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ABSTRACT. Magic rectangles are a classical generalization of
the well-known magic squares, and they are related to graphs. A
graph G is called degree-magic if there exists a labelling of the edges
by integers 1,2, ..., |E(G)| such that the sum of the labels of the
edges incident with any vertex v is equal to (1 + |E(G)|) deg(v)/2.
Degree-magic graphs extend supermagic regular graphs. In this
paper, we present a general proof of the necessary and sufficient
conditions for the existence of degree-magic labellings of the n-fold
self-union of complete bipartite graphs. We apply this existence to
construct supermagic regular graphs and to identify the sufficient
condition for even n-tuple magic rectangles to exist.

1. Introduction

We consider simple graphs without isolated vertices. If G is a graph,
then V(G) and E(G) stand for the vertex set and the edge set of G,
respectively. Cardinalities of these sets are called the order and size of G.

Let a graph G and a mapping f from E(G) into positive integers be
given. The index mapping of f is the mapping f* from V(G) into positive
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integers defined by

[f(v) = Z n(v,e)f(e) for every v e V(G),

ecE(GQ)

where n(v, ) is equal to 1 when e is an edge incident with vertex v, and
0 otherwise. An injective mapping f from F(G) into positive integers
is called a magic labelling of G for an index A if its index mapping f*
satisfies

ffv)y =X forall veV(Q).

A magic labelling f of a graph G is called a supermagic labelling if the set
{f(e) : e € E(G)} consists of consecutive positive integers. We say that a
graph G is supermagic (magic) whenever a supermagic (magic) labelling
of G exists.

A bijective mapping f from E(G) into {1,2,...,|E(G)|} is called a
degree-magic labelling (or d-magic labelling) of a graph G if its index
mapping f* satisfies

_1+|B@)|

f*(v) 5 deg(v) forall ve V(G).
A d-magic labelling f of a graph G is called balanced if for all v € V(G),

the following equation is satisfied

[{e € E(G) :n(v,e) =1, fe) < [[E(G)[/2]}]
=[{e € E(G) :n(v,e) = 1, f(e) > [|E(G)[/2]}].

We say that a graph G is degree-magic (balanced degree-magic) or only
d-magic when a d-magic (balanced d-magic) labelling of G exists.

The concept of magic graphs was introduced by Sedlacek [1]. Later,
supermagic graphs were introduced by Stewart [2]. There are now many
papers published on magic and supermagic graphs; see Gallian [3| for more
comprehensive references. The concept of degree-magic graphs was then in-
troduced by Bezegovd and Ivanco [4] as an extension of supermagic regular
graphs. They established the basic properties of degree-magic graphs and
characterized degree-magic and balanced degree-magic complete bipartite
graphs in [4]|. They also characterized degree-magic complete tripartite
graphs in [5]. Some of these concepts are investigated in [6-8|.

Magic rectangles are a natural generalization of the magic squares
which have widely intrigued mathematicians and the general public. A
magic (p, q)-rectangle R is a p X ¢ array in which the first pg positive
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integers are placed such that the sum over each row of R is constant and
the sum over each column of R is another (different if p # ¢) constant.
Harmuth [9, 10| studied magic rectangles over a century ago and proved
that

Theorem 1. (|9, 10]) For p,q > 1, there is a magic (p, q)-rectangle R if
and only if p = q (mod 2) and (p,q) # (2,2).

In 1990, Sun [11] studied the existence of magic rectangles. Later,
Bier and Rogers [12] studied on balanced magic rectangles, and Bier and
Kleinschmidt [13] studied about centrally symmetric and magic rectangles.
Then Hagedorn [14] presented a simplified modern proof of the necessary
and sufficient conditions for a magic rectangle to exist. The concept of
magic rectangles was generalized to n-dimensions and several existence
theorems were proven by Hagedorn [15].

We will hereinafter use the following auxiliary results from these
studies.

Theorem 2. ([4]) Let G be a reqular graph. Then G is supermagic if and
only if it is d-magic.

Theorem 3. (|4]) Let G be a d-magic graph of even size. Then every
vertexr of G has an even degree and every component of G has an even
size.

Theorem 4. ([4]) Let G be a balanced d-magic graph. Then G has an
even number of edges and every vertex has an even degree.

Theorem 5. (|4]) Let G be a d-magic graph having a half-factor. Then
2G is a balanced d-magic graph.

Theorem 6. ([4]) Let Hy and Hy be edge-disjoint subgraphs of a graph
G which form its decomposition. If Hy is d-magic and Hs is balanced
d-magic, then G is a d-magic graph. Moreover, if Hy and Hy are both
balanced d-magic, then G is a balanced d-magic graph.

Proposition 1. ([4]) For p,q > 1, the complete bipartite graph K 4 is
d-magic if and only if p = q (mod 2) and (p,q) # (2,2).

Theorem 7. (|4]) The complete bipartite graph K, 4 is balanced d-magic
if and only if the following statements hold:

(i) p=q=0 (mod 2);

(i1) if p=q =2 (mod 4), then min{p, q} > 6.
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2. The n-fold self-union of complete bipartite graphs

For any integer n > 1, the n-fold self-union of a graph G, denoted by
n(G, is the union of n disjoint copies of G. For integers p,q > 1, we consider
the n-fold self-union nK, , of complete bipartite graphs. Let nk, , be a
d-magic graph. Since deg(v) is p or g and f*(v) = (npq + 1) deg(v)/2 for
any v € V(nkKp4), we then have

Proposition 2. Let nK , be a d-magic graph. Then the following condi-
tions hold:

(i) if n is odd, then p = q (mod 2);

(ii) if n is even, then p=q =0 (mod 2).

Theorem 8. Let nK, , be a balanced d-magic graph. Then the following
conditions hold:

(i) p and q are both even;

(ii) if n is odd and p = q =2 (mod 4), then min{p, q} > 6.

Proof. For any integer n > 1, suppose that nK, , is balanced d-magic. By
Theorem 4, p and ¢ are both even because nK, , has vertices of degrees p
and q.

Forany t € {1,2,...,n}, let K§’28 be the #2 copy of a graph K3 25 and
let e’ (v') be its edge (vertex) corresponding to e € E(Ka25)(v € V(Ka:25)).
Let f be a balanced d-magic labelling of a graph nKj o5 and let {u’, v’}
be a partite set of K£,2s with two vertices. Put

A= {6 € B(KYy,) s n(ul,e) = 1, (") < 2ns)
and
B = (e € B(Ky,) :nlu',e) = 1, f(e") < 2ns}.

Clearly, A' N B! = @ and |A!| = | B!| = s because f is balanced d-magic.
We can see that any edge of K3, is incident to either u* or w' and the
set of labels of edges incident to a vertex of degree two is {r,4dns —r + 1}

for some r € {1,2,...,2ns}. As a result, we have
4 1 E(nK 1
TL82+ 96 — ‘ (n 22,2S)| + deg(ut) _ f* (U,t)
= Z feh) + Z (4ns — f(e') +1)
ete At eteBt

=(ns+1)s+ > fle') = D f(eh).

ete At ete Bt
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This means that Y .o 40 f(€') = Y .icpe f(e!). Consequently,

2ns n
2ns+1ms=> i=Y (Y fle)+ > f(e)
1=1 t=1 etcAt ete Bt
=3 Y A =253(Y fe) =0 (mod 2).
t=1 elcAt t=1 etc At
Since n is odd, s is even. This proves that condition (ii) holds. O

Proposition 2 allows the set of d-magic graphs nkK, ; to be divided into
sets of odd and even d-magic graphs. Inspection quickly shows that for
(p,q) = (2,2), a d-magic graph nK» > does not exist. In the next results,
we prove the existence of d-magic graphs nk, , for other even integers
(p.q) # (2,2).

Now let us consider a concept of a half-factor of a graph G defined by
Bezegovd and Ivanco [4]. A spanning subgraph H of a graph G is called a
half-factor of G whenever degp(v) = degg(v)/2 for every vertex v € V(G).
Note that a spanning subgraph of G with the edge set E(G)\ E(H) is also a
half-factor of GG. Similarly, if f is a balanced d-magic labelling of G, then the
spanning subgraphs with the edge sets {e € E(G) : f(e) < [|E(G)|/2]}
and {e € E(G) : f(e) > ||E(G)|/2]} are half factors of G.

Theorem 9. For even integers p,q > 1. If the complete bipartite graph
K, 4 is d-magic, then the following conditions hold:

(i) nK, 4 is a d-magic graph for all odd integers n > 3;
(it) nK, 4 is a balanced d-magic graph for all even integers n > 2.

Proof. For any integer n > 2 and ¢t € {1,2,...,n}, let Kf)’q be the
copy of a graph K, , and let e'(v") be its edge (vertex) corresponding
toe € E(Kpq)(veV(K,,)). Since K4 is d-magic, there is a d-magic
labelling g of K 4. Since p and g are both even, there is a half-factor H of
K, 4. First suppose that nk, ; = K}%’q U K;q U---UK), and we consider
a mapping f from E(nk,,) into positive integers given by

feh) = {g<e> +(t=Dpqg if ee B(H),

gle)+(n—t)pg if ec E(K,q) \ E(H).
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We can then check that f is a bijection from E(nkK, ) onto {1,2,...,npq}.
For any vertex v* € V(K] ), we have

=3 a@he)fe)= Y n(ve)gle) + (¢ - 1)pg)

etcE(K] ) ecE(H)

+ n(v,e)(g(e) + (n —t)pq)
eEE(KP,q)\E(H)

= > nwegle)+ DY nve)gle) + (t - 1)pgdegy(v)
ccE(H) c€E(Kp.q)\E(H)

+ (n —t)pgdegy, ) (V)

=Y s+ Y nwesle) + T e o)
e€E(H) e€B(Kp,q)\E(H)
+ (n_;)pq degp, , (v)

= g*(v) + (n—21)pq degg,  (v) = pq;— ! degg, ,(v)
4o 21)p T degye,, (v)

B ”pq;‘ 1 degg, ,(v) = npq2+ : degy,, (v)-

Hence f is d-magic and nk, , is a d-magic graph for all integers n > 2.
If n is even, then for any o' € V(K] ) and t < n/2, we have

{e' € B(KG,) :n(v',e") =1, f(e') < npq/2}|

degg, ,(v)
= degy(v) = % =degk, .—Em) (v)

= [{e' € E(Ky ) :n(v',e") =1, f(e') > npa/2}],

and for any v € V(K} ) and t > n/2, we have

{e' € B(K],) :n(v',e") =1, f(e') < npq/2}|

deg, ,(v)
=degk, .—pm) (v) = % = degy(v)

= [{e' € E(Ky ) :n(v',e") =1, f(e') > npq/2}].

Thus f is balanced d-magic and nkK,, , is a balanced d-magic graph for
all even integers n > 2. O
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Combining Proposition 1 and Theorem 9, we obtain the following
result.

Proposition 3. Let p and q be even positive integers with (p,q) # (2,2).
Then the following conditions hold:
(i) nK, 4 is a d-magic graph for all odd integers n > 1;

(1t) nKp 4 is a balanced d-magic graph for all even integers n > 2.

Corollary 1. Let p and q be even positive integers with (p,q) # (2,2). If
p = q, then nk, , is a supermagic graph.

Proof. Follows from Theorem 2 and Proposition 3. O

Example 1. Consider the complete bipartite graph K ¢. One can confirm
that Ky ¢ is d-magic, but it is not a balanced d-magic graph (see Figure 1),
and the labels on edges w;v; of Ko, where 1 <7 <2 and 1< j <6, are
shown in Table 1.

Then we can construct a balanced d-magic graph 4K» g (see Figure 2)
with the labels on edges uﬁv}f of 4K56, where 1 <@ < 2,1 < j <6 and
1 <t <4, in Table 2.

Theorem 10. Let p and q be integers with p,q > 1. If the complete
bipartite graph Kp 4 is balanced d-magic, then nKp 4 is a balanced d-magic
graph for all integers n > 2.

Proof. For any integer n > 2 and ¢t € {1,2,...,n}, let Kzthq be the t copy
of a graph K, , and let e'(v!) be its edge (vertex) corresponding to e €
E(K,q)(ve V(Kp,)). Since K, 4 is balanced d-magic, there is a balanced
d-magic labelling g of K, ,. Let H, := {e € E(K,,) : g(e) < [pq/2]} and
Hy :={e € BE(K,,) : g(e) > |pq/2]}. Thus, the spanning subgraphs H;
and Hy of K, with the edge sets H; and H, are half-factors of K,
respectively. Suppose that nk, , = K;QUK;(]U' UK, and we consider
a mapping f from E(nk,,) into positive integers given by

Fet) = {g(e) +(t—Lpg i ecH,
gle)+ (n—t)pg if eGH;.
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FIGURE 1. A d-magic complete bipartite graph K ¢ with 8 vertices and 12

edges.

TABLE 1. The labels on edges of d-magic complete bipartite graph K g.

FIGURE 2. A balanced d-magic graph 4K ¢ with 32 vertices and 48 edges.

TABLE 2.

Vertices | v1 | vo | v3 | v4 | v5 | Vg
Uy 1 (1113|9817
U9 121 2 (10| 4| 5| 6

1
Vl
1 2
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1 2
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Vertices | vi | vd | v} | v} | vd | v}
ui 3714713919 | 8 | 7
u’ 12| 2 |10 | 40 | 41 | 42

Vertices | v | v3 | v2 | v2 | v2 | 02
u? 25 |35 |27 |21 |20 |19
u3 24 |14 |22 |28 |29 | 30

Vertices | v§ | v3 | v3 | v} | vd | v}
u3 1323 |15(33 32|31
uj 36 | 26 | 34 | 16 | 17 | 18

Vertices | vi | v3 | v§ | v] | vi | vg
uf 1| 11| 3 | 45|44 | 43
uy 48 |38 46| 4 | 5 | 6

2 € <€ < < <
L N P S N PPN

-

The labels on edges of balanced d-magic graph 4K .
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We can then check that f is a bijection from E(nk, ) onto {1,2,...npq}.
For any vertex v' € V(K] ), we have

=3 e fe)

eteE(KY,)

= nv,e)gle) + (t—=pg) + > n(v,e)(gle) + (n— t)pq)

eeHi e€H,
= n(v,e)gle) + > n(v,e)gle) + (t — 1)pg degy, (v)
e€H, e€ H,)

+ (0~ pdegr, (0
= Y w0 + 3 . ople) + 2 e (0

! ! 2
ecH; ecH,

(n —t)pq
+ s degg, , (v)

. (n —1)pg pq+1
=g"(v) + N degg, ,(v) = 5 degg, ,(v)
(n —1)pq
+ P g, )
npq + 1 _npg+1

=5 degg, ,(v) deg,, , (v").

Hence f is a d-magic labelling. For v* € V(K] ) and t < (n +1)/2, we
have

{e' € B(Ky,) :n(v',e") =1, f(e') < [npq/2]}
= degp, (v) = )
= [{e' € E(K, ) :n(v',e") =1, f(e') > [npa/2]},

and for any v € V(K] ) and t > (n+1)/2, we have

{e' € B(K,,) :n(v',e") =1, f(e") < [npq/2]}

degg (v)
= degHQ(U) = % = deng (v)

= {e' € B(K ) :n(v',e') =1, f(e") > [npg/2]}I.

Hence f is balanced d-magic. Therefore, nK, , is a balanced d-magic
graph for all integers n > 2. O
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According to Theorems 7 and 10, we obtain the following result.

Proposition 4. Let p and q be even positive integers and the following
condition holds:

ifp=q=2 (mod 4), then min{p,q} > 6

Then nkK, 4 is a balanced d-magic graph for all integers n > 1.

3. A construction of supermagic regular graphs

In this section we construct supermagic regular graphs by applying
the existence of the n-fold self-union of complete bipartite graphs. Herein,
we consider the &-multiplication of a graph introduced by Bezegovad and
Ivanco [4] to prove the next result. Let G be a graph and £ be a mapping
from V(G) into the positive integers. The &-multiplication of G, denoted
by G¢, is a graph whose vertices are all ordered pairs (v,1), where v € V(G)
and 1 < i < &(v), and two vertices (u, ), (v, j) are joined by an edge in
G¢ if and only if u,v are adjacent in G. Note that G¢ is isomorphic to
lexicographic product G[D,] of G and a totally disconnected graph D,
when £(v) = n for all v € V(G).

Proposn‘,lon 5. For any integern > 1 andt € {1,2,...,n}. Let G* be the

th copy of a graph G and let vt be its vertex correspondmg tov € V(G).
Let§ be a mapping from V(nG) into even positive integers such that the
following conditions hold:

(i) (o) = E(v®) for all t,s € {1,2,...,n};

(1) for any adjacent vertices ut,v' € V(G), if £(u?) = £(vf) = 2
(mod 4), then min{&(ut),&(v!)} > 6.

Then the &-multiplication (nG)¢ is a balanced d-magic graph.

Proof. For any integer n > 1 and t € {1,2,...,n}. Let edge e’ = ulv' €

E(G") and let (G,)* be a subgraph of (G’f)g induced by {(u!,i) : 1 <
i < &)Y u{(vt, ) : 1< j < &)} Evidently, (G%,)¢ is isomorphic to a
complete bipartite graph Ke(yt) ¢(vt). According to Theorem 7, Ke(yt) ¢(ut)
is a balanced d-magic graph. By condition (i), we obtain that K¢,t) ¢t
is isomorphic to K¢(ys)¢(ws) for all ¢,s € {1,2,..,n}. Thus, by Proposi-
tion 4, UL Ke(ut)e(vt) 18 a balanced d- magic graph. Since (J;(G%,)¢ is
isomorphic to (J;—; Ke(ut 5(1, ) Uis 1( .)¢ is a balanced d-magic graph.
The &-multiplication (nG)¢ is decomposed into edge-disjoint subgraphs
Ui, (GL,)¢ for all ef € E(G?). Therefore, by Theorem 6, (nG)* is a bal-
anced d-magic graph. O
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Note that the subgraph of (nG)¢ induced by Ui, {(v?,1) : v € V(G*)}
is isomorphic to nG. Thus, by Proposition 5, for any graph G there is a
balanced d-magic graph which contains an induced subgraph isomorphic
to nG for all integers n > 1.

We end this section with a similar result for supermagic regular graphs.

Theorem 11. For any graph G there is a supermagic reqular graph which
contains an induced subgraph isomorphic to nG for all integers n > 1.

Proof. Let GG1 be a graph obtained from G by attaching a pendant edge
at each vertex of G. For any integer n > 1 and ¢t € {1,2,...,n}. Let
GY(GY) be the t copy of a graph G(G1). Put m := |[V(G?)| and denote
the vertices of G} by u},ub,... ,ul,,wi,wh, ... ,w! in such a way that
V(GY) = {ul,...,ul,} and ulw!, for all i € {1,...,m}, is an attached
edge of GY. Consider a mapping ¢ from V(nG1) into positive integers
given by

€(u) =4 and (wj) =4(1+ A — degg(u7))

foralli € {1,...,m} and t € {1,2,...,n}, where A is the maximum
degree of G*. Let Hy := (nG1)%. By Proposition 5, H; is a balanced
d-magic graph.

We set

n mf

U uf, )} and W= J U{ w!, 5)}

t=1 t=11=1 j=1

It is clear that UNW = @ and U U W = V(H;). The set W is an
independent set of Hy and |W| = 4nh, where h = Y " (1+ A —degqi (ul))
for any ¢t € {1,2,...,n}. Consider h, we have

\\Cg

h=m+ Z(A —degee(ul)) =m > A.
i=1

Moreover, h = (1+ A)ym — >, deggi (ul) = (1 + A)ym — 2|E(G")|. Thus,
if A is odd, then A is even. Since h > A and both of i, A are not odd, there
is a A-regular graph R order h. According to Proposition 5, (nR)[D4] is
balanced d-magic, 4A-regular graph of order 4nh. Therefore, there is a
balanced d-magic graph Ho, 4A-regular graph, such that V(Hy) = W.
Let H denote the graph such that the graphs H; and Hy form its
decomposition. As Hy and Hs are balanced d-magic, by Theorem 6, the
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graph H is balanced d-magic. Clearly, any vertex of U has degree 4(1+ A)
in Hp. Similarly, the degree of any vertex belonging to W is 4 in Hy and 4A
in Hy. So, H is a regular graph of degree 4(1+ A). According to Theorem
2, the graph H is supermagic. Therefore, H is a desired graph because its
subgraph induced by i, U™, {(uf, 1)} is isomorphic to nG. O

Example 2. Considering a path P», we can construct a supermagic
regular graph H which contains an induced subgraph isomorphic to 3P
(see Figure 3), and the labels on edges ufvé, vfwé, Xt y and u! y of H, where
1<i<4,1<j<4dand 1<t <3, areshownlnTable?)

1 1 2 2
. v X 3 N x ‘2
% 1 % N 21
&t -\ \.v./%; ,o, 1 \ A XIN ‘\, K 2 R mé\/“»’o,’f
ISER PN ;-.“os.‘f ‘/:«z\-’::a 2 4‘.‘.‘@." q'
‘

§ N w,\\‘ /

\ ' \\V'/»\\‘ 7 \ l' \3"[/ \\‘ 7

-

1,2 NP 2
“ /% \$ L7 § 5wy \v\"/lu\"’ll‘\
-v.-"‘;" ' V. 7 ~.'-".§' -
) ZT S 2 ST
LA o PP
u‘ ‘.’ 1 2 ‘.’ 2
4 Yy U < = 1

FIGURE 3. A supermagic regular graph H containing an induced subgraph
isomorphic to 3P5.

4. The n-tuple magic rectangles

In this section we introduce n-tuple magic rectangles and obtain a
sufficient condition for even n-tuple magic rectangles to exist.

Definition 1. An n-tuple magic (p, ¢)-rectangle R := (r ”)(rzj) ()
s a class of n arrays in which each array has p rows and q columns, and
the first npq positive integers are placed such that the sum over each row of
any array of R is constant and the sum over each column of R is another

(different if p # q) constant.

Let R be an n-tuple magic (p, ¢)-rectangle. Since each row sum of any
array of R is ¢(npg+1)/2 and each column sum of R is p(npg + 1)/2 and
both are integer, we have
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TABLE 3. The labels on edges of supermagic regular graph H.

Vertices u% u% u§ u}l ar% ac% m§ 37411
v] 49 | 54 | 139 | 144 | 73 | 80 | 117 | 116
vl 56 | 51 | 142 | 137 | 78 | 75 | 114 | 119
vl 141 | 138 | 52 | 55 | 115 | 118 | 76 | 77
v} 140 | 143 | 53 | 50 [ 120 [ 113 | 79 | 74
Y1 1 6 | 187 | 192 | 25 | 30 | 163 | 168
ya 8 3 190|185 | 32 | 27 | 166 | 161
ya 189 | 186 | 4 7 165|162 | 28 | 31
vl 188|191 | 5 | 2 | 164|167 | 29 | 26
Vertices | u? | w3 | vd | w} | 23 | 23 | 2% | 23
v? 65 | 70 | 123|128 | 89 | 96 | 101 | 100
v3 72 | 67 | 126 | 121 | 94 | 91 | 98 | 103
v3 125 [ 122 | 68 | 71 | 99 | 102 | 92 | 93
v? 124 | 127 | 69 | 66 | 104 | 97 | 95 | 90
y? 17 | 22 | 171 | 176 | 41 | 46 | 147 | 152
3 24 | 19 | 174 | 169 | 48 | 43 | 150 | 145
y3 173 | 170 | 20 | 23 | 149 | 146 | 44 | 47
y2 172 | 175 | 21 | 18 | 148 | 151 | 45 | 42
Vertices | ud | w3 | wd | wi | 23 | 23 | 23 | 3
v3 129 | 134 | 59 | 64 | 105 | 112 | 85 | 84
v3 136 | 131 | 62 | 57 | 110 | 107 | 82 | 87
v3 61 | 58 | 132|135 | 83 | 86 | 108 | 109
v} 60 | 63 | 133|130 | 88 | 81 | 111 | 106
vt 177 | 182 | 11 | 16 | 153 | 158 | 35 | 40
vs 184 | 179 | 14 | 9 | 160 | 155 | 38 | 33
vs 13 | 10 | 180 | 183 | 37 | 34 | 156 | 159
i 12 | 15 [ 181 | 178 | 36 | 39 | 157 | 154
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Proposition 6. If R is an n-tuple magic (p, q)-rectangle, then the follow-
ing conditions hold:

(i) if n is odd, then p = q (mod 2);

(ii) if n is even, then p=q =0 (mod 2).

Proposition 6 allows the set of n-tuple magic rectangles to be divided
into sets of odd and even rectangles. We quickly see that an n-tuple magic
(2, 2)-rectangle does not exist, because the row sums and column sums of
any array are different.

Theorem 12. For any integer n > 1 and even integers p,q > 1, let
Ktﬂ be the tt copy of K, 4 for allt € {1,2,...,n}. A mapping f from
E(nkK,4) into positive integers given by

f(ufv;) = rf’j for every ulv 6 E(Kt )

is a d-magic labelling of nK, 4 if and only if R = (r ”)(rzj) oo (rily) s
an n-tuple magic (p, q)-rectangle.

Proof. Let Ut = {ul,ub, ..., p} and V! = {vt v}, ... ,vé} be partite sets
of K;q. Suppose that R is an n-tuple magic (p, q)-rectangle. It is easy
to see that the map f: E(nkK,,) — {1,2,...,npq} is bijective. For any
uf € Ut, we have

q q
npq+1) npq + 1 ¢
3 plutet) = 3ty = LD L g

j=1 j=1

and for any v§- € V!, we have

hS]

p
. p(npg+1)  npg+1
JCHE Zf(%v;) = er,j = 5 =—3 deg(v}).
1=1 3

i.e., fis a d-magic labelling of nk.
Now suppose that f is a d-magic labelling of nK, ,. For all 1 < i #
s < p, we have
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By (1), we have
q
1
=3t = et

J]=

—
<.
I
—

By (2), we have
p p
p(npg +1)
ZT;'?J - er,z - 2 :

Therefore, R is an n-tuple magic (p, ¢)-rectangle. Ol

According to Proposition 3 and Theorem 12, we obtain the following
result.

Proposition 7. Let p and q be even positive integers with (p,q) # (2,2).
Then an n-tuple magic (p, q)-rectangle exists.
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