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Abstract. Let G be a simple graph of order n. We prove that

the domination polynomial of the clique cover product GC ⋆HV (H) is

D(GC ⋆ H, x) =

k
∏

i=1

[

(

(1 + x)ni − 1
)

(1 + x)|V (H)| +D(H,x)
]

,

where each clique Ci ∈ C has ni vertices. As an application, we

study the D-equivalence classes of some families of graphs and, in

particular, describe completely the D-equivalence classes of friend-

ship graphs constructed by coalescing n copies of a cycle graph of

length 3 with a common vertex.

1. Introduction

All graphs in this paper are simple of finite orders, i.e., graphs are
undirected with no loops or parallel edges and with finite number of vertices.
Graph polynomials are a well-developed area useful for analyzing properties
of graphs. Li and Gutman [18] introduced a general graph polynomial.
Let f be a complex-valued function defined on the set of graphs G such
that G1 ∼ G2 implies f(G1) = f(G2). Let G be a graph on n vertices
and S(G) be the set of all subgraphs of G. Define Sk(G) = {H : H ∈
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S(G) and |V (H)| = k}, p(G, k) =
∑

H∈Sk(G) f(H). Then, the general

graph polynomial of G is defined as P (G, x) =
∑n

k=0 p(G, k)xk. Non-
isomorphic graphs may have the same graph polynomial. Two graphs G and
H are said to be P -equivalent, written as G ∼P H , if P (G, x) = P (H,x).
The P -equivalence class of G is [G] = {H : H ∼P G}. A graph G is said
to be P -unique if [G] = {G}. There are two interesting problems on the
equivalence classes:

(i) Determine the P -equivalence classes for some families of graphs.
(ii) Which graphs are P -unique?

These problems have been widely studied for the chromatic polynomial
(see for example, [9]). The domination polynomial of graph G is the
generating function for the number of dominating sets of G, i.e., D(G, x) =
∑|V (G)|

i=1 d(G, i)xi (see [2,5]). Note that the domination polynomial of G is
a special case of the general graph polynomial where f(H) = fG(H) is the
indicator function for when V (H) is a dominating set of G. Calculating
the domination polynomial of a graph G is difficult in general, as the
smallest power of a non-zero term is the domination number γ(G) of the
graph, and determining whether γ(G) 6 k is known to be NP-complete
[12]. But for certain classes of graphs, we can find a closed form expression
for the domination polynomial.

The equivalence classes of the domination polynomial are called D-
equivalence classes. It is known that cycles [2] and cubic graphs of order 10
[3] (particularly, the Petersen graph) are D-unique, while if n ≡ 0(mod 3),
the paths of order n are not [2]. In [7], a necessary and sufficient condition
for the complete r-partite graphs to be D-unique was given. This result
in the bipartite case, settles in an affirmative conjecture in [1]. In [15] the
D-equivalence class of barbell graph (and its generalization) was described
and it was showed that there are many families of connected graphs in
the D-equivalence class of nKr, where nKr is disjoint union of n complete
graph Kr.

The join G+H of two graph G and H with disjoint vertex sets V (G)
and V (H) and edge sets E(G) and E(H) is the graph union G∪H together
with all the edges joining V (G) and V (H). For two graphs G = (V,E)
and H = (W,F ), the corona G ◦H is the graph arising from the disjoint
union of G with |V | copies of H, by adding edges between the ith vertex
of G and all vertices of ith copy of H [11]. It is easy to see that the corona
operation of two graphs does not have the commutative property. An
induced subgraph 〈U〉 of G is a graph with the vertex set U and the edge
set consists of edges in G which connect vertices in U , if U ⊆ V (G). A
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clique is a subset of vertices of an undirected graph such that its induced
subgraph is complete; that is, every two distinct vertices in the clique are
adjacent.

Zhu in [21] defined an operation of graphs called the clique cover
product. Given two graphs G and H , assume that C = {C1, C2, · · · , Ck} is
a clique cover of G and U is a subset of V (H). Construct a new graph from
G, as follows: for each clique Ci ∈ C, add a copy of the graph H and join
every vertex of Ci to every vertex of U . Let GC ⋆HU denote the new graph.
In fact, the clique cover product of graphs is a common generalization of
some known operations of graphs. For instance: If each clique Ci of the
clique cover C is a vertex, then GV (G) ⋆ HV (H) is the corona of G and H.
If we take H = 2K1 and U = V (2K1), then GC ⋆ HU is the graph C{G}
obtained by Stevanović [19] using the clique cover construction. It has
been proven that the independence polynomial of GC ⋆ HU is

I(GC ⋆ HU ) = (I(H,x))kI
(

G,
xI(H − U, x)

I(H,x)

)

,

and shown that I(GC⋆HU ) is unimodal [21]. We prove that the domination
polynomial of the clique cover product GC ⋆ HV (H) or simply GC ⋆ H is

D(GC ⋆ H, x) =

k
∏

i=1

D(Kni
+H,x),

where Kni
= 〈Ci〉.

In the next section, we consider graphs which are constructed from
the path Pn by the clique cover construction and study their domination
polynomials and D-equivalence classes. In Section 3, We extend the results
of Section 2 and obtain the domination polynomial of clique cover product
of graphs, and as some consequences, we determine graphs in the class
of some specific k-trees. We completely describe graphs in the class [Fn],
where Fn = K1 + nK2 is a friendship graph, in Section 4.

2. D-equivalence class of a family of graphs

In this section, we investigate the D-equivalence classes of a family of
graphs. We state the following definition (see [17,19]).

Definition 2.1. A clique cover of a graph G is a spanning subgraph
of G, each component of which is a clique. If C = {C1, C2, . . . , Cq} is a
clique cover of G, construct a new graph H from G, which is denoted by
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H = C{G}, as follows: for each clique C ∈ C, add two new non-adjacent
vertices and join them to all the vertices of C. Note that all old edges of
G are kept in C{G}.

In Figure 1, the set C = {{v1, v2, v3}, {v4, v5}, {v6}} is a clique cover
of G that has a clique consisting of one vertex.

H

v1

v2 v3 v4 v5 v6

G

Figure 1. Graphs G and H = C{G}, respectively.

Now, we consider graphs of the form Hn = C{Pn}, which are con-
structed from the path Pn by the clique cover construction. Note that in
Hn = C{Pn} (Figure 2), for even n, we take C = {{1, 2}, {3, 4}, ..., {n−
1, n}}, and for odd n, we take C = {{1}, {2, 3}, ..., {n−3, n−2}, {n−1, n}}.
By H0 we mean the null graph. We shall study the D-equivalence class
of Hn. To compute the domination polynomial of Hn, we need some
preliminaries and well known results.

H2n

P2n+1 P2n

H2n+1

Figure 2. Graphs H2n+1 and H2n, respectively.

An approach to computing the domination polynomial of a graph is
in term of those of its subgraphs. For instance, one can deduce that

D(G1 ∪G2, x) = D(G1, x)D(G2, x),

and the following theorem which gives the domination polynomial of join
of two graphs.

Theorem 2.2. [2] Let G1 and G2 be graphs of orders n1 and n2, respec-
tively. Then

D(G1 +G2, x) =
(

(1 + x)n1 − 1
)(

(1 + x)n2 − 1
)

+D(G1, x) +D(G2, x).
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The following theorem which is for computation of domination poly-
nomial of corona products of two graphs.

Theorem 2.3. [4, 16] Let G = (V,E) and H = (W,F ) be nonempty
graphs of order n and m, respectively. Then

D(G ◦H,x) = (x(1 + x)m +D(H,x))n.

We also denote by G − e the subgraph of G, obtained by deleting
an edge e of E(G). An irrelevant edge is an edge e ∈ E(G), such that
D(G, x) = D(G− e, x), and a vertex v ∈ V (G) is domination-covered, if
every dominating set of G− v includes at least one vertex adjacent to v in
G [16]. The following theorem gives a necessary and sufficient condition
for a vertex to be a domination-covered vertex.

Theorem 2.4. [16] Let G = (V,E) be a graph. A vertex v ∈ V is
domination-covered if and only if there is a vertex u ∈ N [v] such that
N [u] ⊆ N [v].

Using Theorem 2.4 we are able to determine an irrelevant edge.

Theorem 2.5. [16] Let G = (V,E) be a graph. An edge e = {u, v} ∈ E
is an irrelevant edge in G, if and only if u and v are domination-covered
in G− e.

Now, we are ready to use Theorem 2.5 to obtain the domination
polynomials of Hn:

Theorem 2.6. Let Hn be the graphs in the Figure 2.
(i) For every n ∈ N, D(H2n, x) = (x4 + 4x3 + 6x2 + 2x)n.
(ii) For every n ∈ N, D(H2n+1, x) = (x3+3x2+x)(x4+4x3+6x2+2x)n.

Proof. (i) Let G = K1 + P3 be a graph of order 4 and e1, . . . , en be the
edges with end-vertices of degree 4, whose connect each two G in H2n. By
Theorem 2.4 two end-vertices of every edge ei are domination-covered in
H2n, and so by Theorem 2.5 every edge ei is an irrelevant edge of H2n.
Since D(G, x) = x4 + 4x3 + 6x2 + 2x, using induction we have

D(H2n, x) = (x4 + 4x3 + 6x2 + 2x)n.

(ii) Let e be an edge joining H2n and P3 in H2n+1. By Theorem 2.4 two
end-vertices of edge e are domination-covered in H2n+1. So, by Theorem
2.5 the edge e is an irrelevant edge of H2n+1. Therefore D(H2n+1, x) =
D(P3 ∪H2n, x) and by Part (i) we have the result.
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As an immediate consequence of Theorem 2.6, we see that for each
natural number n, the graphs H2n and H2n+1 are not D-unique. We
discuss more in Theorem 2.8. The following lemma present many graphs
in the class [H2n]:

Lemma 2.7. Let G be a graph of order n. The graphs of the form G ◦P3

and H2n have the same domination polynomial.

Proof. By Theorem 2.3 we can deduce that for each arbitrary graph G,

D(G ◦ P3, x) =
(

x(1 + x)3 +D(P3, x)
)|V (G)|

= (x(1 + x)3 + x3 + 3x2 + x)n

=
(

x(x3 + 4x2 + 6x+ 2)
)n

= D(H2n, x).

One can see that graphs constructed by clique cover of a graph G,
may not be isomorphic. As instance, two non-isomorphic graphs G1 and
G2, depicted in Figure 3, are obtained by different clique covers of P5,
namely C1 = {{1, 2}, {3}, {4, 5}} and C2 = {{1}, {2, 3}, {4, 5}}. We notice
that the domination polynomials of these two graphs are the same, i.e.,

D(G1, x) = D(G2, x) = (x4 + 4x3 + 6x2 + 2x)2(x3 + 3x2 + x).

G1 G2

P5
1 2 3 4 5

Figure 3. The graphs G1 = C1{P5} and G2 = C2{P5}, respectively.

Finally, we present some other families of graphs whose are in the
D-equivalence classes of Hn graphs in Figure 2.

Theorem 2.8. (i) Let e1, . . . , en be the edges with end-vertices of degree
four in the graph H2n. For every 1 6 i 6 n, the disconnected graphs
obtained from deletion of any number of the edges ei and the graph H2n



“adm-n4” — 2020/1/24 — 13:02 — page 254 — #104

254 Domination polynomial of clique cover product

have the same domination polynomial. As well as all graphs obtained by
adding each number of the edges between every two vertices of degree
four, and adding the edges between two vertices of degree three and four
in the graph H2n.

(ii) Let C be a clique cover of P2n+1 that has a clique consisting of one
vertex. All non-isomorphic graphs C{P2n+1} and the graph H2n+1 have
the same domination polynomial. As well as the union of the graph P3

and every graph in [H2n].

Proof. (i) Similar to the proof of Theorem 2.6, for every 1 6 i 6 n,
the edge ei is an irrelevant edge of H2n, that is for every 1 6 i 6 n,
D(H2n, x) = D(H2n − ei, x), and so we have the first results. Remains to
show that each added edge with the mentioned conditions in this graph is
an irrelevant edge. This can be achieved by using Theorems 2.4 and 2.5.

(ii) Similar to the proof of Part (ii) of Theorem 2.6 we have the
result.

3. Domination polynomial of clique cover product

The domination polynomials of binary graph operations, such as, join
and corona has been computed [4]. Also, recently, recurrence formulae and
properties of the domination polynomials of families of graphs obtained by
various products, has been investigated [7]. In this section, we generalize
the results in Section 2 and consider the clique cover product and formulate
the domination polynomial for the clique cover product GC ⋆ HV (H) or
simply GC ⋆ H. The following theorem gives the domination polynomial
of GC ⋆ HU .

Theorem 3.1. For two graphs G and H, let C = {C1, C2, · · · , Ck} be a
clique cover of G and U ⊆ V (H). Then

D(GC ⋆ HU , x) =
k
∏

i=1

D(H∗, x),

where H∗ is the subgraph of order |V (H)| + |Ci| in GC ⋆ HU obtained
by adding a copy of the graph H and joining every vertex of Ci to every
vertex of U . Moreover,

D(GC ⋆ H, x) =

k
∏

i=1

[

((1 + x)ni − 1)(1 + x)|V (H)| +D(H,x)
]

,

where ni is the order of Ci.
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Proof. Since every vertex of Ci is dominated by every vertex in U of H
thus by Theorem 2.4 two end-vertices of all edges which connect each two
Ci in GC⋆HU are domination-covered in new graph, and so by Theorem 2.5
every edge ei is an irrelevant edge of GC ⋆ HU . Therefore by definition of
an irrelevant edge and induction, we have the result. Now, suppose that
U = V (H). Thus we can deduce that D(GC ⋆H, x) =

∏k
i=1D(Kni

+H,x).
Note that in the complete graph Kn, any nonempty set of vertices is a
dominating set, so it follows that D(Kn, x) = (1 + x)n − 1. Therefore by
Theorem 2.2 have the result.

Remark 3.2. If each clique Ci of the clique cover C is a vertex, then
GV (G) ⋆H is the corona of G and H . So the clique cover product of graphs
is a generalization of corona product and hence by Theorem 3.1 we have

D(G ◦H,x) = D(GV (G) ⋆ H)

=

n
∏

1

[((1 + x)1 − 1)(1 + x)m +D(H,x)]

=
(

x(1 + x)m +D(H,x)
)n

,

which is another approach for proof of Theorem 2.3.

Here we shall apply Theorem 3.1 to get the following results on D-
equivalence class of some graphs.

Corollary 3.3. (i) Let G and H be two graphs and C and C′ be two
clique covers of G. If |C| = |C′| = k, and |Ci| = |C′

i| for 1 6 i 6 k, then the
graphs GC ⋆ H and GC′

⋆ H have the same domination polynomial, i.e.,

D(GC ⋆ H, x) = D(GC′

⋆ H, x) =

k
∏

i=1

D(Kni
+H,x),

where Kni
= 〈Ci〉.

(ii) Given two graphs G and H, assume that C is a clique cover of G.
The graph GC ⋆ H and all graphs obtained from deletion of any number
of the edges between two cliques in the graph GC ⋆ H have the same
domination polynomial. As well as all graphs obtained by adding each
number of the edges between every two cliques of C in the graph GC ⋆ H.

As an example of application of clique cover for determining the D-
equivalence classes of some graphs, we determine some graphs in the class
of k-stars. Let us to recall some preliminaries. The class of k-trees is a very
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important subclass of triangulated graphs. Harary and Palmer [13] first
introduced 2-trees in 1968. Beineke and Pippert [8] gave the definition of
a k-tree in 1969.

Definition 3.4. For a positive integer k, a k-tree, denoted by T k
n , is

defined recursively as follows: The smallest k-tree is the k-clique Kk. If G
is a k-tree with n > k vertices and a new vertex v of degree k is added
and joined to the vertices of a k-clique in G, then the larger graph is a
k-tree with n+ 1 vertices.

A k-star, Sk,n−k, has the vertex set {v1, . . . , vn}, where 〈{v1, . . . , vk}〉 ∼=
Kk and N(vi) = {v1, . . . , vk} for k + 1 6 i 6 n. The authors in [14]
calculated the domination polynomials for some k-tree related graphs,
specially k-star graph and investigated domination roots of this graph.

Theorem 3.5. [14] For every k ∈ N and n > k,

D(Sk,n−k, x) = (1 + x)n−k((1 + x)k − 1) + xn−k.

Here, we present graphs whose domination polynomials are

m
∏

i=1

D(Ski,ni−ki , x).

Theorem 3.6. Let G be a graph and C = {C1, C2, · · · , Cm : |Ci| = ki}
is a clique cover of G. If H is an empty graph, then the graphs GC ⋆ H
and disjoint union of m, ki- star have the same domination polynomial.

Proof. Since Sk,n−k = Kk + S, where S is an is an empty graph, by
applying Theorem 3.1, we have the result.

The following lemma present many graphs in [mSk,n−k] whose domi-
nation polynomials are D(Sk,n−k, x)

m.

Lemma 3.7. (i) Let G be a graph of order m, then the graphs GV (G) ⋆
Sk−1,n−k+1 = G ◦ Sk−1,n−k+1 and mSk,n−k have the same domination
poynomial.

(ii) Let G be a graph and C = {C1, C2, · · · , Cm : |Ci| = k} is a clique
cover of G. If H is an empty graph of order n− k, then the graphs GC ⋆H
and all graphs obtained from deletion of any number of the edges joining
Ci and Cj of C in the graph GC ⋆H have the same domination polynomial.
As well as all graphs obtained by adding each number of the edges between
Ci and Cj of C in the graph GC ⋆ H.



“adm-n4” — 2020/1/24 — 13:02 — page 257 — #107

S. Jahari, S. Alikhani 257

4. D-equivalence classes of friendship graphs

The friendship (or Dutch-Windmill) graph Fn is a graph that can be
constructed by the coalescence of n copies of the cycle graph C3 of length
3 with a common vertex. The Friendship Theorem of Paul Erdös, Alfred
Rényi and Vera T. Sós [10], states that graphs with the property that
every two vertices have exactly one neighbour in common are exactly the
friendship graphs. Figure 5 shows some examples of friendship graphs.
The nature and location of domination roots of friendship graphs have
been studied in [6] and shown that for every n > 3, Fn is not D-unique.
The authors considered the n-book graph Bn which can be constructed by
bonding n copies of the cycle graph C4 along a common edge {u, v}, see
Figure 4. The vertex contraction G/u of a graph G by a vertex u is the

vu

Figure 4. The book graph Bn.

operation under which all vertices in N(u) are joined to each other and
then u is deleted (see[20]). The following result proves that the friendship
graph Fn is not D-unique.

Theorem 4.1. [6] For each natural number n > 3, the friendship graph
Fn is not D-unique, as Fn and Bn/v have the same domination polynomial.

In this section, we describe [Fn] completely. Since Fn = K
V (K1)
1 ⋆

(nK2) = K1 + nK2, we have the following theorem.

Theorem 4.2. [6] For every n ∈ N, D(Fn, x) = (2x+ x2)n + x(1 + x)2n.

We shall extend Theorem 4.1 and present all families of graphs whose
are in the [Fn]. The following theorem gives us the domination polynomial
of graphs of the form H ◦ K1 which is the first result for domination
polynomial of specific corona of two graphs and we need it to obtain our
result.

Theorem 4.3. [2] D(G, x) = xn(x+ 2)n if and only if G = H ◦K1 for
some graph H of order n.
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Figure 5. Friendship graphs F2, F3, F4 and Fn, respectively.

As shown in [7], the following corollary is a consequence of Theorem
2.2.

Corollary 4.4. For graphs G1, G2, and H , D(G1+H,x) = D(G2+H,x)
if and only if D(G1, x) = D(G2, x).

The following theorem gives the D-equivalence classes of [Fn]:

Theorem 4.5. Let G be a graph of order n. Then

[Fn] = {(G ◦K1) +K1 : |G| = n}.

Proof. Since Fn = nK2+K1, by Corollary 4.4 to obtain [Fn], it is suffices
to find [nK2]. Using Theorem 4.3 we have

[nK2] = {(G ◦K1) : |G| = n}.

So we have the result.

The graph Bn/v which has found in Theorem 4.1 is in the form
(Kn ◦K1)+K1. And Fn is one of the graphs in form (G ◦K1)+K1 where
G is empty graph of order n. If n = 1 then F1 = K3 and by [2, Corollary 2]
the complete graphs Kn are D-unique for every natural number n.
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