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Attached primes and annihilators of top local
cohomology modules defined by a pair of ideals
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ABSTRACT. Assume that R is a complete Noetherian local
ring and M is a non-zero finitely generated R-module of dimension
n = dim(M) > 1. It is shown that any non-empty subset 7' of
Assh(M) can be expressed as the set of attached primes of the
top local cohomology modules H7 ;(M) for some proper ideals 1, .J
of R. Moreover, for ideals I,J = ﬂpeAttR(H?(M))p and J' of R
it is proved that 7' = Attr(H} ;(M)) = Attr(H} ;(M)) if and
only if J* C J. Let Hf ;(M) # 0. It is shown that there exists
@ € Supp(M) such that dim(R/Q) = 1 and Hp(R/p) # 0, for each
p € Attgr(H7 ;(M)). In addition, we prove that if I and J are two
proper ideals of a Noetherian local ring R, then Anng(HF ;(M)) =
Anng(M/Tr(I,J, M)), where Tg(I, J, M) is the largest submodule
of M with cd(I,J,Tr(I,J,M)) < cd(I,J, M), here cd(I,J, M) is
the cohomological dimension of M with respect to I and J. This
result is a generalization of [1, Theorem 2.3] and [2, Theorem 2.6].

Introduction

Assume that R is a Noetherian ring and I, J are two ideals of R and
M is an R-module. As a generalization of the usual local cohomology
modules, the local cohomology modules with respect to a system of ideals
was introduced, in [3]. As a special case of these extended modules, in [13],
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the local cohomology modules with respect to a pair of ideals is defined.
To be more precise, let

W(I,J)={p € Spec(R)|I" C p+ J for some positive integer n}.

The (I, J)-torsion submodule I'; ;(M) of M, which consists of all elements
x of M with Supp(Rz) C W(I,J), is considered. For an integer i, the
local cohomology functor H} ; with respect to (I, J) is defined to be the
i-th right derived functor of T 1,7- The i-th local cohomology module of
M with respect to (I, J) is denoted by H}J(M) When J = 0, then H}'J
coincides with the usual local cohomology functor H} with the support in
the closed subset V' (I).

Recall that for an R-module K, a prime ideal p of R is said to be an
attached prime ideal of K if p = Ann(K/N) for some submodule N of
K. The set of attached prime ideals of K is denoted by Attr(K). When
K has a secondary representation, this definition agrees with the usual
definition of attached primes in [12].

Let R be a Noetherian local ring with maximal ideal m and M be a
finitely generated R-module of dimension n. The main theorem in Section
2, shows that if R is complete with respect to m-adic topology, then for
any non-empty subset T of Assh(M) there exist ideals I, J of R such
that T' = Attr(H} (M)) = Attr(H] ;(M)) which is an another version of
Theorem 2.8 in [8]. Moreover we show that for each p € Attr(H} ;(M))
there exists @ € Supp(M) such that dim(R/Q) = 1 and H(S(R/p) # 0.

Let R be a Noetherian ring, I, J be two ideals of R and M be a non-
zero finitely generated R-module of dimension n. Let c¢d(I, J, M) denote
the supremum of all integers r for which Hj 7(M) # 0. We call this integer
the cohomological dimension of M with respect to ideals I, J, see [7]. In
Section 3, first we define Tr(I, J, M) the largest submodule of M such
that cd(I, J, Tr(1,J, M)) < cd(I,J, M) and we show that

Tr(I,J,M)=T4(M)= (| N
cd(I,J,R/pj)=c

where 0 = ﬂ?zl N; denotes a reduced primary decomposition of the
zero submodule of M, Nj is a pj-primary submodule of M and a =
Hcd(I,J,R/pj);écpj' We show Anng(H} ;(M)) = Anng(M/Tr(1,J, M)),
which is a generalization of [1, Theorem 2.3| and |2, Theorem 2.6] and
some applications of this theorem are given.
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1. Attached prime ideals of top local cohomology
modules

In this section we assume that (R,m) is local and complete with
respect to m-adic topology, M is a non-zero finitely generated R-module
of dimension n > 1 and 7' is a non-empty subset of Assh(M).

Definition 1. Let K be an R-module, a prime ideal p of R is said to be
an attached prime ideal of K if p = Ann(K/N) for some submodule N of
K. The set of attached prime ideals of K is denoted by Attg(K).

Lemma 1. |1, Lemma 3.2| Let K be an R-module. Then the set of minimal
elements of V(Anng(K)) coincides with that of Attr(K). In particular,

Vv Anng(K ﬂpEAttR(K) b

Theorem 1. Let M be a non-zero finitely generated R-module of dimen-
sion n and T be a non-empty subset of Assh(M). Then the following
statements are true:
(i) If T C Attr(H}(M)) for some ideal I, then T = Attr(H} ;(M)),
where J = (Yer p- 7
(i) T = Attr(H} (M)) = Attr(HT ;(M)), where I,J are ideals of R
and J = \/Anng(H} (M)).
Proof. (1) By assumption T is a non-empty subset of Assh(M). Set
J = (Nyerp. We show that T = Attg(H] ;(M)). Assume that q €
Attp(H} ;(M)). Then by [6, Theorem 2.1] it follows that J C q. Thus
p C q for some p € T. Hence, this fact that p,q are in Assh(M) shows
that p = g and so q € T. Now, let ¢ € T. Then J C g and also
q € Attr(H}(M)). Therefore, q € Attgr(H} ;(M)) by |6, Theorem 2.1].
(ii) In view of [8, Theorem 2.8| there exists an ideal I of R such that
T = Attgp(H}(M)). Thus by (i) and Lemma 1 the result follows. O

Corollary 1. Let M be a non-zero finitely generated R-module of dimen-
sionn and let Iy, Is, Ji, Jo be ideals of R. Then the following statements
hold:

(i) If T C Attr(HT, 5 (M)) UAt‘cR(H}‘2 7, (M)) is a non-empty set and
J = \per P, then Attgr(HL J(M)) =T.

(i) If T = Attr(H}, 5, (M)) U AttR(HI ,(M)) is a non-empty set
and J = (Nyerp, then Attp(HJ,  p, ; ( )) = Attg(H}, 5 (M)) U
Attr(HE, 4, (M)).

(ii) If T' = Attg(Hj, 5, (M)) N AttR(H}”“2 (M)) is a non-empty set
and J = ﬂpeTp, then Attr(HT ,;, ; ( )) = Attr(Hf, 5 (M)) N
AttR( [2,]2 (M))
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Proof. Let p € T and p € Attg(H}, ; (M)). Then p € Attg(HJ, (M)), by
[6, Theorem 2.1]. Thus dim R/p = n and by Lichtenbaum-Hartshorne
Vanishing Theorem dim R/(I; + p) = 0. Since I; +p C I} + I + p, it
follows that dim R/(Iy + I2 +p) = 0 and so H} , ; (R/p) # 0. Thus p €
Attgr(HE | 1, (M)), by [9, Theorem A]. Therefore, T C Attg(H7 | 1, (M))
and the result follows by Theorem 1(i). O

Corollary 2. Let I,J be ideals of R and let M be a non-zero finitely
generated R-module of dimension n. If T = Attgr(H}(M)) and J' =
J+ e P then Attgr(HYT ;(M)) = AttR(H»‘ﬁ7J/ (M)).

Proof. In view of [6, Theorem 2.1| and Lichtenbaum-Hartshorne Vanishing
Theorem, we have

Attr(HT ;(M)) = {p € Supp(M) NV (J) : /I +p =m}.

Let p € Attg(H7 ,(M)). Then p € Attr(HP(M)) and 0 # H}(R/p) =
Hp, (R/p) = Hy(R/p). Hence, p € Attg(Hy, ;,(M)). The proof of the

opposite inclusion is similar. ]

Theorem 2. Let M be a non-zero finitely generated R-module of di-
mension n and let I, J = ﬂpeAttR(H}L(M)) p and J' be ideals of R. Then

Attr(HT ;(M)) = Attg(H} 5, (M)) if and only if J' C J.

Proof. Let Attr(H} ;(M)) = Attr(H7 ;(M)). Then Theorem 1 shows
that Attp(H}(M)) = Attr(H} ;(M)). Hence, by [6, Theorem 2.1]

J'C N p= N p= N p=J

PEAttR(HY (M) pEAttR(HT ;(M)) pEAttR(H] (M))
Conversely, if J' C J, then by [6, Theorem 2.1] we have
Attr(HY (M)) = Attg(HT ;(M)) C Attg(HT ;/(M)) C Attr(H[ (M)).
So the result follows. O

Theorem 3. Let M be a non-zero finitely generated R-module of dimen-
sionn and let I, I' and J = ﬂpeAttR(H?(M)) p be ideals of R such that

I CI'. Then Att(H} ;(M)) = Att(Hy, ;(M))

Proof. Assume that p € Att(H} ;(M)). Thus [6, Theorem 2.1] shows
that p € Att(H}(M)) and J C p. By assumption and [10, Proposition
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1.6], Attr(H(M)) C Attp(HJL(M)) so that p € Att(HP(M)) and p €
Att(Hp ;(M)). Thus Att(H} ;(M)) C Att(H] ;(M)). Therefore,

JC N pC (N »p=J

pEAO(HY, (M) peAtt(H] ,(M))
which shows that Att(H} ;(M)) = Att(HF, ;(M)). O

Theorem 4. Let M be a finitely generated R-module of dimension n and
1, J be ideals of R such that H}LJ(M) # 0. Then there exists () € Supp(M)
such that dim(R/Q) =1 and H{(R/p) # 0, for each p € Attgr(HT ;(M)).

Proof. By assumption T' = Attg(H} ;(M)) # @. Then in view of [8,
Theorem 2.8] we have T' = AttpH} (M) for some ideal a of R. Now,
[8, Proposition 2.1] shows that there exists an integer r such that for
all 1 < i < r there exists @; € Supp(M) with dim(R/Q;) = 1 such
that (yerp € Qi- In addition, we may assume that a = Miz; Qi- Let
p € AttgH} ;(M). Then p € AttrHg (M) and so Hﬁ;«_lQi(R/p) # 0.

Now, by setting b = ﬂ:;ll Q; and ¢ = @, we have the following long exact
sequence

Hy (R/p) — Hy'(R/p) ® H(R/p) = Hyro(R/p) = 0,

where H\ (R/p) = H&m,,,mQT(R/p) # 0. So Hi'(R/p) ® H!'(R/p) # 0.
Therefore Hi'(R/p) # 0 or H'(R/p) # 0. If H(R/p) # 0 we are done.
Otherwise, one can set b = ﬂ::_lz Q; and ¢ = Q,_1 and with repeat this
method, to get the result. O

Corollary 3. Let M be a finitely generated R-module of dimension n > 1
and I,J be ideals of R such that H?,J(M) % 0. Then there exists QQ €
Supp(M) such that dim(R/Q) =1 and Attr(Hp ;(M)) # @.

2. Annihilators of top local cohomology modules

In this section (R, m) is a Noetherian local ring with maximal ideal m
and I,.J are two proper ideals of R.

Let M be a non-zero finitely generated R-module and let c¢d(Z, J, M)
denote the supremum of all integers r for which Hj ;(M) # 0. We call
this integer the cohomological dimension of M with respect to ideals
I,J. When J = 0, we have cd(I,0,M) = cd(I, M) which is just the
supremum of all integers r for which Hj (M) # 0. In [7, Corollary 3.3] a
characterization of cd(7, J, M) is provided.
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Lemma 2. [7, Proposition 3.2] Let M and N be two finitely generated R-
modules such that Supp(N) C Supp(M). Then cd(I,J,N) < cd(I,J, M).

Definition 2. Let M be a non-zero finitely generated R-module of coho-
mological dimension ¢. We denote by Tr(I,J, M) the largest submodule
of M such that cd(I, J, Tr(I,J,M)) < cd(I,J, M).

It is easy to check that Tr(I,J,M) =U{N : N < M, cd(I,J,N) <
cd(I,J,M)}. When J = 0, this definition coincides with that of [1, Defi-
nition 2.2|.

Lemma 3. Let M be a non-zero finitely generated R-module of dimension
n such that n = cd(I,J,M). Then Tr(m, M) C Tr(I,M) C Tr(I,J,M).

Proof. For the first inclusion let x ¢ Tr(I, M). Then cd(I,J,Rz) = n
and so H}(Rxz) # 0. Thus dim(Rz) = n. Hence, by Grothendieck’s
Vanishing Theorem H[!(Rx) # 0 and x ¢ Tr(m, M). Let « ¢ Tr(I, J, M).
Then cd(l, J, Rr) = n and so Hf ;(Rz) # 0. Thus Attg(H} ;(Rz)) # @
and Attr(H} (Rx)) # @ by [6, Theorem 2.1]|. Hence, H}L(Ra:) # 0 and
cd(I, Rz) = n. Therefore, x ¢ Tr(I, M). O

Theorem 5. Let M be a non-zero finitely generated R-module with coho-
mological dimension ¢ = cd(I,J, M). Then

Tr(I,J,M)=T4(M) = N N
cd(I,J,R/pj)=c

Here O = ﬂ?zl Nj is a reduced primary decomposition of the zero submodule
of M, Nj is a p;-primary submodule of M and a = Hcd([ TR/p;)#c Pi-

Proof. First we show the equality I'q(M) = ﬂCd(LJ’R/pj):C N;. To do this,
the inclusion mcd(I,J,R/pj):c N; CT'q(M) follows easily by the proof of [11,
Theorem 6.8(ii)|. In order to prove the opposite inclusion, suppose, the con-
trary is true. Then there exists z € T'q(M) such that ¢ ﬂCdU’J’R/pj):C N;.
Thus there exists an integer ¢ such that © ¢ N; and cd(Z,J, R/p:) = c.
Now, as x € I'q(M), it follows that there is an integer s > 1 such that
a®z = 0, and so a®x C N;. Because of x ¢ N; and Ny is a p;-primary
submodule, it yields that a C p,. Hence, there is an integer j such that
p; C py and cd(1, J, R/p;) < ¢ — 1. Therefore, in view of Lemma 2, we
have

cd(I,J,R/ps) < cd(I,J,R/p;) < c—1,
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which is a contradiction. Now, we show that Tr(I,J, M) = T'q(M). Let
x € Tr(I,J,M). Then in view of Lemma 2, cd(/, J, Rx) < ¢— 1. Let p be
a minimal prime ideal of Anng(Rz), it follows that c¢d(Z, J, R/p) < ¢ — 1.

So
aC m p; ﬂ p = +/Anng(Rz).
cd(I,J,R/pj)<c—1 pEAssr(Rx)

N

Thus there exists an integer & > 1 such that a* C Anng(Rx). Hence,
abz = 0 and o € To(Tr(I, J, M)). Thus Tr(I, J, M) = Ta(Tr(1, J, M)).
Now, we have Tr(I,J,M) = I'y(Tr(I,J,M)) C T'(M). We show that
Ty(M) C Tgr(1,J,M), to do this, we show cd(l, J,I'q(M)) < ¢ — 1. Let
p € Supp(I'a(M)). Then a C p and there exists p; C p such that
cd(1,J,R/pj) < ¢ — 1. Thus by Lemma 2, cd(/, J, R/p) < ¢ — 1. Hence,
cd(I J,Ta(M)) < ¢—1 by |7, Theorem 3.1]. Therefore, Tr(I,J, M) =
Lo (M). O

a

Corollary 4. Let M be a non-zero finitely generated R-module of dimen-
ston n with cohomological dimension ¢ = cd(I,J,M). Then the following
statements are true:
(1) Assp(Tr(1,J,M)) ={p € Assp(M) : cd(I,J,R/p) < c— 1},
(i1) Assp(M/Tr(I,J,M)) = {p € Assgr(M) : cd(I,J,R/p) = c}. If
n = c, then Assg(M/Tr(I,J,M)) = Attg(H} ;(M)).

Proof. By Theorem 5, Tr(I, J, M) = T'a(M), where [Toq(7 5 r/p,)<c—1Pi
= a. So by [4, Section 2.1, Proposition 10| we have

Assgp(Tr(I,J,M)) = Assp(M) N V(a).

Now (i) follows from Lemma 2.
In order to show (ii), use |5, Exercise 2.1.12| and |6, Theorem 2.1|. O

Corollary 5. Let M be a non-zero finitely generated R-module of dimen-
sion n such that n = c¢d(I,J, M). Then there ezists a positive integer t
such that J*M C Tg(I,J, M).

Proof. Let 0 = ﬂ;;l Nj; denote a reduced primary decomposition of the
zero submodule of M, where Nj is a p;-primary submodule of M. In view
of Theorem D, ,IYR(I7 J, M) = ﬂCd(LJ,R/pj):n N] If Cd(.[7 J, R/p]) =n,
then H} ;(R/p;) # 0. Thus J C p; = \/Anng(M/N;) by [13, Theorem
4.3]. Hence, there exists a positive integer ¢; such that J%M C Nj. Let
t = max{t; : cd(I,J,R/p;) = n}. Then J'M C N prp)=nNi =
TR(Ia Jv M) ]
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Theorem 6. Let M be a non-zero finitely generated R-module of dimen-
sionn =cd(I,J,M). Then

Anng(H} ;(M)) = Anng(M/Tg(I, J, M)).

Proof. By Corollary 5, J'M C Tg(I,J, M) for some integer ¢ > 1 and
by [13, Proposition 1.4(8)], H}"J(M) = H}'Jt (M) for all ¢ > 0. Then we
can assume that JM C Tr(1,J, M). First we show that Tr(I, M/JM) =
Tr(I,J,M)/JM. Let x € M and consider the exact sequence

Rz

Rengm

00— RxNJM — Rx —

that induce an exact sequence

Rx
rena) 70

If & + JM € Tr(I,M/JM), then H} ,(Rx/RenJM) = Hp(R(z +
JM)) =0, by [13, Corollary 2.5|]. As Re N JM C Tr(I,J, M) it follows
that H} ;(Rx N JM) = 0. Hence, H} ;(Rx) = 0. So that x € Tg(I, J, M).
If v € Tr(I,J, M), then H} ;(Rz) = 0. Thus H} ;(Rx/RxNJM) =
HP(R(x+ JM)) =0 by (x). Therefore, x + JM € Tr(I, M/JM). Now,

from the exact sequence

o= HI' j(ReNJM) — HY ;(Rx) — HJ 4(

M
O—JM - M — — =0
JM

we have the exact sequence

M

i’
Since JM C Tr({,J, M), it follows that H} ;(JM) = 0 and so we have
H} (M) = H} ;(M/JM). Thus H} ;(M) = H}'(M/JM). Therefore,

Anng(H7 ;(M)) = Anng(H}(M/JM)) = AnnR<m>
M/JM

Tl 00 ar) — Aree(M/Tr(l, J, M)),

= Anng(

see [1, Theorem 2.3]. O

Corollary 6. Let M be a non-zero finitely generated R-module of di-
mension n = cd(I,J, M) and JM C Tgr(I,M). Then Anng(H}(M)) =
AnnR(H}fJ(M)).
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Proof. By a similar argument to that of Theorem 6, one can show that
Tr(I,M/JM)=Tgr(I,M)/JM. Also, by Lemma 3 we have Tr(I, M) C
Tr(I,J,M). Thus JM C Tg(I,J,M) and so H} ;(JM) = 0. Hence, it
follows by (%) that H} ;(M) = H}(M/JM). Therefore,

" n M/JIM
AnnR(HLJ(M)) = Anng(H}(M/JM)) = AnnR(—TR(I, M/JM))
M/JM
=A — ) =A M/Tr(I,M)).
Now, the result follows by [1, Theorem 2.3] and Theorem 6. O

Corollary 7. Let M be a non-zero finitely generated R-module of dimen-
sion n = cd(I, J, M). Then the following statements hold:

(i) \/AHDR(H?,J(M)) = anAssRM,Cd(I,J,R/p):n s
(ii) V(Anng(HF. ;(M))) = Supp(M/Tg(I, J, M)),
(iii) If Tr(I,J, M) =0, then Supp(M) = V(Anng(H} ;(M))).

Proof. (i) It follows by Lemma 1 and [6, Theorem 2.1].
To prove (ii) use Theorem 6.
(iii) It follows from (ii). O

Corollary 8. Let d = dim R = cd(1, J, R). Then the following statements
hold:

(i) cd(1,J, Anng(H{ ;(R))) < dim R.

(ii) Ifd > 1, then dim R = dim R/AnnR(HﬁJ(R)) =dimR/T'; j(R).

Proof. (i) It follows from Theorem 6.
(i) By [13, Corollary 1.13 (4)], H{ ;(R) = H{ ;(R/T'1 (R)). So that
I7(R) C Anng(H{ ;(R)). O

Corollary 9. If R is a domain of dim R = d and Hf{J(R) % 0, then
AnnR(H}i,J(R)) =0.

Proof. 1t follows by Theorems 5 and 6. O
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