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Abstract. We introduce and analyze the following general
concept of recurrence. Let G be a group and let X be a G-space
with the action G × X −→ X, (g, x) 7−→ gx. For a family F of
subset of X and A ∈ F, we denote ∆F(A) = {g ∈ G : gB ⊆ A for
some B ∈ F, B ⊆ A}, and say that a subset R of G is F-recurrent
if R

⋂
∆F(A) 6= ∅ for each A ∈ F.

Let G be a group with the identity e and let X be a G-space, a set

with the action G × X −→ X, (g, x) 7−→ gx. If X = G and gx is the

product of g and x then X is called a left regular G-space.

Given a G-space X, a family F of subset of X and A ∈ F, we denote

∆F(A) = {g ∈ G : gB ⊆ A for some B ∈ F, B ⊆ A}.

Clearly, e ∈ ∆F(A) and if F is upward directed (A ∈ F, A ⊆ C imply

C ∈ F) and if F is G-invariant (A ∈ F, g ∈ G imply gA ∈ F) then

∆F(A) = {g ∈ G : gA ∩A ∈ F}, ∆F(A) = (∆F(A))−1.

If X is a left regular G-space and ∅ /∈ F then ∆F(A) ⊆ AA−1.

For a G-space X and a family F of subsets of X, we say that a subset

R of G is F-recurrent if ∆F(A) ∩R 6= ∅ for every A ∈ F. We denote by

RF the filter on G with the base ∩{∆F(A) : A ∈ F′}, where F′ is a finite

subfamily of F, and note that, for an ultrafilter p on G, RF ∈ p if and

only if each member of p is F-recurrent.
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The notion of an F-recurrent subset is well-known in the case in which

G is an amenable group, X is a left regular G-space and F = {A ⊆ X :

µ(A) > 0 for some left invariant Banach measure µ on X}. See [1] and

[2] for historical background.

Now we endow G with the discrete topology and identity the Stone-

Čech compactification βG of G with the set of all ultrafilters on G. Then

the family {A : A ⊆ G}, where A = {p ∈ βG : A ∈ p}, forms a base for

the topology of βG. Given a filter ϕ on G, we denote ϕ = ∩{A : A ∈ ϕ}.

We use the standard extension [3] of the multiplication on G to the

semigroup multiplication on βG. We take two ultrafilters p, q ∈ βG,

choose P ∈ p and, for each x ∈ P , pick Qx ∈ q. Then ∪x∈PxQx ∈ pq and

the family of these subsets forms a base of the ultrafilter pq.

We recall [4] that a filter ϕ on a group G is left topological if ϕ is

a base at the identity e for some (uniquely at defined) left translation

invariant (each left shift x 7−→ gx is continuous) topology on G. If ϕ is

left topological then ϕ is a subsemigroup of βG [4]. If G = X and a filter

ϕ is left topological then ϕ = Rϕ.

Proposition 1. For every G-space X and any family F of subsets of X,

the filter RF is left topological.

Proof. By [4], a filter ϕ on a group G is left topological if and only if, for

every Φ ∈ ϕ, there is H ∈ ϕ, H ⊆ Φ such that, for every x ∈ H, xHx ⊆ Φ

for some Hx ∈ ϕ.

We take an arbitrary A ∈ F, put Φ = △F(A) and, for each g ∈ △F(A),

choose Bg ∈ F such that gBg ∈ A. Then g△F(Bg) ⊆ △F(A) so put

H = Φ.

To conclude the proof, let A1, . . . , An ∈F. We denote

Φ1 = △F(A1), . . . , Φn = △F(An), Φ = Φ1 ∩ . . . ∩ Φn.

We use the above paragraph, to choose H1, . . . ,Hn corresponding to

Φ1, . . . ,Φn and put H = H1 ∩ . . . ∩Hn.

Let X be a G-space and let F be a family of subsets of X. We say

that a family F′ of subsets of X is F-disjoint if A∩B /∈ F for any distinct

A,B ∈ F′.

A family F′ of subsets of X is called F-packing large if, for each A ∈ F′,

any F-disjoint family of subsets of X of the form gA, g ∈ G is finite.
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We say that a subset S of a group G is a △ω-set if e ∈ A and

every infinite subset Y of G contains two distinct elements x, y such that

x−1y ∈ S and y−1x ∈ S.

Proposition 2. Let X be a G-space and let F be a G-invariant upward

directed family of subsets of X. Then F is F-packing large if and only if,

for each A ∈ F, the subset △F(A) of G is a △ω-set.

Proof. We assume that F is F-packing large and take an arbitrary infinite

subset Y of G. Then we choose distinct g, h ∈ Y such that gA ∩ hA ∈ F,

so g−1h ∈ △F(A), hg ∈ △F(A) and △F(A) is a △ω-set.

Now we suppose that △F(A) is a △ω-set and take an arbitrary infinite

subset Y of G. Then there are distinct g, h ∈ Y such that g−1h ∈ △F(A)

so g−1hA∩A ∈ F and gA∩hA ∈ F. It follows that the family {gA : g ∈ Y }

is not F-disjoint.

Proposition 3. For every infinite group G, the following statements hold

(i) a subset A ⊆ G is a △ω-set if and only if e ∈ A and every infinite

subset Y of G contains an infinite subset Z such that x−1y ∈ A,

y−1x ∈ A for any distinct x, y ∈ Z;

(ii) the family ϕ of all △ω-sets of G is a filter;

(iii) if A ∈ ϕ then G = FA for some finite subset F of G.

Proof. (i) We assume that A is a △ω-set and define a coloring χ of [Y ]2,

χ : [Y ]2 −→ {0, 1} by the rule: χ({x, y}) = 1 if and only if x−1y ∈ A,

y−1x ∈ A. By the Ramsey theorem, there is an infinite subset Z of Y

such that χ is monochrome on [Z]2. Since A is a △ω-set χ({x, y}) = 1 for

all {x, y} ∈ [Z]2.

(ii) follows from (i).

(iii) We assume the contrary and choose an injective sequence (xn)n∈ω

in G such that xn+1 /∈ xiA for each i ∈ {0, . . . , n}, and denote Y = {xn :

n ∈ ω}. Then x−1
m xn ∈ A for every m,n, m < n, so A is not a △ω-set.

Proposition 4. Let G be a infinite group and let ϕ denotes the filter of

all △ω-sets of G. Then ϕ is the smallest closed subset of βG containing

all ultrafilters on G of the form q−1q, q ∈ βG, g−1 = {A−1 : A ∈ q}.

Proof. We denote by Q the smallest closed subset of βG containing all

q−1q, q ∈ βG. It follows directly from the definition of the multiplication

in βG that p ∈ Q if and only if either p is principal and p = e or, for each

P ∈ p, there is an injective sequence (xn)n∈ω in G such that x−1
m xn ∈ P

for all m < n.
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Applying Proposition 3(i), we conclude that q−1q ∈ ϕ for each q ∈ βG

so Q ⊆ ϕ. On the other hand, if p /∈ ϕ then there is P ∈ p such that

G \ P is a △ω-set. By above paragraph, p /∈ Q so ϕ ⊆ Q.

Now let G be an amenable group, X be a left regular G-space and

F = {A ∈ X : µ(A) > 0 for some left invariant Banach measure µ on G}.

For combinatorial characterization of F see [6]. Clearly, F is upward

directed G-invariant and F-packing large. By Proposition 2, ϕ ⊆ RF. By

Proposition 4, RF contains all ultrafilters of the form q−1q, q ∈ βG, so

we get Theorem 3.14 from [1].

We suppose that a G-space X is endowed with a G-invariant proba-

bility measure µ defined on some ring of subsets of X. Then the family

F{A ⊆ X : µ(B) > 0 for some B ⊆ A} is F-packing large.

In particular, we can take a compact group X, endow X with the

Haar measure, choose an arbitrary subgroup G of X and endow G with

the discrete topology.

Another example: let a discrete group G acts on a topological space X

so that, for each g ∈ G, the mapping X −→ X, (g, x) 7−→ gx is continuous.

We take a point x ∈ X, denote by F the filter of all neighborhoods of x,

and recall that x is recurrent if, for every U ∈ F, there exists g ∈ G\{e}

such that gx ∈ U . Clearly, x is a recurrent point if and only if G \ {e} if

a set of F-recurrence, so by Proposition 1, x defines some non-discrete

left translation invariant topology on G.

Proposition 5. Let G be a infinite group, A be a △ω-set of G and let τ

be a left translation invariant topology on G with continuous inversion

x 7−→ x−1 at the identity e. Then the closure clτA is a neighborhood of e

in τ .

Proof. On the contrary, we suppose that clτA is not a neighborhood of e,

put U = G \ clτA. Then U is open and e ∈ clτU .

We take an arbitrary x0 ∈ U and choose an open neighborhood U0 of

the identity such that x0U
−1
0 ⊆ U . Then we take x1 ∈ U0 ∩U and choose

an open neighborhood U1 of e such that U1 ⊆ U0 and x1U
−1
1 ⊆ U . We take

x2 ∈ U1 ∩U and choose an open neighborhood U0 of e such that U2 ⊆ U1

and x2U
−1
2 ⊆ U and so on. After ω steps, we get a sequence (xn)n∈ω in G

such that xnx
−1
m ∈ U for all n < m. We denote Y = {x−1

n : n ∈ ω}. Then

(x−1
n )−1x−1

m ∈ A for all n < m, so A is not a △ω-set.

A subset A of an infinite group G is called a △<ω-set if e ∈ A and

there exists a natural number n such that every subset Y of G, | Y |= n
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contains two distinct x, y ∈ Y such that x−1y ∈ A, y−1x ∈ A. These

subsets were introduced in [5] under name thick subsets, but thick subsets

are well-known in combinatorics with another meaning [3]: A is thick if,

for every finite subset F of, there is g ∈ A such that Fg ⊆ A. The family

ψ of all △<ω-sets of G is a filter [5], clearly, ψ ⊆ ϕ. Every infinite group

G has a △ω-set but not △<ω-set A: it suffices to choose inductively a

sequence (Xn)n∈ω of subsets of G, | Xn |= n such that
⋃

n∈ω X
−1
n Xn has

no infinite subsets of the form Y −1Y and put

A = {e} ∪ (G\
⋃

n∈ω

X−1
n Xn),

so ψ ⊂ ϕ.

By analogy with Propositions 3 and 4, we can prove

Proposition 6. Let G be an infinite group and let ψ be the filter of all

△<ω-subsets of G. Then p ∈ ψ if and only if either p is principal and

p = e or, for every A ∈ p, there exists a sequence (Xn)n∈ω of subsets

of G, |Xn| = n + 1, Xn = {xn0, . . . , xnn} such that x−1

ni xnj ∈ A for all

i < j 6 n.

Let A be a subset of a group G such that e ∈ A, A = A−1. We

consider the Cayley graph ΓA with the set of vertices G and the set of

edges {{x, y} : x−1y ∈ A, x 6= y}. We recall that a subset S of vertices of

a graph is independent if any two distinct vertices from S are not incident.

Clearly, A is a △ω-set if and only if any independent set in ΓA is finite,

and A is △ω-set if and only if there exists a natural number n such that

any independent set S is of size |S| < n.

Problem 1. Characterize all infinite graphs with only finite independent

set of vertices.

Problem 2. Given a natural number n, characterize all infinite graphs

such that any independent set S of vertices is of size |S| < n.

In the context of this note, above problems are especially interesting

in the case of Cayley graphs of groups.
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