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Abstract. The rings we consider in this article are com-

mutative with identity 1 6= 0 and are not fields. Let R be a ring.

We denote the collection of all proper ideals of R by I(R) and the

collection I(R) \ {(0)} by I(R)∗. Let H(R) be the graph associated

with R whose vertex set is I(R)∗ and distinct vertices I, J are adja-

cent if and only if IJ 6= (0). The aim of this article is to discuss the

planarity of H(R) in the case when R is quasilocal.

1. Introduction

The rings considered in this article are commutative with identity
which admit at least one nonzero proper ideal. Let R be a ring. As in
[4], we denote the collection of all proper ideals of R by I(R) and the
collection I(R) \ {(0)} by I(R)∗. Let R be a ring such that I(R)∗ 6= ∅.
Motivated by the work done on the intersection graph of ideals of a ring
in the literature (see for example, [1, 6, 10]), in [14], we introduced and
investigated the properties of an undirected graph associated with R,
denoted by H(R), whose vertex set is I(R)∗ and distinct vertices I, J
are adjacent if and only if IJ 6= (0). We denote the set of all maximal
ideals of a ring R by Max(R) and the cardinality of a set A by |A|. We
denote the set of all units of a ring R by U(R). The intersection graph of
ideals of a ring R is denoted by G(R). Observe that H(R) is a spanning
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subgraph of G(R). Inspired by the research work done on the planarity of
the intersection graph of ideals of a ring in [10, 11], we characterized rings
R with |Max(R)| > 2 such that H(R) is planar in [12]. We say that a ring
R is quasilocal (respectively, semiquasilocal) if |Max(R)| = 1 (respectively,
|Max(R)| < ∞). A Noetherian quasilocal (respectively, semiquasilocal)
ring is refereed to as a local (respectively, semilocal) ring. The purpose of
this article is to characterize quasilocal rings R such that H(R) is planar.

The graphs considered in this article are undirected and simple. Let
G = (V,E) be a graph. Recall from [3, Definition 8.1.1] that G is said to
be planar if G can be drawn in a plane in such a way that no two edges
of G intersect in a point other than a vertex of G. For definitions and
notations in graph theory that are not mentioned here, the reader can
refer either [3] or [9]. In view of Kuratowski’s theorem [9, Theorem 5.9]
and out of curiosity to know whether the algebraic structure of the ring
R plays a role in arriving at the conclusion that H(R) is planar if H(R)
satisfies at least one between (C1) and (C2), where for each i ∈ {1, 2}, the
conditions (Ci), (C

∗

i ) were already introduced in [12]. It is useful to recall
them first:

(C1) G does not contain K5 as a subgraph (equivalently, if ω(G) 6 4);
(C2) G does not contain K3,3 as a subgraph;
(C∗

1 ) G satisfies (C1) and moreover, G does not contain any subgraph
homeomorphic to K5;

(C∗

2 ) G satisfies (C2) and moreover, G does not contain any subgraph
homeomorphic to K3,3.

Recall that a principal ideal ring is said to be a special principal ideal

ring (SPIR) if R has a unique prime ideal. If m is the unique prime of a
SPIR R, then m is principal and nilpotent. If R is a SPIR with m as its
only prime ideal, then we denote it by mentioning that (R,m) is a SPIR.
Let (R,m) be a quasilocal ring such that m is principal and nilpotent. Let
n > 2 be least with the property that m

n = (0). Then it follows from
the proof of (iii) ⇒ (i) of [2, Proposition 8.8] that {mi|i ∈ {1, . . . , n− 1}}
equals I(R)∗ and so, (R,m) is a SPIR.

Let R be a ring which is not necessarily quasilocal. Recall from [4]
that an ideal I of R is said to be an annihilating ideal if there exists
r ∈ R \ {0} such that Ir = (0). Let R be a ring which is not an integral
domain. As in [4], we denote the collection of all annihilating ideals of R
by A(R) and the collection A(R) \ {(0)} by A(R)∗. Recall from [4] that
the annihilating-ideal graph of R, denoted by AG(R), is an undirected
graph whose vertex set is A(R)∗ and distinct vertices I, J are adjacent if
and only if IJ = (0).
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Let G = (V,E) be a simple graph. Recall from [3, Definition 1.1.13]
that the complement of G, denoted by Gc, is a graph whose vertex set is
V and distinct vertices x, y are joined by an edge in Gc if and only if there
is no edge joining x and y in G. For a graph G, we denote the vertex set
of G by V (G) and the edge set of G by E(G).

Let R be a ring such that I(R)∗ = A(R)∗. Then V (H(R)) = V (AG(R)).
For distinct I, J ∈ I(R)∗, I, J are adjacent in H(R) if and only if IJ 6= (0)
if and only if I, J are adjacent in (AG(R))c. Hence, H(R) = (AG(R))c.

Let G = (V,E) be a graph. Recall from [3, Definition 5.1.1] that a
nonempty subset S of V is called independent if no two vertices of S are
adjacent in G. Suppose that there exists k ∈ N such that |S| 6 k for
any independent set S of V . Recall from [3, Definition 5.1.4] that the
independence number of G, denoted by α(G), is defined as the largest
positive integer n such that G contains an independent set S with |S| = n.
If G contains an independent set containing exactly n vertices for each
n > 1, then we define α(G) = ∞. For any graph G, it is clear that α(G) =
ω(Gc). Let R be a ring such that I(R)∗ = A(R)∗. Then H(R) = (AG(R))c

and so, ω(H(R)) = ω((AG(R))c) = α(AG(R)). Let R be a ring such that
A(R)∗ 6= ∅. In Section 4, we use the results that were proved on α(AG(R))
in [13].

Let (R,m) be a quasilocal ring which is not a field. The aim of this
article is to characterize R such that H(R) is planar. It is clear that if
m

2 = (0), then H(R) has no edges, and so, H(R) is planar. Hence, in
this article, we consider quasilocal rings (R,m) such that m

2 6= (0). This
article consists of four sections.

Section 2 of this article is devoted to state and prove some necessary
conditions in order that H(R) satisfies either (C1) or (C2). The main
result proved in Section 2 is Proposition 2.7 in which it is shown that if
H(R) satisfies either (C1) or (C2), then m can be generated by at most
two elements and R is necessarily Artinian.

In Section 3, we consider local Artinian rings (R,m) such that m is
principal and m

2 6= (0). That is, (R,m) is a SPIR with m
2 6= (0). It

is proved in Theorem 3.3 that H(R) satisfies (C1), if and only if H(R)
satisfies (C2), if and only if m9 = (0), if and only if H(R) is planar.

In Section 4, we consider Artinian local rings (R,m) such that m is
not principal but m = Ra+ Rb for some a, b ∈ m, m2 6= (0), and try to
determine R such that H(R) is planar.

We discuss the planarity of H(R) with the help of several cases.

In case (1), we assume that a2 = b2 = 0 but ab 6= (0). With this
assumption, it is shown in Theorem 4.4 that H(R) satisfies (C1), if and
only if H(R) satisfies (C2), if and only if H(R) is planar. It is verified that
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such rings R are such that |R| ∈ {16, 81}. With the help of results from [5,
7, 8], in Example 4.5, we provide some examples to illustrate Theorem 4.4.

In case (2), we assume that a2 6= 0 but b2 = ab = 0. With this
assumption, it is proved in Theorem 4.10 that H(R) satisfies both (C1)
and (C2), if and only if m3 = (0) and |R

m
| 6 3, if and only if H(R) is planar.

It is noted in Remark 4.11 if R is such a ring, then |R| ∈ {16, 81} and in
Example 4.12, we provide some examples to illustrate Theorem 4.10. In
Example 4.14, we provide an example of a local Artinian ring (R,m) which
satisfies the hypotheses of Theorem 4.10 such that H(R) satisfies (C1) but
does not satisfy (C2) and in Example 4.16, we provide an example of a
local Artinian ring (R,m) which satisfies the hypotheses of Theorem 4.10
such that H(R) satisfies (C2) but does not satisfy (C1).

In case (3), we assume that a2 6= 0, b2 6= 0, whereas ab = 0. With this
assumption, it is shown in Theorem 4.22 that H(R) satisfies both (C1)
and (C2) if and only if m2 = Ra2 = Rb2 and |R

m
| 6 3 if and only if H(R)

is planar. If (R,m) is a local Artinian ring which satisfies the hypotheses
of Theorem 4.22 such that H(R) is planar, then |R| ∈ {16, 81} and in
Example 4.23, some examples are provided to illustrate Theorem 4.22.
The local Artinian ring (R,m) provided in Example 4.24 is such that it
satisfies the hypotheses of Theorem 4.22 and is such that H(R) satisfies
(C1) but does not satisfy (C2). In Example 4.26, we provide an example of
a local Artinian ring (R,m) which satisfies the hypotheses of Theorem 4.22
and is such that H(R) satisfies (C2) but does not satisfy (C1).

In case (4), we assume that a2, ab ∈ R \ {0}, whereas b2 = 0. If
a2 + ab = 0, then it is verified that (R,m) satisfies the hypotheses of
Theorem 4.22 and such a R is already determined in Theorem 4.22 such
that H(R) is planar. Hence, in case (4), we assume that a2+ab 6= 0. With
this assumption, it is proved in Theorem 4.30 that H(R) satisfies both
(C1) and (C2) if and only if H(R) satisfies (C2) if and only if m3 = (0),
m

2 = Rab, and |R
m
| = 3 if and only if H(R) is planar. It is clear that such

a ring R satisfies |R| = 81 and in Example 4.31, we provide an example to
illustrate Theorem 4.30. An example of a local Artinian ring (R,m) which
satisfies the hypotheses of Theorem 4.30 is provided in Example 4.32 and
is such that H(R) satisfies (C1) but H(R) does not satisfy (C2).

In case (5), we assume that a2, b2, ab ∈ R \ {0}. It is observed that
in view of Theorems 4.10 and 4.22, in determining R such that H(R)
is planar, we can assume that a2 + ab, b2 + ab ∈ R \ {0}. With these
assumptions, some necessary conditions are obtained in order that H(R)
to satisfy either (C1) or (C2). We are not able to determine R such that
H(R) is planar. However with the further assumptions that m

2 is not
principal, m3 = (0), and a2 6= b2, it is shown in Theorem 4.42 that H(R)
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satisfies both (C1) and (C2) if and only if H(R) satisfies (C1) if and only
if m2 = Ra2 +Rab = Rb2 +Rab, |R

m
| = 2, and m

2 ⊆ R(a+ b) if and only
if H(R) is planar. An example of a local Artinian ring (R,m) is provided
in Example 4.43 to illustrate Theorem 4.42.

2. Some necessary conditions for H(R) to satisfy
either (C1) or (C2)

Let (R,m) be a quasilocal ring such that m 6= (0). We devote this
section to determine some necessary conditions for H(R) to satisfy either
(C1) or (C2).

Lemma 2.1. Let n ∈ N. Let (R,m) be a quasilocal ring. If ω(H(R)) 6 n,

then m
2n+1 = (0).

Proof. Assume that ω(H(R)) 6 n. As J(R) = m, it follows from [12,
Lemmas 2.5 and 2.10] that m is nilpotent. Let k ∈ N be least with the
property that m

k = (0). Suppose that k > 2n+ 1. Observe that m
i 6= m

j

for all distinct i, j ∈ {1, 2, . . . , k} and m
i 6= (0) for each i with 1 6 i < k.

Hence, the subgraph of H(R) induced by {mi|i ∈ {1, 2, . . . , n+ 1}} is a
clique on n+ 1 vertices. This implies that ω(H(R)) > n+ 1 and this is a
contradiction. Therefore, k 6 2n+ 1 and so, m2n+1 = (0).

Lemma 2.2. Let (R,m) be a quasilocal ring. If H(R) satisfies either (C1)
or (C2), then m

9 = (0).

Proof. Assume that H(R) satisfies (C1). Then ω(H(R)) 6 4. Hence, we
obtain from Lemma 2.1 that m

9 = (0). Assume that H(R) satisfies (C2).
Then ω(H(R)) 6 5. Therefore, we obtain from Lemma 2.1 that m11 = (0).
Suppose that m

9 6= (0). Then m
i 6= m

j for all distinct i, j ∈ {1, . . . , 9}.
Let A = {m,m2,m3} and let B = {m4,m5,m6}. It is clear that A ∪B ⊆
V (H(R)), A ∩ B = ∅, and the subgraph of H(R) induced by A ∪ B
contains K3,3 as a subgraph. This is in contradiction to the assumption
that H(R) satisfies (C2). Therefore, we get that m

9 = (0).

Lemma 2.3. Let (R,m) be a quasilocal ring such that m is nilpotent. If

{aα}α∈Λ ⊆ m is such that {aα + m
2|α ∈ Λ} is a basis of m

m2 as a vector

space over R
m
, then m =

∑
α∈ΛRaα.

Proof. By hypothesis, m is nilpotent. Let k ∈ N be such that m
k = (0).

As 2k > k, it follows that m
2k = (0). Let us denote

∑
α∈ΛRaα by I. It

follows from the hypothesis on the elements aα, α ∈ Λ that m = I +m
2 =

I + (I + m
2)2 = I + m

4 = I + m
8 = · · · = I + m

2k . From m
2k = (0), it

follows that m = I =
∑

α∈ΛRaα.
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Lemma 2.4. Let (R,m) be a quasilocal ring. Let {a, b, c} ⊆ m be such

that a+m
2, b+m

2, c+m
2 are linearly independent over R

m
. If at least one

among ab, bc, ca is different from 0, then H(R) neither satisfies (C1) nor

satisfies (C2).

Proof. We can assume without loss of generality that ab 6= 0. If a2 6= 0,
then the subgraph of H(R) induced by {Ra,Rb,Ra+Rb,Ra+Rc,m} is
a clique of five vertices. If b2 6= 0, then the subgraph of H(R) induced by
{Ra,Rb,Ra+Rb,Rb+Rc,m} is a clique on five vertices. If a2 = b2 = (0),
then the subgraph of H(R) induced by {Ra,Rb,R(a+ b), Ra+Rb,m} is a
clique on five vertices. Hence, we arrive at the conclusion that ω(H(R)) > 5
and so, H(R) does not satisfy (C1). Let A = {Ra,Ra+Rb,Ra+Rc} and
let B = {Rb,Rb+Rc,m}. Observe that A ∪B ⊆ V (H(R)), A ∩B = ∅,
and the subgraph of H(R) induced by A∪B contains K3,3 as a subgraph.
Therefore, we obtain that H(R) does not satisfy (C2).

Lemma 2.5. Let (R,m) be a quasilocal ring. Let {a, b, c} ⊆ m be such that

a+m
2, b+m

2, c+m
2 are linearly independent over R

m
. If ab = bc = ca = 0

and a2 6= 0, then H(R) neither satisfies (C1) nor satisfies (C2).

Proof. Note that the subgraph of H(R) induced by {Ra,R(a+ b), Ra+
Rb,Ra+Rc,m} is a clique on five vertices. This implies that ω(H(R)) > 5.
Hence, we get that H(R) does not satisfy (C1). (In this part of the
proof, we use only the assumptions that a2 6= 0 and ab = 0.) Let A =
{Ra,R(a+ c), Ra+Rc} and let B = {R(a+ b), Ra+Rb,m}. It is clear
that A ∪B ⊆ V (H(R)), A ∩B = ∅, and the subgraph of H(R) induced
by A ∪B contains K3,3 as a subgraph. Therefore, we obtain that H(R)
does not satisfy (C2).

Lemma 2.6. Let (R,m) be a quasilocal ring such that m2 6= (0). If H(R)
satisfies either (C1) or (C2), then dimR

m

( m

m2 ) 6 2.

Proof. Assume that H(R) satisfies either (C1) or (C2). We know from
Lemma 2.2 that m

9 = (0). Suppose that dimR

m

( m

m2 ) > 3. Let {aα|α ∈

Λ} ⊆ m be such that {aα + m
2|α ∈ Λ} is a basis of m

m2 as a vector

space over R
m

. By assumption, |Λ| > 3 and we know from Lemma 2.3
that m =

∑
α∈ΛRaα. Hence, m2 =

∑
α,β∈ΛRaαaβ . As |Λ| > 3, it follows

from Lemma 2.4 that aαaβ = 0 for all distinct α, β ∈ Λ. By hypothesis,
m

2 6= (0) and so, a2α 6= 0 for some α ∈ Λ. In such a case, it follows from
Lemma 2.5 that H(R) neither satisfies (C1) nor satisfies (C2). This is a
contradiction and so, we obtain that dimR

m

( m

m2 ) 6 2.
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Proposition 2.7. Let (R,m) be a quasilocal ring such that m
2 6= (0).

If H(R) satisfies either (C1) or (C2), then R is a local Artinian ring,

m
9 = (0), and m can be generated by at most two elements.

Proof. Assume that H(R) satisfies either (C1) or (C2). We know from
Lemma 2.2 that m

9 = (0). Hence, it follows that m is the only prime
ideal of R and so, dimR = 0. We know from Lemmas 2.6 and 2.3 that m

can be generated by at most two elements. Thus any prime ideal of R is
finitely generated and so, we obtain from Cohen’s theorem [2, Exercise 1,
page 84] that R in Noetherian. Thus R is Noetherian and dimR = 0 and
therefore, we obtain from [2, Theorem 8.5] that R is Artinian. This shows
that (R,m) is a local Artinian ring, m9 = (0), and m can generated by at
most two elements.

Remark 2.8. Let (R,m) be a quasilocal ring with m
2 6= (0). If H(R) is

planar, then it follows from [9, Theorem 5.9] that H(R) satisfies both (C∗

1 )
and (C∗

2 ). Therefore, H(R) satisfies both (C1) and (C2) and so, we obtain
from Proposition 2.7 that (R,m) is a local Artinian ring, m9 = (0), and
m can be generated by at most two elements. Hence, in discussing the
planarity of H(R), we assume that (R,m) is a local Artinian ring and m is
generated by at most two elements. If m is principal, then as is remarked
in the introduction, we obtain that (R,m) is a SPIR.

3. When is H(R) planar if (R,m) is a SPIR?

Let (R,m) be a SPIR with m
2 6= (0). The aim of this section is to

determine when H(R) is planar.

Lemma 3.1. Let (R,m) be a SPIR with m
9 = (0) but m

8 6= (0). Then

H(R) is planar.

Proof. Note that V (H(R)) = {v1 = m, v2 = m
6, v3 = m

2, v4 = m
5, v5 =

m
3, v6 = m

4, v7 = m
7, v8 = m

8}. Observe that H(R) is the union of the
cycle Γ : v1 − v2 − v3 − v4 − v5 − v6 − v1, the edges e1 : v1 − v3, e2 :
v1 − v4, e3 : v1 − v5, e4 : v3 − v5, e5 : v3 − v6, e6 : v1 − v7, and the isolated
vertex v8. Observe that Γ can be represented by means of a hexagon. The
edges e1, e2, e3 are chords of this hexagon through v1 and they can be
drawn inside the hexagon without any crossing over of the edges. The
edges e4, e5 are chords of this hexagon through v3. The edge e6 joins v1
with the pendant vertex v7. The edges e4, e5, and e6 can be drawn outside
the hexagon representing Γ in such a way that there are no crossing over
of the edges. This proves that H(R) is planar.
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Lemma 3.2. Let (T, n) be a SPIR with n
2 6= (0) but n

9 = (0). Then

H(T ) is planar.

Proof. If n8 6= (0), then it follows from Lemma 3.1 that H(T ) is planar.
Hence, we can assume that n

8 = (0). By hypothesis, n2 6= (0). Let
k > 2 be largest with the property that n

k 6= (0). Then k 6 7. Let

us denote the ring K[X]
X9K[X]

by R, where K[X] is the polynomial ring

in one variable X over a field K. It is clear that (R,m = XK[X]
X9K[X]

) is

a SPIR with m
9 = (0 + X9K[X]) but m

8 6= (0 + X9K[X]). Note that
V (H(T )) = {ni|i ∈ {1, 2, . . . , k}} and V (H(R)) = {mj |j ∈ {1, 2, . . . , 8}}
and the mapping f : V (H(T )) → V (H(R)) defined by f(ni) = m

i is a
one-one mapping such that ni, ni

′

are adjacent in H(T ) implies that f(ni),
f(ni

′

) are adjacent in H(R). Consider the subgraph g of H(R) induced by
{f(ni)|i ∈ {1, 2, . . . , k}}. The above arguments imply that H(T ) can be
identified with a subgraph of g. We know from Lemma 3.1 that H(R) is
planar. Since a subgraph of a planar graph is planar, it follows that H(T )
is planar.

Theorem 3.3. Let (R,m) be a SPIR such that m2 6= (0). The following

statements are equivalent:

(i) H(R) satisfies (C1).
(ii) m

9 = (0).
(iii) H(R) is planar.

(iv) H(R) satisfies (C2).
(v) H(R) satisfies both (C∗

1 ) and (C∗

2 ).

Proof. (i) ⇒ (ii) and (iv) ⇒ (ii). We know from Lemma 2.2 that m9 = (0).
(ii) ⇒ (iii). This follows from Lemma 3.2.
(iii) ⇒ (v). This follows from Kuratowski’s theorem [9, Theorem 5.9].
The statements (v) ⇒ (i) and (v) ⇒ (iv) are clear.

4. When is H(R) planar if (R,m) is a local Artinian ring
such that m

2 6= (0) and m is not principal?

In this section, we focus on Artinian local rings (R,m) with m
2 6= (0),

m is not principal, and try to characterize them such that H(R) is planar.
If H(R) is planar, then we know from Remark 2.8 that there exist a, b ∈ m

such that m = Ra+Rb. First, it is useful to have the following Remark.

Remark 4.1. Let (R,m) be a local Artinian ring. We know from [2,
Proposition 8.4] that m is nilpotent and so, I(R)∗ = A(R)∗. Hence, as
is noted in the introduction, we obtain that H(R) = (AG(R))c and so,
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ω(H(R)) = ω((AG(R))c) = α(AG(R)). Observe that H(R) satisfies (C1)
if and only if ω(H(R)) 6 4 if and only if α(AG(R)) 6 4. Hence, we use
the results from [13] in determining R such that H(R) satisfies (C1).

For the sake of convenience, we discuss the planarity of H(R) with
the help of several cases.

Case (1): a2
= b2 = 0 but ab 6= 0

Lemma 4.2. Let (R,m) be a local Artinian ring such that m is not

principal but m = Ra+Rb for some a, b ∈ m with a2 = b2 = 0 but ab 6= 0.
If H(R) satisfies either (C1) or (C2), then |R

m
| 6 3.

Proof. By hypothesis, m is not principal but m = Ra+Rb. Therefore, it
follows that {a+m

2, b+m
2} is a basis of m

m2 as a vector space over R
m

.

Suppose that |R
m
| > 4. Then either 2 ∈ m or 2 /∈ m. If 2 ∈ m, then

1+m = −1+m. If 2 /∈ m, then |R
m
| > 5. Thus in any case, it is possible to

find r, s ∈ R\m such that r±1, s±1, r−s ∈ R\m. As ab 6= 0, it follows that
(a+b)(a−rb) = (1−r)ab 6= 0 and (a+b)(a−sb) = (1−s)ab 6= 0. Observe
that the subgraph of H(R) induced by {Ra,Rb,R(a+ b), R(a− rb),m}
is a clique on five vertices. Hence, H(R) does not satisfy (C1). Let A =
{Ra,Rb,R(a+ b)} and let B = {R(a− rb), R(a− sb),m}. It is clear that
A∩B = ∅ and the subgraph of H(R) induced by A∪B contains K3,3 as
a subgraph. This implies that H(R) does not satisfy (C2). Thus if H(R)
satisfies either (C1) or (C2), then |R

m
| 6 3.

Lemma 4.3. Let (R,m) be a local Artinian ring which satisfies the hy-

potheses of Lemma 4.2. If H(R) satisfies either (C1) or (C2), then the

following hold.

(i) |R
m
| ∈ {2, 3} and |R| ∈ {16, 81}.

(ii) V (H(R)) = {Ra,Rb,R(a + b), Rab,m} in the case |R
m
| = 2 and

H(R) is planar.

(iii) V (H(R)) = {Ra,Rb,R(a+b).R(a+2b).Rab,m} in the case |R
m
| = 3

and H(R) is planar.

Proof. Note that V (H(R)) = I(R)∗. Assume that H(R) satisfies either
(C1) or (C2). Then we know from Lemma 4.2 that |R

m
| 6 3.

(i) As |R
m
| 6 3, it follows that |R

m
| ∈ {2, 3}. It was shown in the proof

of (ii) ⇒ (i) of [13, Lemma 4.4] that |R| ∈ {16, 81}.
(ii) Suppose that |R

m
| = 2. It was verified in the proof of (ii) ⇒ (i)

of [13, Lemma 4.4] that V (H(R)) = {Ra,Rb,R(a+ b), Rab,m}. Observe
that m

2 = Rab and m
3 = (0). Hence, Rab is an isolated vertex of H(R).

It is clear that the subgraph of H(R) induced by {Ra,Rb,R(a+ b),m}
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is a clique on four vertices. Since K4 is planar, it follows that H(R) is
planar.

(iii) Suppose that |R
m
| = 3. We know from the proof of (ii) ⇒ (i) of

[13, Lemma 4.4] that V (H(R)) = {v1 = Ra, v2 = Rb, v3 = R(a+ b), v4 =
m, v5 = R(a + 2b), v6 = Rab}. As m

2 = Rab and m
3 = (0), it follows

that Rab is an isolated vertex of H(R). It is not hard to verify that
H(R) is the union of the cycle Γ : v1 − v2 − v3 − v4 − v5 − v1, the edges
e1 : v1 − v3, e2 : v1 − v4, e3 : v2 − v4, e4 : v2 − v5, and the isolated vertex
v6. Observe that Γ can be represented by means of a pentagon. The edges
e1, e2 are chords of this pentagon through v1 and they can be drawn inside
this pentagon. The edges e3, e4 are chords of this pentagon through v2
and they can be drawn outside this pentagon in such a way that there
are no crossing over of the edges. This proves that H(R) is planar.

Theorem 4.4. Let (R,m) be a local Artinian ring which satisfies the

hypotheses of Lemma 4.2. The following statements are equivalent:

(i) H(R) satisfies (C1).
(ii) |R

m
| ∈ {2, 3} and |R| ∈ {16, 81}.

(iii) H(R) is planar.

(iv) H(R) satisfies (C2).
(v) H(R) satisfies both (C∗

1 ) and (C∗

2 ).

Proof. The statements (i) ⇒ (ii) and (iv) ⇒ (ii) follow from Lemma 4.3(i).
(ii) ⇒ (iii). If |R

m
| = 2, then we know from Lemma 4.3(ii) that H(R)

is planar. If |R
m
| = 3, then we know from Lemma 4.3(iii) that H(R) is

planar.
(iii) ⇒ (v). This follows from Kuratowski’s theorem [9, Theorem 5.9].
The statements (v) ⇒ (i) and (v) ⇒ (iv) are clear.

With the help of results from [5, 7, 8], we mention in Example 4.5,
finite local rings (R,m) such that each one of them satisfies the hypotheses
of Theorem 4.4 and the statement (ii) of Theorem 4.4. For any ring S, we
denote the polynomial ring in one variable X (respectively, in two variables
X, Y ) over S by S[X] (respectively, by S[X,Y ]). For any prime number p
and n>1, we denote the finite field containing exactly pn elements by Fpn .
For any n > 2, we denote the ring of integers modulo n by Zn.

Example 4.5.
(i) T = F2[X,Y ], I = TX2 + TY 2, and (R = T

I
,m = TX+TY

I
);

(ii) T =Z4[X,Y ], I=TX2+T (XY −2)+TY 2, and (R= T
I
,m= TX+TY

I
);

(iii) T = Z4[X], I = TX2, and (R = T
I
,m = T2+TX

I
);

(iv) T = F3[X,Y ], I = TX2 + TY 2, and (R = T
I
,m = TX+TY

I
);



“adm-n1” — 2019/3/22 — 12:03 — page 127 — #135

P. Vadhel, S. Visweswaran 127

(v) T =Z9[X,Y ], I=TX2+T (XY −3)+TY 2, and (R= T
I
,m= TX+TY

I
);

(vi) T = Z9[X], I = TX2, and (R = T
I
,m = T3+TX

I
);

(vii) T = Z9[X], I = T (X2 − 3X), and (R = T
I
,m = T3+T (X+3)

I
);

(viii) T = Z9[X], I = T (X2 + 3X), and (R = T
I
,m = T3+T (X−3)

I
).

Case (2): a2 6= 0 but b2 = ab = 0

Lemma 4.6. Let (R,m) be a local Artinian ring such that m is not

principal but m = Ra+Rb for some a, b ∈ m with a2 6= 0 but b2 = ab = 0.
If H(R) satisfies (C1), then |R

m
| 6 3.

Proof. Assume that H(R) satisfies (C1). That is, ω(H(R)) 6 4. It is al-
ready noted in Remark 4.1 that ω(H(R)) = α(AG(R)). Thus α(AG(R)) 6
4 and so, we obtain from [13, Lemma 4.8] that |R

m
| 6 3.

Lemma 4.7. Let (R,m) be a local Artinian ring which satisfies the hy-

potheses of Lemma 4.6. If H(R) satisfies (C2), then m
3 = (0).

Proof. Assume that H(R) satisfies (C2). Suppose that m
3 6= (0). It is

clear from the hypotheses on a, b that m
2 = Ra2 and m

3 = Ra3. Hence,
a3 6= 0. Let A = {Ra,R(a+ b),m} and B = {Ra2, R(a2 + b), Ra2 +Rb}.
Observe that A ∩ B = ∅ and the subgraph of H(R) induced by A ∪ B
contains K3,3 as a subgraph. This is in contradiction to the assumption
that H(R) satisfies (C2). Therefore, we obtain that m

3 = (0).

Lemma 4.8. Let (R,m) be a local Artinian ring which satisfies the hy-

potheses of Lemma 4.6. Suppose that m3 = (0). If |R
m
| = 2, then H(R) is

planar.

Proof. We know from the proof of [13, Lemma 3.11] that V (H(R)) =
{Ra,Rb,R(a+ b), R(a2+ b), Ra2, Ra2+Rb,m}. Since bm = (0) and m

3 =
(0), it follows that each member from W = {Rb,R(a2+b), Ra2, Ra2+Rb}
is an isolated vertex of H(R). It is clear that H(R) is the union of the
cycle Γ : Ra−R(a+ b)−m−Ra of length 3 and W . Therefore, we obtain
that H(R) is planar.

Lemma 4.9. Let (R,m) be a local Artinian ring which satisfies the hy-

potheses of Lemma 4.6. Suppose that m3 = (0). If |R
m
| = 3, then H(R) is

planar.

Proof. Note that R
m
= {0 +m, 1 +m, 2 +m} and m

2 = {0, a2, 2a2}. Since
dimR

m

( m

m2 ) = 2, we get that | m
m2 | = 9. Therefore, |m| = 27. Let A = {0, 1, 2}.

Observe that m = {xa+ yb+ za2|x, y, z ∈ A}. Let I ∈ I(R)∗. If I ⊆ m
2,
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then it is clear that I = m
2. Suppose that I 6⊆ m

2. Then there exists
m ∈ I \m2. It is clear that m = xa+ yb+ za2 for some x, y, z ∈ A with
at least one between x, y is nonzero. If x ∈ {1, 2}, then from bm = (0), it
follows that am = xa2 ∈ I and so, a2 ∈ I. In such a case, Ra2 = m

2 ⊂ I.
Hence, dimR

m

( I
m2 ) = 1 or 2. If dimR

m

( I
m2 ) = 2, then I = m. If dimR

m

( I
m2 ) = 1,

then I = Rm = R(a+x−1yb+x−1za2) = R(a+x−1yb+x−1za(a+x−1yb)).
Since 1 + x−1za ∈ U(R), it follows that I = R(a+ x−1yb). Hence, in this
case, we obtain that I ∈ {Ra,R(a+b), R(a+2b)}. If x = 0, then y ∈ {1, 2}.
Therefore, m = yb+ za2 = y(b+ y−1za2) and so, Rm = R(b+ y−1za2).
Let us denote Rm by C. Since m = Ra+Rm, it follows that m

C
= R

C
(a+C)

is principal and it is clear that (m
C
)3 = (0 + C). Therefore, it follows from

the proof of (iii) ⇒ (i) of [2, Proposition 8.8] that I(R
C
)∗ = {m

C
, (m

C
)2}.

Since m ⊇ I ⊇ C, it follows that I ∈ {C,m2 + C,m}. Therefore, we get
that I ∈ {Rb,R(b+a2), R(b+2a2), Rb+Ra2,m}. It is now clear from the
above given arguments that V (H(R)) = {v1 = Ra, v2 = R(a + b), v3 =
R(a+2b), v4 = m, v5 = Rb, v6 = R(a2+b), v7 = R(2a2+b), v8 = Ra2, v9 =
Ra2 + Rb}. Since bm = (0) and m

3 = (0), it is clear that each vertex
from {v5, v6, v7, v8, v9} is an isolated vertex of H(R). Observe that the
subgraph g of H(R) induced by {v1, v2, v3, v4} is a clique on four vertices.
Therefore, we get that H(R) is the union of g and the set of all isolated
vertices of H(R). As K4 is planar, we obtain that H(R) is planar.

Theorem 4.10. Let (R,m) be a local Artinian ring which satisfies the

hypotheses of Lemma 4.6. The following statements are equivalent:

(i) H(R) satisfies both (C1) and (C2).
(ii) |R

m
| 6 3 and m

3 = (0).
(iii) H(R) is planar.

(iv) H(R) satisfies both (C∗

1 ) and (C∗

2 ).

Proof. (i) ⇒ (ii) Assume that H(R) satisfies both (C1) and (C2). Then
we obtain from Lemmas 4.6 and 4.7 that |R

m
| 6 3 and m

3 = (0).

(ii) ⇒ (iii) Assume that |R
m
| 6 3 and m

3 = (0). If |R
m
| = 2, then we

obtain from Lemma 4.8 that H(R) is planar. If |R
m
| = 3, then we obtain

from Lemma 4.9 that H(R) is planar.
(iii) ⇒ (iv) This follows from Kuratowski’s theorem [9, Theorem 5.9].
(iv) ⇒ (i) This is clear.

Remark 4.11. Let (R,m) be a local Artinian ring satisfying the hy-
potheses of Lemma 4.6 and the statement (ii) of Theorem 4.10. Note that
|m2| = |R

m
|, | m

m2 | = (|R
m
|)2, |m| = (|R

m
|)3, and |R| = (|R

m
|)4. Hence, |R| = 16

if |R
m
| = 2 and |R| = 81 if |R

m
| = 3. With the help of the work presented in

[5, 7, 8], in Example 4.12, we mention examples of local Artinian rings
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(R,m) such that (R,m) satisfies the hypotheses of Lemma 4.6 and the
statement(ii) of Theorem 4.10.

Example 4.12.
(i) T = F2[X,Y ], I = TX3 + TXY + TY 2, and (R = T

I
,m = TX+TY

I
);

(ii) T = Z4[X,Y ], I = T (X2 − 2) + TXY + TY 2 + T (2X), and (R =
T
I
,m = TX+TY

I
);

(iii) T = Z4[X], I = T (2X) + TX3, and (R = T
I
,m = TX+T2

I
);

(iv) T = Z8[X], I = T (2X) + TX2, and (R = T
I
,m = T2+TX

I
);

(v) T = F3[X,Y ], I = TX3 + TXY + TY 2, and (R = T
I
,m = TX+TY

I
);

(vi) T = Z9[X,Y ], I = T (X2 − 3) + TXY + TY 2 + T (3X), and (R =
T
I
,m = TX+TY

I
);

(vii) T = Z9[X], I = T (3X) + TX3, and (R = T
I
,m = TX+T3

I
);

(viii) T = Z27[X], I = T (3X) + TX2, and (R = T
I
,m = T3+TX

I
).

Let (R,m) be a local Artinian ring which satisfies the hypotheses of
Theorem 4.4. Then it is shown in Theorem 4.4 that H(R) satisfies (C1) if
and only if H(R) satisfies (C2). We provide some examples to illustrate
that for a local Artinian ring (R,m) which satisfies the hypotheses of
Lemma 4.6, the statement H(R) satisfies (C1) and the statement H(R)
satisfies (C2) can happen to be not equivalent.

Lemma 4.13. Let (R,m) be a local Artinian ring which satisfies the

hypotheses of Lemma 4.6. Suppose that m4 = (0), m3 6= (0), and |R
m
| = 2.

Then the following hold.

(i) |R| = 32.
(ii) H(R) satisfies (C1).
(iii) H(R) does not satisfy (C2).

Proof. Note that m = Ra+Rb, a2 6= 0 but b2 = ab = 0, and so, mi = Rai

for each i > 2. By hypothesis, a3 6= 0, a4 = 0, and |R
m
| = 2.

(i) It follows from |m3| = 2, |m
2

m3 | = 2, | m
m2 | = 4 that |m| = 16 and so,

|R| = 32.
(ii) Let A = {0, 1}. Note that m = {xa+yb+za2+wa3|x, y, z, w ∈ A}.

It is not hard to verify that V (H(R)) = {Ra,Rb,R(a + b), Ra2, R(a2 +
b), Ra2 + Rb,Ra3, R(a3 + b), Ra3 + Rb,m}. It follows from a3 6= 0 and
bm = (0) that the subgraph of H(R) induced by {Ra,R(a+b), R(a2+b),m}
is a clique. Therefore, ω(H(R)) > 4. Observe that each member from
W = {Rb,Ra3, R(a3+b), Ra3+Rb} is an isolated vertex of H(R). Let U ⊆
V (H(R)) be such that the subgraph of H(R) induced by U is a clique. It is
clear that U ⊆ V (H(R))\W = {Ra,R(a+b), Ra2, R(a2+b), Ra2+Rb,m}.
It follows from a4 = 0 and bm = (0) that at most one vertex from
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{Ra2, R(a2 + b), Ra2 + Rb} can belong to U . Therefore, we get that
|U | 6 4. This shows that ω(H(R)) 6 4 and so, H(R) satisfies (C1).
Indeed, ω(H(R)) = 4.

(iii) As m
3 6= (0), we obtain from Lemma 4.7 that H(R) does not

satisfy (C2).

In Example 4.14, we provide from [5, page 476], an example of a local
Artinian ring (R,m) which satisfies the hypotheses of Lemma 4.6 and is
such that H(R) satisfies (C1) but it does not satisfy (C2).

Example 4.14. Let T = F2[X,Y ] and I = TX4+TXY +TY 2. Observe
that (R = T

I
,m = TX+TY

I
) is a local Artinian ring and it satisfies the

hypotheses of Lemma 4.6 with a = X + I and b = Y + I. Moreover, note
that m3 6= (0), m4 = (0), and |R

m
| = 2. Hence, we obtain from Lemma 4.13

that H(R) satisfies (C1) but it does not satisfy (C2).

Lemma 4.15. Let (R,m) be a local Artinian ring which satisfies the

hypotheses of Lemma 4.6. Suppose that m3 = (0) and |R
m
| = 4. Then H(R)

satisfies (C2) but it does not satisfy (C1).

Proof. Note that there exist r, s ∈ R \m such that R
m
= {0 +m, 1 +m, r+

m, s + m}. Observe that m
2 = Ra2, |m2| = 4, | m

m2 | = 16, and |m| = 64.

Let A = {0, 1, r, s}. Note that m = {xa+ yb+ za2|x, y, z ∈ A}. It can be
shown that V (H(R)) = {Ra,Rb,R(a+b), R(a+rb), R(a+sb), Ra2, R(a2+
b), R(ra2 + b), R(sa2 + b), Ra2 +Rb,m}. Since bm = (0) and m

3 = (0), it
follows that each vertex from W = {Rb,Ra2, R(a2+b), R(ra2+b), R(sa2+
b), Ra2 +Rb} is an isolated vertex of H(R). It follows from a2 6= 0 that
the subgraph of H(R) induced by {Ra,R(a+ b), R(a+ rb), R(a+ sb),m}
is a clique on five vertices. Observe that H(R) is the union of a clique
on five vertices and W . Therefore, we get that H(R) satisfies (C2) but it
does not satisfy (C1).

Example 4.16. Let T = F4[X,Y ] and I = TX3+TXY +TY 2. Observe
that (R = T

I
,m = TX+TY

I
) is a local Artinian ring which satisfies the

hypotheses of Lemma 4.6 with a = X + I and b = Y + I. Moreover,
m

3 = (0) and |R
m
| = 4. Therefore, we obtain from Lemma 4.15 that H(R)

satisfies (C2) but it does not satisfy (C1).

Case (3): a2 6= 0, b2 6= 0, whereas ab = 0

Lemma 4.17. Let (R,m) be a local Artinian ring such that m is not

principal but m = Ra + Rb for some a, b ∈ m with a2 6= 0, b2 6= (0),
whereas ab = 0. If H(R) satisfies (C1), then Ra2 and Rb2 are comparable

under the inclusion relation.
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Proof. Assume that H(R) satisfies (C1). That is, ω(H(R)) 6 4. It is
noted in Remark 4.1 that ω(H(R)) = α(AG(R)). Hence, α(AG(R)) 6 4
and therefore, we obtain from [13, Lemma 4.12] that Ra2 and Rb2 are
comparable under the inclusion relation.

Lemma 4.18. Let (R,m) be a local Artinian ring which satisfies the

hypotheses of Lemma 4.17. If H(R) satisfies (C2), then m
3 = (0) and

|R
m
| 6 3.

Proof. Assume that H(R) satisfies (C2). Now, m = Ra + Rb and from
ab = 0, it follows that m2 = Ra2+Rb2, and m

3 = Ra3+Rb3. First, we show
that a3 = 0. Suppose that a3 6= 0. Then Ra2 6⊆ Rb. Let A = {Ra,Rb,m}
and let B = {R(a+ b), R(a2 + b), Ra2 +Rb}. Note that A ∩B = ∅ and
the subgraph of H(R) induced by A∪B contains K3,3 as a subgraph. This
is in contradiction to the assumption that H(R) satisfies (C2). Therefore,
a3 = 0 and similarly, it can be shown that b3 = 0. Hence, we obtain that
m

3 = (0).
We next verify that |R

m
| 6 3. Suppose that |R

m
| > 3. Then it is possible

to find r, s ∈ R\m such that r−1, s−1, r−s ∈ R\m. Let A = {Ra,Rb,m}
and let B = {R(a+ b), R(a+ rb), R(a+ sb)}. Note that A ∩B = ∅ and
the subgraph of H(R) induced by A∪B contains K3,3 as a subgraph. This
is in contradiction to the assumption that H(R) satisfies (C2). Therefore,
we obtain that |R

m
| 6 3.

Lemma 4.19. Let (R,m) be a local Artinian ring which satisfies the

hypothesis of Lemma 4.17. If H(R) satisfies both (C1) and (C2), then

Ra2 = Rb2.

Proof. Assume that H(R) satisfies both (C1) and (C2). We know from
Lemma 4.17 that either Ra2 ⊆ Rb2 or Rb2 ⊆ Ra2 and from Lemma 4.18,
we know that m

3 = (0). Without loss of generality, we can assume that
Rb2 ⊆ Ra2. Then b2 = ra2 for some r ∈ R. As b2 6= 0 and m

3 = (0), it
follows that r ∈ U(R) and so, a2 = r−1b2. This implies that Ra2 ⊆ Rb2

and hence, we obtain that Ra2 = Rb2.

Lemma 4.20. Let (R,m) be a local Artinian ring which satisfies the

hypotheses of Lemma 4.17. If m2 = Ra2 = Rb2 and |R
m
| = 2, then |R| = 16

and H(R) is planar.

Proof. From ab = 0 and m
2 = Ra2 = Rb2, it follows that m

3 = (0). As
|R
m
| = 2, we obtain that |m2| = 2, | m

m2 | = 4, and hence, |m| = 8. It is
now clear that |R| = 16. Let A = {0, 1}. Observe that m = {xa + yb +
za2|x, y, z ∈ A}. It is not hard to verify that V (H(R)) = {v1 = Ra, v2 =
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R(a+ b), v3 = Rb, v4 = m, v5 = Ra2}. From m
3 = (0), it follows that v5

is an isolated vertex of H(R). Note that H(R) is the union of the cycle
Γ : v1 − v2 − v3 − v4 − v1, the edge e1 : v2 − v4, and the isolated vertex v5.
The cycle Γ can be represented by means of a rectangle, the edge e1 is
a diagonal of the rectangle representing Γ. It is now clear that H(R) is
planar.

Lemma 4.21. Let (R,m) be a local Artinian ring which satisfies the

hypotheses of Lemma 4.17. If m2 = Ra2 = Rb2 and |R
m
| = 3, then |R| = 81

and H(R) is planar.

Proof. It follows as in the proof of Lemma 4.20 that m
3 = (0). From the

assumption that |R
m
| = 3, we get that |m2| = 3, | m

m2 | = 9, |m| = 27, and so,

|R| = 81. Let A = {0, 1, 2}. Observe that m = {xa+ yb+ za2|x, y, z ∈ A}.
It is not hard to verify that V (H(R)) = {v1 = Ra, v2 = R(a + b), v3 =
Rb, v4 = R(a+ 2b), v5 = m, v6 = Ra2}. It is clear that a2 ∈ {b2, 2b2}, and
v6 is an isolated vertex of H(R). Note that H(R) is the union of the cycle
Γ : v1 − v2 − v3 − v4 − v1, the edges ei : vi − v5 for each i ∈ {1, 2, 3, 4},
the edge e5 : v2 − v4 in the case a2 = 2b2, and the isolated vertex v6. The
cycle Γ can be represented by means of a rectangle and the vertex v5 can
be plotted inside this rectangle and the edges ei for i ∈ {1, 2, 3, 4} can be
drawn inside the rectangle representing Γ in such a way that there are
no crossing over of the edges and the edge e5 if it exists can be drawn
outside the rectangle representing Γ. This shows that H(R) is planar.

Theorem 4.22. Let (R,m) be a local Artinian ring which satisfies the

hypotheses of Lemma 4.17. The following statements are equivalent:

(i) H(R) satisfies both (C1) and (C2).
(ii) m

2 = Ra2 = Rb2 and |R
m
| 6 3.

(iii) H(R) is planar.

(iv) H(R) satisfies both (C∗

1 ) and (C∗

2 ).

Proof. (i) ⇒ (ii) We know from Lemma 4.18 that |R
m
| 6 3 and from

Lemma 4.19, we know that Ra2 = Rb2. It follows from ab = 0 that
m

2 = Ra2.
(ii) ⇒ (iii) Note that |R

m
| ∈ {2, 3}. Therefore, we obtain from Lem-

mas 4.20 and 4.21 that H(R) is planar.
(iii) ⇒ (iv) This follows from Kuratowski’s theorem [9, Theorem 5.9].
(iv) ⇒ (i) This is clear.

With the help of results from [5, 7, 8], in Example 4.23, we provide
examples of local Artinian rings (R,m) such that (R,m) satisfies the
hypotheses of Lemma 4.17 and the statement (ii) of Theorem 4.22.
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Example 4.23.
(i) K ∈ {F2,F3}. Let T = K[X,Y ], I = T (X2 − Y 2) + TXY , and

(R = T
I
,m = TX+TY

I
);

(ii) T = Z4[X,Y ], I = T (X2 − 2) + TXY + T (Y 2 − 2) + T (2X), and
(R = T

I
,m = TX+TY

I
);

(iii) T = Z9[X,Y ], I = T (X2 − 3) + TXY + T (Y 2 − 3) + T (3X), and
(R = T

I
,m = TX+TY

I
);

(iv) T = Z4[X], I = T (X2 − 2X), and (R = T
I
,m = TX+T (X−2)

I
);

(v) T = Z9[X,Y ], I = T (X2 − 3X), and (R = T
I
,m = TX+T (X−3)

I
);

(vi) T = Z8[X], I = T (2X) + T (X2 − 4), and (R = T
I
,m = TX+T2

I
);

(vii) T = Z27[X], I = T (3X) + T (X2 − 9), and (R = T
I
,m = TX+T3

I
).

In Example 4.24, we provide an example from [5, page 478] of a local
Artinian ring (R,m) which satisfies the hypotheses of Lemma 4.17 and is
such that H(R) satisfies (C1) but it does not satisfy (C2).

Example 4.24. Let T = Z8[X] and I = T (2X) + T (X3 − 4). Let R = T
I

and m = TX+T2
I

. Then (R,m) is a local Artinian ring which satisfies the
hypotheses of Lemma 4.17 and is such that H(R) satisfies (C1) but H(R)
does not satisfy (C2).

Proof. Observe that m = Ra+Rb, where a = X + I and b = 2 + I and
m is not principal. Note that a2 6= 0 + I, b2 6= 0 + I, ab = 0 + I, and
a3 = 4 + I 6= 0 + I and m

4 = (0 + I). This shows that (R,m) is a local
Artinian ring and it satisfies the hypotheses of Lemma 4.17. Observe that
Rb2 ⊂ Ra2,m3 6= (0 + I), and |R

m
| = 2. Hence, it follows from (ii) ⇒

(i) of [13, Proposition 4.13] that α(AG(R)) = 4 and so, ω(H(R)) = 4.
Therefore, we obtain that H(R) satisfies (C1). As m

3 6= (0 + I), it follows
from Lemma 4.18 that H(R) does not satisfy (C2).

We next proceed to give an example from [5, page 479] in Example 4.26
of a local Artinian ring (R,m) which satisfies the hypotheses of Lemma 4.17
and is such that H(R) satisfies (C2) but H(R) does not satisfy (C1). We
use Lemma 4.25 in the verification of Example 4.26.

Lemma 4.25. Let (R,m) be a local Artinian ring which satisfies the

hypotheses of Lemma 4.17. Suppose that m2 is not principal. The following

statements are equivalent:

(i) H(R) satisfies (C2).
(ii) m

3 = (0) and |R
m
| = 2.

Proof. Observe that m
2 = Ra2 +Rb2. By hypothesis, m2 is not principal.

Hence, Ra2 6⊆ Rb2. We claim that Ra2 6⊆ Rb. For if Ra2 ⊆ Rb, then
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Ra2 ⊆ mb and this implies that Ra2 ⊆ (Ra + Rb)b = Rb2. This is a
contradiction and so, Ra2 6⊆ Rb.

(i) ⇒ (ii) Assume that H(R) satisfies (C2). We know from Lemma 4.18
that m

3 = (0). Suppose that |R
m
| > 2. Then it is possible to find r ∈ R

such that r, r− 1 ∈ R \m. Let A = {Rb,R(a2+ b),m} and let B = {R(a+
b), R(a+ rb), Ra2 +Rb}. Note that A∩B = ∅ and the subgraph of H(R)
induced by A ∪B contains K3,3 as a subgraph. This is in contradiction
to the assumption that H(R) satisfies (C2). Therefore, we obtain that
|R
m
| = 2.

(ii) ⇒ (i) Assume that m
3 = (0) and |R

m
| = 2. Note that |m2| =

4, | m
m2 | = 4, and so, |m| = 16. Let A = {0, 1}. It is clear that m =

{xa + yb + za2 + wb2|x, y, z, w ∈ A}. It can be shown as in the proof
of Lemma 4.9 that V (H(R)) = {v1 = Ra, v2 = m, v3 = R(a + b), v4 =
Ra+ Rb2, v5 = R(a+ b2), v6 = Rb, v7 = Ra2 + Rb, v8 = R(a2 + b), v9 =
Ra2, v10 = Rb2, v11 = R(a2 + b2), v12 = Ra2 + Rb2}. We next verify
that H(R) satisfies (C2). Note that the subgraph of H(R) induced by
{v1, v2, v3, v4, v5} is a clique on five vertices and the subgraph of H(R)
induced by {v2, v3, v6, v7, v8} is a clique on five vertices. Hence, H(R) does
not satisfy (C1). Suppose that H(R) does not satisfy (C2). Then it is
possible to find subsets A1, B1 of V (H(R)) such that |A1| = |B1| = 3,
A1 ∩ B1 = ∅ and each vertex of A1 is adjacent to each vertex of B1 in
H(R). As m3 = (0), it follows that each vertex from W = {v9, v10, v11, v12}
is an isolated vertex of H(R). Let S = {v1, v4, v5} and let T = {v6, v7, v8}.
Note that vi ∈ S is not adjacent to any vertex of T in H(R) for each
i ∈ {1, 4, 5}. Now, A1 ∪ B1 ⊆ S ∪ T ∪ {v2, v3}. It is clear that at least
one member of S must be in A1 ∪ B1. Without loss of generality, we
can assume that v1 ∈ A1. Then B1 ⊆ {v2, v3, v4, v5}. Hence, at least one
between v4 and v5 must be in B1. Observe that T ∩B1 = ∅. As |T | = 3,
it follows at least one member of T must be in A1. This is a contradiction
since both v4 and v5 are not adjacent to any member of T in H(R). This
proves that H(R) satisfies (C2).

Example 4.26. Let T = Z8[X], I = T (2X) + TX3, and R = T
I
. Let

m = T2+TX
I

. Then (R,m) is a local Artinian ring which satisfies the
hypotheses of Lemma 4.17 and is such that H(R) satisfies (C2) but H(R)
does not satisfy (C1).

Proof. Observe that m = Ra+Rb, where a = 2 + I and b = X + I and
m is not principal. It is clear that a2 6= 0 + I, b2 6= 0 + I, ab = 0 + I, and
m

3 = (0 + I). Hence, (R,m) is a local Artinian ring which satisfies the
hypotheses of Lemma 4.17. Observe that m2 is not principal, m3 = (0+ I),
and |R

m
| = 2. Therefore, we obtain from (ii) ⇒ (i) of Lemma 4.25 that
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H(R) satisfies (C2). It is noted in the proof of (ii) ⇒ (i) of Lemma 4.25
that H(R) does not satisfy (C1). One can apply the following another
argument to arrive at the fact that H(R) does not satisfy (C1). As Ra2

and Rb2 are not comparable under the inclusion relation, we obtain from
Lemma 4.17 that H(R) does not satisfy (C1).

Case (4): a2 6= 0, ab 6= 0, whereas b2 = 0

Let (R,m) be a local Artinian ring such that m is not principal but
m = Ra + Rb for some a, b ∈ m with a2 6= 0, ab 6= 0, whereas b2 = 0.
We next try to determine R such that H(R) is planar. Suppose that
a2 + ab = 0. Let x = a and let y = a + b. Observe that m = Rx + Ry
with x2 6= 0, y2 = ab 6= 0, and xy = 0. In Theorem 4.22, it is shown that
H(R) is planar if and only if m2 = Rx2 = Ry2 and |R

m
| 6 3. Hence, in

this case, in characterizing R such that H(R) is planar, we can assume
that a2 + ab 6= 0.

Lemma 4.27. Let (R,m) be a local Artinian ring such that m is not

principal but m = Ra+Rb for some a, b ∈ m with a2 6= 0, ab 6= 0, a2+ab 6=
0, whereas b2 = 0. If H(R) satisfies (C2), then the following hold.

(i) m
3 = (0).

(ii) m
2 = Rab.

Proof. Assume that H(R) satisfies (C2).
(i) As b2 = 0, it follows that m

3 = Ra3 + Ra2b. First, we show that
a2b = 0. Suppose that a2b 6= 0. Then it is clear that Ra2 6⊆ Rb. Let
A = {Ra,Ra2, R(a + b)} and let B = {Rb,Ra2 + Rb,m}. Note that
A ∩ B = ∅ and the subgraph of H(R) induced by A ∪ B contains K3,3

as a subgraph. This contradicts the assumption that H(R) satisfies (C2).
Therefore, a2b = 0. We next verify that a3 = 0. Suppose that a3 6= 0.
We claim that Ra2 6⊆ Rb. For, if Ra2 ⊆ Rb, then a2 ∈ mb = Rab. This
implies that a3 ∈ Ra2b = (0). This is in contradiction to the assumption
that a3 6= 0. Therefore, Ra2 6⊆ Rb. Let A1 = {Rb,Ra2, Ra2 + Rb} and
let B1 = {Ra,R(a+ b),m}. Observe that A1 ∩B1 = ∅ and the subgraph
of H(R) induced by A1 ∪ B1 contains K3,3 as a subgraph. This is a
contradiction and so, a3 = 0. Therefore, m3 = Ra3 +Ra2b = (0).

(ii) We know from (i) that m3 = (0). We assert that Ra2 ⊆ Rb. Suppose
that Ra2 6⊆ Rb. Let A2 = {Ra,R(a + b),m} and let B2 = {Rb,R(a2 +
b), Ra2 + Rb}. It is clear that A2 ∩ B2 = ∅ and the subgraph of H(R)
induced by A2 ∪B2 contains K3,3 as a subgraph. This is in contradiction
to the assumption that H(R) satisfies (C2). Therefore, we obtain that
Ra2 ⊆ Rb and so, a2 ∈ mb = Rab. Hence, m2 = Ra2 +Rab = Rab.
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Lemma 4.28. Let (R,m) be a local Artinian ring which satisfies the

hypotheses of Lemma 4.27. If H(R) satisfies (C2), then |R
m
| = 3.

Proof. Assume that H(R) satisfies (C2). We first verify that |R
m
| 6 4.

Suppose that |R
m
| > 4. Then it is possible to find r, s, t ∈ R \ m such

that r − 1, s− 1, t− 1, r − s, s− t, r − t ∈ R \m. From ab 6= 0, it follows
that at least two among a2 + (r + 1)ab, a2 + (s + 1)ab, a2 + (t + 1)ab
must be different from 0. Without loss of generality, we can assume that
a2 + (r + 1)ab 6= 0 and a2 + (s + 1)ab 6= 0. Let A = {Rb,R(a + b),m}
and let B = {R(a+ rb), R(a+ sb), Ra}. Observe that A∩B = ∅ and the
subgraph of H(R) induced by A ∪B contains K3,3 as a subgraph. This is
in contradiction to the assumption that H(R) satisfies (C2). Therefore,
|R
m
| 6 4.

We next verify that |R
m
| /∈ {2, 4}. We know from Lemma 4.27 that

m
3 = (0) and m

2 = Rab. Hence, a2 = uab for some u ∈ U(R). Suppose
that |R

m
| = 2. Then u = 1 + m for some m ∈ m. This implies that

a2 = (1 +m)ab = ab and as 2 ∈ m, we obtain that a2 + ab = a2 − ab = 0.
This contradicts the hypothesis that a2 + ab 6= 0. Hence, |R

m
| 6= 2 and so,

|R
m
| > 3. We next verify that |R

m
| 6= 4. Suppose that |R

m
| = 4. Then we

can find r ∈ R \m such that r2 + r + 1 ∈ m and R
m
= {0 +m, 1 +m, r +

m, (r + 1) + m}. From a2 = uab for some u ∈ U(R) and a2 + ab 6= 0, it
follows that either a2 = rab or a2 = (r + 1)ab. Without loss of generality,
we can assume that a2 = rab. Let A1 = {Ra,R(a + rb),m} and let
B1 = {Rb,R(a + b), R(a + (r + 1)b)}. Note that A1 ∩ B1 = ∅ and the
subgraph of H(R) induced by A1 ∪B1 contains K3,3 as a subgraph. This
is in contradiction to the assumption that H(R) satisfies (C2). Therefore,
|R
m
| 6= 4 and so, |R

m
| = 3.

Lemma 4.29. Let (R,m) be a local Artinian ring which satisfies the

hypotheses of Lemma 4.27. If m
3 = (0),m2 = Rab, and |R

m
| = 3, then

|R| = 81 and H(R) is planar.

Proof. Observe that |m2| = 3, | m
m2 | = 9, and so, |m| = 27. Hence, we obtain

that |R| = 81. From m
3 = (0) and m

2 = Rab, it follows that a2 = uab for
some u ∈ U(R). It follows from the hypothesis a2 + ab 6= 0 that a2 = ab.
Let A = {0, 1, 2}. Note that m = {xa + yb + zab|x, y, z ∈ A}. It is not
hard to verify that V (H(R)) = {v1 = Ra, v2 = Rb, v3 = R(a+ 2b), v4 =
R(a + b), v5 = m, v6 = Rab}. Note that H(R) is the union of the cycle
Γ : v1 − v2 − v3 − v4 − v5 − v1, the edges e1 : v4 − v1, e2 : v4 − v2, e3 :
v5 − v2, e4 : v5 − v3, and the isolated vertex v6. The cycle Γ can be
represented by means of a pentagon, the edges e1, e2 are chords of this
pentagon through v4 and they can be drawn inside this pentagon, the
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edges e3, e4 are chords of this pentagon through v5 and they can be drawn
outside this pentagon in such a way that there are no crossing over of the
edges. This proves that H(R) is planar.

Theorem 4.30. Let (R,m) be a local Artinian ring which satisfies the

hypotheses of Lemma 4.27. The following statements are equivalent:

(i) H(R) satisfies both (C1) and (C2).
(ii) H(R) satisfies (C2).
(iii) m

3 = (0), m2 = Rab, and |R
m
| = 3.

(iv) H(R) is planar.

(v) H(R) satisfies both (C∗

1 ) and (C∗

2 ).

Proof. (i) ⇒ (ii) This is clear.
(ii) ⇒ (iii) Assume thatH(R) satisfies (C2). We know from Lemma 4.27

that m
3 = (0) and m

2 = Rab. From Lemma 4.28, we know that |R
m
| = 3.

(iii) ⇒ (iv) This follows from Lemma 4.29.
(iv) ⇒ (v) This follows from Kuratowski’s theorem [9, Theorem 5.9].
(v) ⇒ (i) This is clear.

We provide an example in Example 4.31 to illustrate Theorem 4.30.

Example 4.31. Let T = Z9[X] and I = T (X2 − 3X). Then (R =
T
I
,m = TX+T3

I
) is a local Artinian ring which satisfies the hypotheses of

Lemma 4.27 with a = X + I and b = 3 + I and moreover, |R
m
| = 3. It is

clear that a2 = ab and so, m2 = Rab and from a2b = 0+ I, it follows that
m

3 = Ra2b + Rab2 = (0 + I). Hence, (R,m) satisfies the hypotheses of
Lemma 4.27 and also the statement (iii) of Theorem 4.30.

In Example 4.32, we provide an example from [5, page 477] of a local
Artinian ring (R,m) which satisfies the hypotheses of Lemma 4.27 and is
such that H(R) satisfies (C1) but H(R) does not satisfy (C2).

Example 4.32. Let T = Z4[X] and I = T (2X2) + T (X3 − 2X). Then
(R = T

I
,m = TX+T2

I
) is a local Artinian ring which satisfies the hypotheses

of Lemma 4.27 and is such that H(R) satisfies (C1) but H(R) does not
satisfy (C2).

Proof. It is clear that m = Ra + Rb, where a = X + I and b = 2 + I,
m

4 = (0), and m is not principal. Thus (R,m) is a local Artinian ring and
it satisfies the hypotheses of Lemma 4.27. Observe that m2 = Ra2+Rab =
Ra2 + Ra3 = Ra2, and m

3 = Ra3 6= (0 + I), and |R
m
| = 2. Note that

|m3| = 2, |m
2

m3 | = 2, and | m
m2 | = 4. Therefore, |m| = 16 and so, |R| = 32. It

now follows from (ii) ⇒ (i) of [13, Proposition 4.24] that α(AG(R)) = 4.
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Therefore, we obtain that ω(H(R)) = 4. This shows that H(R) satisfies
(C1). As m3 6= (0+ I), we obtain from Lemma 4.27(i) that H(R) does not
satisfy (C2).

Case (5): a2, b2, ab ∈ R \ {0}

Let (R,m) be a local Artinian ring such that m is not principal but
m = Ra + Rb for some a, b ∈ m with a2, b2, ab ∈ R \ {0} and try to
determine R such that H(R) is planar. If a2 + ab = b2 + ab = 0, then
with x = a, y = a+ b, we get that m = Rx+ Ry and note that x2 6= 0,
whereas y2 = xy = 0. Such Artinian local rings are already characterized
in Theorem 4.10 such that H(R) is planar. Hence, in determining rings
R such that H(R) is planar, we can assume without loss of generality
that a2 + ab 6= 0. Suppose that b2 + ab = 0. With x1 = a + b, y1 = b,
we obtain that m = Rx1 + Ry1, x

2
1 6= 0, y21 6= 0, and x1y1 = 0. In

Theorem 4.22, such rings R are characterized such that H(R) is planar.
Therefore, in determining rings R such that H(R) is planar, we can assume
that a2 + ab 6= 0 and b2 + ab 6= 0.

Remark 4.33. Let (R,m) be a local Artinian ring such that m is not
principal but m = Ra + Rb for some a, b ∈ m such that a2, b2, ab, a2 +
ab, b2+ab ∈ R\{0}. Then H(R) satisfies (C1) if and only if ω(H(R)) = 4.

Proof. Note that the subgraph of H(R) induced by {Ra,Rb,R(a+b),m} is
a clique on four vertices. Therefore, we get that ω(H(R)) > 4. Thus H(R)
satisfies (C1) if and only if ω(H(R)) 6 4 if and only if ω(H(R)) = 4.

Let (R,m) be a local Artinian ring which satisfies the hypotheses of
Remark 4.33. We first obtain some necessary conditions in order that
H(R) to satisfy either (C1) or (C2).

Lemma 4.34. Let (R,m) be a local Artinian ring which satisfies the

hypotheses of Remark 4.33. Then the following hold.

(i) If H(R) satisfies (C1), then m
5 = (0) and moreover, m3 and m

4 are

principal.

(ii) If H(R) satisfies (C2), then m
4 = (0).

Proof. Assume that H(R) satisfies (C1). We know from Remark 4.33 that
ω(H(R)) = 4. Thus α(AG(R)) = ω(H(R)) = 4. In such a case, we know
from [13, Lemma 4.32] that m

5 = (0). Moreover, m3 and m
4 are principal.

(ii) Assume that H(R) satisfies (C2). As m
2 6= (0), it follows from

Nakayama’s lemma [2, Proposition 2.6] that m
2 6= m

3. Suppose that
m

4 6= (0). Then either m
3a 6= (0) or m

3b 6= (0). Without loss of generality,
we can assume that m

3a 6= (0). We assert that m
3b = (0). Suppose
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that m
3b 6= (0). Let A = {Ra,Rb,m} and let B = {R(a + b),m2,m3}.

Note that A ∩ B = ∅ and the subgraph of H(R) induced by A ∪ B
contains K3,3 as a subgraph. This contradicts the assumption that H(R)
satisfies (C2). Therefore, m3b = (0). Note that m

3(a + b) = m
3a 6= (0).

Let A1 = {Ra,R(a + b),m} and let B1 = {Rb,m2,m3}. Observe that
A1∩B1 = ∅ and the subgraph of H(R) induced by A1∪B1 contains K3,3

as a subgraph. This is a contradiction and so, we obtain that m4 = (0).

Lemma 4.35. Let (R,m) be a local Artinian ring which satisfies the

hypotheses of Remark 4.33. If H(R) satisfies (C2), then Ra2 ⊆ Rb and

Rb2 ⊆ Ra.

Proof. Assume that H(R) satisfies (C2). We first verify that Ra2 ⊆ Rb.
Suppose that Ra2 6⊆ Rb. We claim that either a3 6= 0 or a2b 6= 0. Suppose
that a3 = a2b = 0. Let A = {Ra,Rb,m} and let B = {R(a+ b), R(a2 +
b), Ra2+Rb}. Note that A∩B = ∅ and the subgraph of H(R) induced by
A ∪B contains K3,3 as a subgraph. This contradicts the assumption that
H(R) satisfies (C2). Therefore, either a3 6= (0) or a2b 6= 0. We consider
the following cases.

Case 1: a3 6= 0 and a2b 6= 0. Let A1 = {Ra,Rb,m} and let B1 = {R(a+
b), Ra2, Ra2 + Rb}. Note that A1 ∩ B1 = ∅ and the subgraph of H(R)
induced by A1 ∪B1 contains K3,3 as a subgraph. This is impossible.

Case 2: a3 6= 0 whereas a2b = 0. Let A2 = {Ra,R(a + b),m} and let
B2 = {Rb,Ra2, Ra2 +Rb}. Observe that A2 ∩B2 = ∅ and the subgraph
of H(R) induced by A2∪B2 contains K3,3 as a subgraph. This is impossible.

Case 3: a3 = 0 whereas a2b 6= 0. Let A3 = {Rb,R(a + b),m} and let
B3 = {Ra,Ra2, Ra2 + Rb}. Note that A3 ∩ B3 = ∅ and the subgraph
of H(R) induced by A3 ∪ B3 contains K3,3 as a subgraph. This is a
contradiction.

Thus if H(R) satisfies (C2), then Ra2 ⊆ Rb. Similarly, it can be shown
that Rb2 ⊆ Ra.

Lemma 4.36. Let (R,m) be a local Artinian ring which satisfies the

hypotheses of Remark 4.33. Suppose that m
2 is not principal. If H(R)

satisfies (C1), then m
4 = (0) and |R

m
| 6 3.

Proof. Assume that H(R) satisfies (C1). Then we know from Remark 4.33
that α(AG(R)) = 4. Hence, we obtain from [13, Lemma 4.33] that m4 = (0)
and |R

m
| 6 3.

Lemma 4.37. Let (R,m) be a local Artinian ring which satisfies the

hypotheses of Remark 4.33. Suppose that m
2 is not principal. If H(R)

satisfies (C2), then |R
m
| 6 3.
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Proof. Assume that H(R) satisfies (C2). We know from Lemma 4.35 that
Ra2 ⊆ Rb and Rb2 ⊆ Ra. From Ra2 ⊆ Rb, it follows that Ra2 ⊆ mb =
(Ra + Rb)b = Rab + Rb2. Hence, m2 = Ra2 + Rab + Rb2 = Rab + Rb2.
Similarly, it follows from Rb2 ⊆ Ra that m

2 = Ra2 +Rab. By hypothesis,
m

2 is not principal. Therefore, for any r ∈ R \m, a2 + rab, ab+ rb2 6= 0.
We now verify that |R

m
| 6 3. Suppose that |R

m
| > 3. Then it is possible to

find r, s ∈ R \m such that r− 1, s− 1, r− s ∈ R \m. Let A = {Ra,Rb,m}
and let B = {R(a+ b), R(a+ rb), R(a+ sb)}. Note that A ∩B = ∅ and
the subgraph of H(R) induced by A∪B contains K3,3 as a subgraph. This
is in contradiction to the assumption that H(R) satisfies (C2). Therefore,
we obtain that |R

m
| 6 3.

Lemma 4.38. Let (R,m) be a local Artinian ring which satisfies the

hypotheses of Remark 4.33. Suppose that m2 is not principal and |R
m
| = 3.

If H(R) satisfies (C2), then m
3 = (0).

Proof. Assume that m
2 is not principal, |R

m
| = 3, and H(R) satisfies (C2).

We know from the proof of Lemma 4.37 that m2 = Ra2+Rab = Rb2+Rab.
Since m

2 is not principal, it follows that a2 − ab, b2 − ab 6= 0. We verify
that m

3 = (0). Suppose that m
3 6= (0). As m

3 = m
2a + m

2b, it follows
that either m

2a 6= (0) or m
2b 6= (0). Without loss of generality, we can

assume that m
2a 6= (0). We consider the following cases.

Case 1: m2b 6= (0). Let A = {Ra,Rb,m} and let B = {R(a + b), R(a −
b),m2}. Observe that A ∩B = ∅ and the subgraph of H(R) induced by
A ∪B contains K3,3 as a subgraph. This contradicts the assumption that
H(R) satisfies (C2).

Case 2: m
2b = (0). In this case, m2(a + b) = m

2(a − b) = m
2a 6= (0).

Let A1 = {Ra,R(a+ b), R(a− b)} and let B1 = {Rb,m,m2}. Note that
A1 ∩ B1 = ∅ and the subgraph of H(R) induced by A1 ∪ B1 contains
K3,3 as a subgraph. This is in contradiction to the assumption that H(R)
satisfies (C2).

Thus if H(R) satisfies (C2), then m
3 = (0).

Lemma 4.39. Let (R,m) be a local Artinian ring which satisfies the

hypotheses of Remark 4.33. Suppose that m3 = (0) and |R
m
| = 2. If H(R)

satisfies (C1), then either a2 = b2 or m
2 ⊆ R(a+ b).

Proof. Assume that H(R) satisfies (C1). Then we know from Remark 4.33
that ω(H(R)) = 4. Hence, α(AG(R)) = 4. Therefore, we obtain from
the proof of (i) ⇒ (ii) of [13, Proposition 4.34] that either a2 = b2 or
m

2 ⊆ R(a+b). (This part of the proof in the proof of [13, Proposition 4.34]
holds even if m2 is principal.)
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Lemma 4.40. Let (R,m) be a local Artinian ring which satisfies the

hypotheses of Remark 4.33. Suppose that m3 = (0), m2 is not principal,

and |R
m
| = 3. Then H(R) does not satisfy (C1).

Proof. Assume that H(R) satisfies (C1). We know from Remark 4.33 that
ω(H(R)) = 4. Indeed, it is noted in the proof of Remark 4.33 that the
subgraph of H(R) induced by W = {Ra,Rb,R(a+b),m} is a clique on four
vertices. Therefore, α(AG(R)) = 4. In such a case, it is verified in the proof
of [13, Lemma 4.32] that m

2 = Ra2 +Rab = Rb2 +Rab. By hypothesis,
m

3 = (0) and |R
m
| = 3. Observe that {a2, ab} (respectively, {b2, ab} ) is

linearly independent over R
m

. Therefore, a2 − ab, b2 − ab ∈ R \ {0}. Note
that R(a− b) /∈ W . If a2 − b2 6= 0, then the subgraph of H(R) induced
by W ∪ {R(a − b)} is a clique on five vertices. Suppose that a2 = b2.
Observe that (a+ b)2 = 2(a2 + ab) 6= 0. We assert that a2 /∈ R(a+ b). For
if a2 ∈ R(a+ b), then a2 = m(a+ b) for some m ∈ m. This implies that
a2 = (xa+ yb)(a+ b) = (x+ y)(a2+ ab) for some x, y ∈ R. It follows from
m

3 = (0) and a2 6= 0 that x+ y ∈ U(R). Hence, we obtain that ab ∈ Ra2.
This is impossible since by hypothesis, m2 is not principal. Therefore, we
get that a2 /∈ R(a+ b). Note that R(a+ b) +Ra2 /∈ W and the subgraph
of H(R) induced by W ∪ {R(a + b) + Ra2} is a clique on five vertices.
This proves that ω(H(R)) > 5 and so, H(R) does not satisfy (C1).

Remark 4.41. Let (R,m) be a local Artinian ring which satisfies the
hypotheses of Remark 4.33. Suppose that m3 = (0) and |R

m
| = 2. If a2 = b2,

then with x = a, y = a + b, we get that m = Rx + Ry and moreover,
x2 6= 0, y2 = 0, xy 6= 0 and furthermore, x2 + xy = ab 6= 0. In such a
case, we know from Theorem 4.30 that H(R) is not planar. Hence, in
determining rings R such that H(R) is planar, we assume that a2 6= b2.

Theorem 4.42. Let (R,m) be a local Artinian ring which satisfies the

hypotheses of Remark 4.33. Suppose that m
3 = (0),m2 is not principal,

and a2 6= b2. Then the following statements are equivalent:

(i) H(R) satisfies both (C1) and (C2).
(ii) H(R) satisfies (C1).
(iii) m

2 = Ra2 +Rab = Rb2 +Rab, |R
m
| = 2, and m

2 ⊆ R(a+ b).
(iv) H(R) is planar.

(v) H(R) satisfies both (C∗

1 ) and (C∗

2 ).

Proof. (i) ⇒ (ii). This is clear.
(ii) ⇒ (iii) Assume thatH(R) satisfies (C1). We know from Lemma 4.36

that |R
m
| 6 3. It is already noted in the proof of Lemma 4.40 that

m
2 = Ra2 +Rab = Rb2 +Rab (the proof of this assertion is independent

of the number of elements in R
m

). By hypothesis, a2 6= b2. If |R
m
| = 3, then
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it is already observed in the proof of Lemma 4.40 that ω(H(R)) > 5. This
is in contradiction to the assumption that H(R) satisfies (C1). Therefore,
|R
m
| = 2. In such a case, we know from Lemma 4.39 that m

2 ⊆ R(a+ b).
(iii) ⇒ (iv) By hypothesis, m3 = (0) and m

2 is not principal. We are
assuming that m2 = Ra2+Rab = Rb2+Rab, |R

m
| = 2, and m

2 ⊆ R(a+ b).

Observe that {a2, ab} is linearly independent over R
m

. Hence, |m2| = 4 and
it is clear that | m

m2 | = 4. Therefore, |m| = 16. Let A = {0, 1}. Note that

m = {xa+ yb+ za2 + wab|x, y, z, w ∈ A}. It can be easily verified that
V (H(R)) = {v1 = Ra, v2 = Rb, v3 = R(a + b), v4 = m, v5 = Ra2, v6 =
Rb2, v7 = Rab, v8 = m

2}. Observe that the subgraph of H(R) induced by
{v1, v2, v3, v4} is a clique on four vertices and it follows from m

3 = (0)
that {v5, v6, v7, v8} is the set of all isolated vertices of H(R). This shows
that H(R) is the union of a clique on {v1, v2, v3, v4} and the set of all its
isolated vertices. As K4 is planar, it follows that H(R) is planar.

(iv) ⇒ (v). This follows from Kuratowski’s theorem [9, Theorem 5.9].
(v) ⇒ (i). This is clear.

We now provide an example from [5, page 479] in Example 4.43 to
illustrate Theorem 4.42.

Example 4.43. Let T = Z8[X] and I = T (4X)+T (X2− 2X − 4). Then
(R = T

I
,m = TX+T2

I
) is a local Artinian ring which satisfies the hypotheses

of Theorem 4.42 and the statement (iii) of Theorem 4.42.

Proof. Note that m = Ra + Rb with a = X + I and b = 2 + I and m

is not principal. Note that m
3 = (0). Thus (R,m) is a local Artinian

ring which satisfies the hypotheses of Remark 4.33. Observe that m
2 is

not principal and a2 6= b2. Moreover, m2 = Ra2 + Rab = Rb2 + Rab,
|R
m
| = 2 and m

2 ⊆ R(a + b). Therefore, (R,m) is a local Artinian ring
which satisfies the hypotheses of Theorem 4.42 and the statement (iii) of
Theorem 4.42.

Let (R,m) be a local Artinian ring which satisfies the hypotheses of
Remark 4.33. Suppose that m

2 is principal. We are not able to determine
R such that H(R) is planar.
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