(H
n
I,J(M)).



“adm-n2” — 2020/7/8 — 8:15 — page 219 — #79

S. Karimi, Sh. Payrovi 219

Proof. By a similar argument to that of Theorem 6, one can show that
TR(I,M/JM) = TR(I,M)/JM . Also, by Lemma 3 we have TR(I,M) ⊆
TR(I, J,M). Thus JM ⊆ TR(I, J,M) and so Hn

I,J(JM) = 0. Hence, it
follows by (∗) that Hn

I,J(M) ∼= Hn
I (M/JM). Therefore,

AnnR(H
n
I,J(M)) = AnnR(H

n
I (M/JM)) = AnnR(

M/JM

TR(I,M/JM)
)

= AnnR(
M/JM

TR(I,M)/JM
) = AnnR(M/TR(I,M)).

Now, the result follows by [1, Theorem 2.3] and Theorem 6.

Corollary 7. Let M be a non-zero finitely generated R-module of dimen-
sion n = cd(I, J,M). Then the following statements hold:

(i)
√

AnnR(Hn
I,J(M)) =

⋂

p∈AssRM,cd(I,J,R/p)=n p,

(ii) V (AnnR(H
n
I,J(M))) = Supp(M/TR(I, J,M)),

(iii) If TR(I, J,M) = 0, then Supp(M) = V (AnnR(H
n
I,J(M))).

Proof. (i) It follows by Lemma 1 and [6, Theorem 2.1].

To prove (ii) use Theorem 6.

(iii) It follows from (ii).

Corollary 8. Let d = dimR = cd(I, J,R). Then the following statements
hold:

(i) cd(I, J,AnnR(H
d
I,J(R))) < dimR.

(ii) If d > 1, then dimR = dimR/AnnR(H
d
I,J(R)) = dimR/ΓI,J(R).

Proof. (i) It follows from Theorem 6.

(ii) By [13, Corollary 1.13 (4)], Hd
I,J(R) ∼= Hd

I,J(R/ΓI,J(R)). So that

ΓI,J(R) ⊆ AnnR(H
d
I,J(R)).

Corollary 9. If R is a domain of dimR = d and Hd
I,J(R) 6= 0, then

AnnR(H
d
I,J(R)) = 0.

Proof. It follows by Theorems 5 and 6.
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