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ABSTRACT. Given a pair (X, o) consisting of a finite tree
X and its vertex self-map o one can construct the corresponding
Markov graph I'(X, o) which is a digraph that encodes o-covering
relation between edges in X. M-graphs are Markov graphs up to
isomorphism. We obtain several sufficient conditions for the disjoint
union of M-graphs to be an M-graph and prove that each weak
component of M-graph is an M-graph itself.

Introduction

In 1964 Sharkovsky proved the following remarkable theorem.

Theorem 1. [9] If the continuous map f :[0,1] — [0,1] has a periodic
point of period n € N, then it also has a periodic point of period m € N
for all m < n, where

1<12<4224- - -2 < - - q7-2"<15-2" 3.2 - - - 17-2<15-2<13-2<1- - - 171513

s Sharkovsky’s ordering of N. Moreover, for every number m € N there
exists a continuous map that has a periodic point of period m but does
not have periodic points of periods n € N, where m <n.

In [10] Straffin proposed a strategy on how to prove Sharkovsky’s the-
orem using some elegant combinatorial arguments. The cornerstone of his
idea is to use directed graphs which naturally arise from orbits of periodic
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points. Namely, let € [0, 1] be n-periodic point of a continuous map
f:[0,1] = [0,1]. Consider the orbit orbs(x) = {x, f(x),..., " Hz)} =
{r1 < -+ < x,} and its natural ordering inherited from the interval.
Periodic graph G¢(z) has the vertex set {1,...,n — 1} and the arc set
{(i,7) + min{f(x;), f(zix1)} < 27 < max{f(x;), f(zi41)}}. Here each
1 < i < n—1represents the minimal interval [x;, z;11] and there is an arc
i — jin Gg(x) if [x;, £i41] “covers” [z, x41] under f. Periodic graphs are
useful in combinatorial dynamics because of the following result known
as Itinerary lemma.

Lemma 1. [10] Let x € [0,1] be some periodic point of a continuous
map f :[0,1] — [0,1]. Suppose that there is a closed walk W = {iy —

-« = im—1 — do} of length m in Gy(x). Then there exists a periodic
point y € [0,1] such that f™(y) = y and f*(y) € [z, xi,+1] for all
0 < k<m—1. Moreover, if W is primitive, then the period of y equals
m.

Here the closed walk is called primitive if it is not entirely consists
of a smaller walk traced several times. Note that Lemma 1 admits a
converse statement. Namely, for any periodic point = € [0,1] of f we
can consider its linearization Ly (f) : [0,1] — [0, 1] which is a “connect-
the-dots” map with respect to the orbit orbs(z). Then each m-periodic
point of L,(f) corresponds to some primitive closed walk of length m in
Gr,(n(x) = Gy(z).

Full proof of Sharkovsky’s theorem using periodic graphs can be found
in [2]. Graph-theoretic properties of periodic graphs were studied in [6-8].
These are include calculation of the number of non-isomorphic periodic
graphs with given number of vertices [6] and obtaining graph-theoretic
criteria for periodic graphs [7] and their induced subgraphs [8].

Similar approach can be used for dynamics of continuous maps on
finite topological trees (see [1] for the Sharkovsky-type result in this case).
The
defined for combinatorial trees and their vertex maps. Thus, periodic
graphs appear as a particular case of Markov graphs where underlying
trees are paths and maps are cyclic permutations. M-graphs then defined
as Markov graphs up to isomorphism.

In [3] maps on trees were characterized for several classes of M-graphs
including complete digraphs, complete bipartite digraphs, disjoint unions
of cycles and digraphs in which each arc is a loop. It is also shown [4] that
M-graphs satisfy Seymour’s Second Neighbourhood Conjecture as well
as Caccetta—Héaggkvist Conjecture. Various transformations including
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deletion and addition of vertices, doubling and reverse doubling of vertices
and taking disjoint unions of M-graphs are studied in [5]. Also, it is proved
that there exist exactly 11 pairwise non-isomorphic M-graphs which are
tournaments as well as 86 pairwise non-isomorphic 3-vertex M-graphs
(again, see [5]).

In this paper we obtain several sufficient conditions for the disjoint
union of M-graphs to be an M-graph and prove that each weak component
of M-graph is an M-graph itself.

1. Definitions and preliminary results

In what follows map is just a function. For any given map o by Im o
and fix o we denote its image and the set of its fixed points, respectively.

A graph G is a pair (V, E), where V = V(G) is the set of its vertices
and £ = E(G) the set of its edges. By Eg(u) we denote the set of
all edges incident to the vertex uw in G. A vertex wu is called isolated if
|Eg(u)| = 0. Similarly, u is a leaf vertexr provided |Eg(u)| = 1. The
unique edge incident to a leaf vertex is called a leaf edge. The set of all leaf
vertices in G is denoted by L(G). For the set of vertices A C V(G) we put
E(A) ={uv € E(G):u,v e A} and 9gcA ={u € A: Eg(u)—E(A) # &}.
By G[A] and G[E'] we denote the subgraphs of G induced by A C V(Q)
and E' C E(G), respectively.

A graph G is called connected if for every pair of its vertices u,v € V(G)
there exists a path joining them. The minimum number of edges in such
a path is called the distance dg(u,v) between v and v in G. The set of
vertices A C V(G) is connected if the induced subgraph G[A] is connected.
Similarly, E' C E(G) is connected if so is G[E'].

The eccentricity of a vertex u in a connected graph G is the value
eccq(u) = max,cy(g) da(u,v). For the pair of vertices u,v € V(G) in a
connected graph G we put [u,v]g = {w € V(G) : dg(u,w) + dg(w,v) =
dg(u,v)}. The set A C V(G) is conver provided [u,v]g C A for all
u,v € A. The conver hull Convg(A) of A is defined as the smallest
convex set containing A.

Put dg(u, A) = minyea dg(u,v) and dg(A, B) = mingep dg(u, A)
for all vertex sets {u}, A, B C V(G) in a connected graph G. The set
A C V(G) is called Chebyshev if for every vertex u € V(G) there exists
a unique v € A with dg(u,v) = dg(u, A). The corresponding map pry :
V(G) — V(G), where pry(u) = v is called the projection on a Chebyshev
set A.



S. KOZERENKO 265

A tree is a connected acyclic graph. It should be noted that in a tree
each connected set of vertices is Chebyshev.

A directed graph or digraph T is a pair (V, A), where V' = V(I") is the set
of its vertices and A = A(I") C V x V is the set of its arcs. If (u,v) € A(T),
then we write © — v in I'. The arc of the form v — wu is called a loop.
For the vertex u € V(T') we put Nf (u) = {v € V(T') : u — v in I'} and
Np (u) = {v € V(') : v — u in T'}. The cardinalities d;f (u) = | N (u)]
and dp (u) = |Np (u)| are called the outdegree and the indegree of w,
respectively.

A digraph T is called complete provided A(T') = V/(I') x V(T'). Similarly,
' is empty if A(T') = @. By K,, and K,, we denote the complete and the
empty digraph with n vertices, respectively.

A digraph is called weakly connected if its underlying graph (which is
obtained by “forgetting” orientation of the edges and ignoring loops) is
connected. Weak component of a digraph is its maximal weakly connected
subgraph. By I'y UT's we denote the disjoint union of digraphs I'y and I's.

A pair (X, ug) consisting of a tree X and its distinguished vertex
ug € V(X) is called a rooted tree. The digraph I" which is obtained from
the rooted tree (X, ug) by orienting the edges of X towards ug is called
an in-tree. The vertex ug is the center of an in-tree I'. It is easy to see
that for an in-tree its center is the unique vertex with zero outdegree.

For every map f : X — X one can define its functional graph as a
digraph with the vertex set X and the arc set {(z,y) : f(z) = y}. A
digraph is called functional if it isomorphic to a functional graph for some
map. It is easy to see that I is functional digraph if and only if d (v) = 1
for all v € V(I'). Similarly, T is called partial functional if di (v) < 1
for all v € V(T'). Each partial functional digraph I" corresponds to some
partial map of the form f: V(I') — V(I).

Definition 1. Let X be a tree and o : V(X) — V(X)) be some map. The
Markov graph T' = T'(X, o) has the vertex set V(I') = E(X) and there is an
arc e; — ez in I if ug, vy € [o(u1),0(v1)]x for e; = wv; € V(I'),i = 1,2.
In other words, Ny (uv) = E([o(u),o(v)]x) for all edges uv € B(X).

Example 1. Consider the tree X with V(X) = {1,...,7}, B(X) =
. 1 23 45 6 7 .

{12,23,34,45,26,37} and its map o = ( 41362 49 ) which

are shown in Figure 1. Then the corresponding Markov graph I'(X, o) is

shown in Figure 2.
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FIGURE 1. The pair (X, o) from Example 1 (dashed arrows denote o).

(12) (23) 37
N
AN

FIGURE 2. Markov graph T'(X, o) for the pair (X, o) from Example 1.

A digraph T is called an M-graph if there exists a pair (X, o) such
that I' ~ T'(X, o). Each such a pair is called the realization of T'.

Lemma 2. [3] Let X be a tree and o : V(X) — V(X)) be a map. Then for
every pair of vertices u,v € V(X)) and an edge xy € E([o(u),o(v)|x) there
exists an edge wz € E(u,v]x) with wz — xy in I'(X,0). In particular,

[o(u), o()]x € Ulo(w), o(2)]x

wz€E([u,v]x)
Lemma 3. [5] Let X be a tree, A C V(X) be some connected set
of vertices, o : V(X) — V(X) be a map and T' = T'(X,0). Then
I'(X[A], pry oo) = T[E(A)].
Proposition 1. Let X be a tree and o : V(X) — V(X)) be some map.
Put E(o0) ={e € E(X) :dp(e) > 1}. Then E(0) = E(Convx(Imo)). In
particular, X[E(0)] is the connected subgraph of X.

Proof. Let Vi = V(E(0)) and Vo = Convx (Imo). If u € Vi, then there
exists an edge e = uv € E(o). By definition, d(e) > 1. This means
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that there is an edge ¢/ = vv' € F(X) with ¢ — e in I'(X,0), i.e.
u,v € [o(u'),o(v")]x. Therefore, u € V3.

Conversely, suppose u € V5. Then there exists a pair of vertices x,y €
V(X) such that u € [o(z),0(y)]x. At first, suppose that o(z) # o(y).
Then we can fix an edge e = wv € E([o(z),0(y)]x). From Lemma 2
it follows that there is an edge ¢’ € E([x,y|x) with ¢/ — e in . Thus
dp(e) > 1 and u € Vi. Otherwise, let o(x) = o(y). Then u € Imo. If 0 is
a constant map, then F(o) = E(Convy(Imo)) = &. Thus, suppose that
o is non-constant. This means that there exists a vertex v € Imo — {u}.
Let 0(z) = v. Since u # v, we can fix an edge e = vw € E([u,v]x). Again,
by Lemma 2, di(e) > 1 which implies u € V. O

2. Main results

From Lemma 3 it strictly follows that each nontrivial M-graph I’
contains a vertex v € V(T') such that I" — {v} is also an M-graph. In [5]
it was proved that any digraph obtained from an M-graph by deletion
of a vertex with zero outdegree (in particular, an isolated vertex) is an
M-graph itself. We generalize this result using the following theorem.

Theorem 2. Let X be a tree and o : V(X) — V(X) be some map.
Suppose that we have a collection A; C V(X), 1 < i < m of pairwise
disjoint connected sets such that for every 1 < i < m either |o(0xA4;)| =1
or there exists 1 < j < m with 0(0xA;) C Aj. Then I'(X, 0) —UiZ, E(A;)
is an M-graph.
Proof. Consider the set of indices Iy = {1 <i < m:|o(dxA4;)| =1} and
the corresponding map ¢ : Iy — V(X), where o(dxA4;) = {g(i)} for all
i € I. Similarly, the set of indices Io = {1,...,m} — I; defines the map
[l —{1,...,m}, where 0(0x A;) C Ag; for all i € I.

Take a graph X — [Ji"; A; and add to it m new vertices z; for each
1 < i < m with new edges z;y; for all y; € dx(V(X) — A;) to obtain a
new graph X’. It is easy to see that X’ is a tree (one can think of X’ as of
tree which is obtained from X by “contracting” sets A; into points). Put

2 if o(x) € A,
g(i) ifx=z andiel,
zpi) fx =z andi€ Iy,

o(x) otherwise,

for all z € V(X’). Then I'(X,0) — U~ E(4;) ~T(X',0"). O
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Corollary 1. Let ' be an M-graph and v € V(I') be its vertex with
Ni(v) C {v}. Then T — {v} is an M-graph. Moreover, if Nf (v) = {v},
then there exists a realization (X, o) of ' — {v} such that fixo # @.

Proof. Fix some realization (X, o) of I'. Let the edge e = ux € E(X)
corresponds to the vertex v € V(T'). If Nif (v) = @, then o(u) = o(z). In
this case for the connected set of vertices A = {u, z} we have |o(0x A)| = 1.
By Theorem 2, I' — {v} is an M-graph.

Otherwise, let N (v) = {v}. Then o(u) = uand o(x) = z,0r o(u) =
and o(z) = u. In both cases o(0xA) C A. Again, by Theorem 2, I" — {v}
is an M-graph. Moreover, with the notation of Theorem 2, 0/(z1) = 21
(here A = Ay). Therefore, in this case fix o’ # &. O

Example 2. Consider the tree X with V(X) = {1,...,7}, B(X) =

4 1 5 4 5 2 3
dpx U)(16) = 0, however I'(X, o) — {16} is not an M-graph (see Figure 3).

{12,23,34,16,25,67} and its map o = < L234567 > Then

16 (34) (12)

F1GURE 3. Markov graph I'(X, o) for which T'(X, o) — {16} is not an M-graph.

Denote by Vo(I') = {v € V(I') : di- (v) = 0} the set of vertices with
zero indegree in I'.

Proposition 2. For every M-graph T' and 0 < k < |Vo(T)| there exists
V' c Vo(T') with |V'| = k such that T — V' is an M-graph. In particular,
' = W(T) is an M-graph.

Proof. Fix a realization (X, o) of I'. Let the edge set E' C F(X) cor-
responds to Vp(I'). By Proposition 1, the set E(X) — E' = E(o0) is
connected. Since X is a connected graph, for any 0 < k < [Vo(I')| there
exists a connected set of edges E” C E(X) with E(X) — E' C E”
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and |E'| = |E(X)| — k. Let V' ¢ V(T') corresponds to E(X) — E”.
Then |V/| = k and by Lemma 3, ' — V' ~ I'(X,0) — (E(X) — E") =
(X, 0)[E"] = T(X[E"], pry/(gr oo) is an M-graph. O

Note that any digraph obtained from an M-graph by addition of an
isolated vertex is also an M-graph. Using this fact one can conclude that
I is an M-graph if and only if so is I' U K. However, not every disjoint
union of two M-graphs is an M-graph itself.

Example 3. Suppose that I' is obtained from the complete digraph with
two vertices Ko by deletion of a loop. Then I' is an M-graph, but I' U K

is not (see Figure 4).

F1GURE 4. Disjoint union of two M-graphs which is not an M-graph.

Remark 1. [5] If we have a pair of trees X;,i = 1,2 and a pair of their
maps o; : V(X;) — V(X;) with fixo; # @,7 = 1,2, then the disjoint
union I'( X1, 01) UT'(X9, 09) is an M-graph. Indeed, “gluing” realizations
(X1,01) and (X2, 02) together along some pair of fixed vertices we obtain
the realization of F(Xl, 0’1) LJ F(Xg, 02).

As a corollary of the construction in Remark 1 one can obtain a
sufficient condition for the disjoint union of two M-graphs to be an M-
graph.

Corollary 2. [5] Let 'y and 'y be a pair of M-graphs with even numbers
of loops in each. Then I'y U Ty is an M-graph. In particular, any disjoint
union of two M-graphs without loops is an M-graph itself.

It turns out that for any given M-graph we can provide a graph-
theoretic criterion for the existence of its realization (X, o) with fix o # @.

Proposition 3. Let " be a digraph. Then I'UK7 is an M-graph if and only
if T is an M-graph and there exists its realization (X, o) with fixo # &.

Proof. Sufficiency of this condition follows from Remark 1, since for K;
there obviously exists its realization (X,o) with fixo # @. Thus, we
must prove only the necessity of this condition. To do so fix a realization
(X',0") of T'U K. Let the vertex v € V(I' U K1) corresponds to a unique
vertex from Kj. Then NIj_uKl (v) = {v} implying that by Corollary 1, T’
is an M-graph and there exists its realization (X, o) with fixo # @. 0O
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Corollary 3. IfI' U Ky is an M-graph, then there exists its realization
(X, 0) with fixo # .

Combining Remark 1 and Proposition 3, we obtain the following
result.

Proposition 4. If for a pair of digraphs I'y and I'y the digraphs I'1 L K4
and I's U K1 are M-graphs, then I'y Uy is an M-graph.

Theorem 3. Let I'y be an M-graph and 'y be acyclic partial functional
digraph. Then I'y U Ty is also an M -graph.

Proof. Without loss of generality, we can assume that I's is weakly con-
nected. Since I'y is acyclic and partially functional, I'y is an in-tree. Let
zo € V(T'3) be its center (thus, df (zo) = 0). Denote by X’ the under-
lying tree of I's. For every 0 < i < eccx/(xo) put a; = |N% (z0)| for the
cardinality of the sphere with radius i centered at xg in X'.

Now fix a realization (X, o¢) of I';. Since V(X) is finite, o9 has a
periodic point ug € V(X) with period m > 1. Consider the restriction
o= UO’orbGO (uo) Of 00 to orbg (up). Clearly, o is a cyclic permutation of
orbg, (up). ' '

For every 0 < < eccy/(7o) add a; new vertices yi, ...y, to X with
the new edges y;'-cr_i modm (y0) for all 1 < j < a; (of course, 0¥ (ug) = uo).
Denote the obtained tree as X”. For all u € V(X”) put

o(u) ifueV(X),
o'(u) =yt ifu=yi,i>1and N (2) = {z} '},

o(ug) if u =17,

where N, (x0) = {x} : 1 < j < a;} (for example, N§, (z0) = {29} = {z0}).
Then I'(X”,0') ~ T’y UTy (the edges from E(X) correspond to the
vertices of I'y and edges of the form y;:a*" modm (35 correspond to the

vertices 7). O

Note that the acyclicity condition in Theorem 3 is essential as can be
seen from the digraph in Example 3.

Example 4. Consider the pair (X, o) from Example 1 and the corre-
sponding Markov graph I'y = I'(X, o). Also, let I'y be the in-tree depicted
in Figure 5 (the vertices of I'y are labeled according to the notation in
the proof of Theorem 3). Thus, x is the center of 'y, eccx/(zg) = 2,
Nii(z0) = {z}, 23}, N2/ (20) = {2?,23} and a1 = az = 2. Put ug = 4.
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Then orb, (ug) = {4,6} and therefore m = 2. The corresponding tree X"
is shown in Figure 6. We also have o’(y)) = 6, 0" (yi) = o’(y3) =y} and
o' () = o' (43) = v3.

3
x% :L'% Lo 1‘%

F1cUrRE 5. The in-tree I's.

yi v
6 7
yi
y? Y3
[ J L ]
1 2 3

FI1GURE 6. The tree X" from Example 4.

Theorem 4. The disjoint union of any collection of weak components
(in particular, each weak component) in an M-graph is an M-graph itself.

Proof. It is sufficient to prove that for any M-graph I' and its weak
component I the digraph I' — V(I"”) is an M-graph. To do so fix a
realization (X, o) of I. Let the set of edges E' C E(X) corresponds to
the vertex set of I'V. Consider the components X7, ..., X,, of the induced
subgraph X[E’] in X and put 4; = V(X;) for all 1 <i < m.

Suppose that for some 1 < i < m there exists a vertex x € A; with
o(z) ¢ UL Aj = V(X[E"]). Then Ex(o(z))NE" = @. If for some y € 4;
we have o(z) # o(y), then dx(o(x),0(y)) > 2. This means that there is a
vertex u € [o(z),o(y)]x such that e = uo(x) € E(X). By Lemma 2, there
exists an edge € € E([z,y]x) C F(A;) with ¢ — e in I'(X,0). Since
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e ¢ E', T’ is not a weak component of I'. The obtained contradiction
implies that in this case we have o(z) = o(y) for every y € A;. In other
words, |o(4;)] = 1.

Now let 1 < i < m is fixed and for every vertex x € A; there exists
1 < j, <m with o(x) € A;,. We want to prove that in this case j, = jy,
for each pair of vertices z,y € A;. To the contrary, suppose j, # jy for
some x,y € A;. Then dx(A;,,Aj,) > 1. This implies the existence of an
edge e € E([o(x),0(y)]x) — UL E(Ag). Again, from Lemma 2 it follows
that there exists €/ € E([z,y]x) C F(4;) with ¢ — e in T'(X, o) which
is a contradiction. Thus, in this case 0(A4;) C A; for some 1 < j < m.
Theorem 2 now asserts that I' — V(I") is an M-graph. 0

Corollary 4. If for a pair of digraphs I'y and Uy their disjoint union
I'y UTy @s an M-graph, then both I'y and I's are M-graphs.

Proof. Clearly, I'y and I'y are both disjoint unions of weak components
inI'y UL, ]

Proposition 5. Let I'y and I's be a pair of nontrivial digraphs having
loops at each of their vertices. Then I'y Uy is an M-graph if and only if
I UKy and Ty U K7 are both M-graphs.

Proof. The sufficiency of this condition strictly follows from Proposition 4.
To prove its necessity fix a realization (X,0) of I' =T'y UTs. Let IV be a
weak component in I and E' C E(X) be the corresponding set of edges
in X. We want to prove that E’ is connected. To the contrary, suppose
that there is a partition E' = Ey U Ey with dx (V(E1),V(Es)) > 1.

Since I'" is weakly connected, there is a pair of edges e¢; = u;v; € E;,1 =
1,2 with e; — ey or es — e in I'Y. Without loss of generality, assume
e — eo in I'V. We have e, es € NIT(X’U)(el) which implies [u1,us]x C
[o(u1),0(v1)]x. However, the inequality dx(V (E1),V(E2)) > 1 asserts
E([u1,us]x) — E' # @. In other words, there exists an edge ¢’ ¢ E’ such
that e; — €' in I". Therefore, I is not a weak component in I". The
obtained contradiction proves that E’ is connected.

By Lemma 3, I' ~ I'(X, o) [E] = ['(X[E'], pry(r) o0). Furthermore,
since I'; and I'y are nontrivial digraphs, we have I' # I"'. This implies
OxV(E') # @. Fix a vertex w € OxV(E') and an edge e € Ex(w) — E'.
Let E” be the vertex set of the weak component in I'(X, o) which con-
tains e. Similarly, we can prove that E” is connected. Also, note that
w € OxV(E"). Finally, the proof of Theorem 4 implies that o(0xV (E")) C
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OxV(E') as well as o(0xV(E")) C dxV(E"). Hence, we can conclude
that o(w) = w.

Thus, for every weak component I'V of I there exists its realization
(X', 0’) with fix o’ # @. But 'y (as well as I') is a disjoint union of weak
components in I'. Combining this fact with Remark 1 and Proposition 4,
we obtain that I'; U K as well as I's U Ky are M-graphs. O

Example 5. Consider the path X ~ P, with V(X)) = {1,2,3,4}, E(X) =
1 2 3 4
31 4 2
a loop at each vertex, but I'(X, o) U K is not an M-graph.

{12,23,34} and its vertex map o = ) Then I'(X, o) has
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