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Abstract. In this paper we consider the ordered by inclusion

lattice Part(M) of all partitions of a countable set M . The lattice

Part(M) is a semigroup with respect to the operation ∧ which maps

two partitions to their greatest lower bound. We obtain necessary

and sufficiency conditions for isomorphism of two variants of the

semigroup Part(M).

Introduction

Let S be a semigroup and a ∈ S. A binary operation ∗a defined on
the set S by x ∗a y = xay (x, y ∈ S) is associative. This operation ∗a is
called a sandwich operation and the semigroup (S, ∗a) is called a variant

of S or a sandwich semigroup.

Lyapin initiated the study of variants in his monograph [1]. In that
work he studied transformation semigroups. Variants of other types of
semigroups were studied by various authors, see, for example, papers [2–7],
and Chapter 13 in [8] and the references therein.

Let M be a countable set. Let Part(M) be the set of all partitions of
the set M . On the set Part(M) we can define a natural partial order. For
any π1, π2 ∈ Part(M) we say that π1 6 π2 if and only if from the fact
that x, y ∈ M belong to the same block of the partition π1 it follows that
x and y belong to the same block of the partition π2.
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The set Part(M) is a complete lattice with respect to this partial
order, the zero element of this lattice is the partition such that each block
of it is a one-element block and the identity is the one-block, in which
case this block is M .

Let ∧ be the operation of taking the greatest lower bound of two
elements. The set Part(M) is a commutative idempotent semigroup with
respect to the operation ∧. Note that, the inequality ρ 6 τ holds if and
only if ρ ∧ τ = ρ.

Let S be a commutative idempotent semigroup with zero 0 and let
a ∈ S be a fixed element. For any element x from the interval S[0,a] =
{x ∈ S | a · x = x}, by Ωa(x) we denote the set {y ∈ S | a · y = x}. Let
the weight ωa(x) of an element x be defined by ωa(x) = |Ωa(x)|.

Theorem 1 ([10]). Let S be a commutative idempotent semigroup with

zero. Two variants (S, ∗a) and (S, ∗b) are isomorphic if and only if there

exists a weight-preserving isomorphism of intervals S[0,a] and S[0,b].

In this paper we study variants of the semigroup (Part(M),∧). The
main result of the paper is Theorem 16, it gives an isomorphism criterion
for variants of the semigroup (Part(M),∧).

1. Preliminaries

Let L be a partially ordered set. Recall that the height of L is the least
upper bound on the chain length in L. In a partially ordered set with zero
let the rank of an element a be the height of the interval [0, a] and denote
it by rank (a). An element of rank 1 is called an atom. For a partition
ρ ∈ Part(M) we will denote by a(ρ) the number of atoms in the interval
[0, ρ]. Let Partk denote the lattice of all partitions of a k-element set.

We call a singleton block of a partition a trivial block. A partition
ρ ∈ Part(M) has type (l1, l2, . . . , lk, . . . , l∞) if it contains li blocks of
cardinality i, for each positive integer i, and l∞ blocks of infinite cardinality.
We call a partition a k–uniblock if it has a single non-trivial block of size k

and we denote the type of k-uniblock by (l1, 0, . . . , 0, 1k, 0, . . . , 0). A block
is finite if k ∈ N. Note that any atom from the lattice Part(M) has type
(∞, 12, 0, . . . ,0), and it is 2–uniblock. We will denote by (l2, . . . ,lk, . . . , l∞)
the 1-reduced type of a partition.

A partition σ is a covering for a partition ρ if σ > ρ and there does not
exist any partition χ, such that σ > χ > ρ. In other words, if we divide
one block from σ into two smaller blocks, then we obtain the partition ρ.
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Let (Mi)i∈I be the collection of all pairwise different blocks of the
partition ρ then ρ is represented by

⋃

i∈I Mi.
The next lemma is obvious.

Lemma 2. Let ρ =
⋃

i∈I Mi be a partition of M . Let [0, ρ] be an interval

from the lattice Part(M). Then [0, ρ] is isomorphic to the Cartesian

product
∏

i∈I Part(Mi), such that Part(Mi) are lattices of partitions of

blocks Mi, i ∈ I.

Since for any k ∈ N the height of the lattice Partk is equal to k − 1
and taking into account Lemma 2, we get the next lemma.

Lemma 3. Let ρ be a partition of a n-element set A. Then the height of

the interval [0, ρ] is equal to n−m, where m is the number of blocks in

the partition ρ.

Lemma 4. Let ρ be a partition of rank k − 1. Which contains more than

one non-trivial block. Then the interval [0, ρ] and the lattice Partk have

different numbers of atoms.

Proof. Let M1, M2, . . . , Mn be all non-trivial blocks of the partition ρ

such that they have cardinalities m1, m2, . . . , mn, respectively. Hence by
Lemma 3, we have:

m1 +m2 + · · ·+mn = n+ k − 1. (1)

Suppose that the interval [0, ρ] and the lattice Partk have the same number
of atoms. Then

(

m1

2

)

+

(

m2

2

)

+ · · ·+

(

mn

2

)

=

(

k

2

)

. (2)

Using (1), we can rewrite equation (2) as follows

n
∑

i=1

m2
i = k2 − k +

n
∑

i=1

mi = k2 + n− 1. (3)

On the other hand, squaring both sides in (1), we get

n
∑

i=1

m2
i +

∑

i 6=j

mimj = n2 + k2 + 1 + 2nk − 2n− 2k. (4)

Combining (3) and (4), we obtain
∑

i 6=j

mimj = n2 + 2nk − 3n− 2k + 2. (5)
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Assume that mi = 1 + ai. Then

∑

i 6=j

mimj =
∑

i 6=j

(1 + ai)(1 + aj) = n2 − n+ 2(n− 1)
n
∑

i=1

ai +
∑

i 6=j

aiaj

= n2 − n+ 2(n− 1)(k − 1) +
∑

i 6=j

aiaj .

Finally, taking into account (5), we get

∑

i 6=j

aiaj = (n2 + 2nk − 3n− 2k + 2)− (n2 − n+ 2(n− 1)(k − 1)) = 0.

However, the sum
∑

i 6=j aiaj is positive by assumption. This contradiction
concludes the proof.

Lemma 5. Let partitions µ and σ be covering partitions for a (k + 1)–
uniblock ρ. If µ and σ have different types, then the intervals [0, µ] and

[0, σ] contain different numbers of k–rank partitions.

Proof. A covering partition for ρ has type (l1, . . . , 0, 1k+2, 0, . . . , 0) or
(t1, 12, 0, . . . , 0, 1k+1, 0, . . . , 0). Without restriction of generality we can
assume that µ has the first type and σ has the second type.

The partition µ is a (k + 2)–uniblock. Any k–rank partition from
the interval [0, µ] can be obtained by dividing one block into two smaller
blocks. Obviously, this can be done in 2k+1 − 1 ways.

The partition σ has two non–trivial blocks B and C such that B is
a 2–element block and C is a (k + 1)–element block. A k–rank partition
from the interval [0, σ] can be obtained by dividing one of these blocks
into two smaller blocks. The block B can be divided uniquely and there
are 2k − 1 ways to divide the block C into two smaller blocks. Hence in
this case we have 2k partitions of rank k.

For each positive integer k the inequality 2k+1 − 1 > 2k holds. This
completes the proof.

Recall from [9] that an isomorphism of a lattice L1 into a lattice L2 is
a bijection ϕ : L1 → L2 such that

a 6 b ⇔ ϕ(a) 6 ϕ(b) (6)

for all a, b ∈ L1. By the bijectivity of ϕ and (6) we have that ϕ maps the
greatest lower bound to the greatest lower bound.
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Hence for any a, b ∈ L1

ϕ(a ∧ b) = ϕ(a) ∧ ϕ(b). (7)

Conversely, since in any lattice the inequality a 6 b holds if a ∧ b = a, by
the bijectivity of ϕ and (7) it follows that

a 6 b ⇔ a ∧ b = a ⇔ ϕ(a) ∧ ϕ(b) = ϕ(a) ⇔ ϕ(a) 6 ϕ(b).

Thus a bijection ϕ : L1 → L2 is an isomorphism from the lattice
(L1,6) to the lattice (L2,6) if and only if ϕ is an isomorphism from the
semigroup (L1,∧) to the semigroup (L2,∧). In particular, further we will
consider the isomorphism of lattices of partitions in both meanings which
are introduced above.

The next lemma follows from the definition of the isomorphism of
lattices as partially ordered sets and the fact that the inverse mapping of
an isomorphism is an isomorphism.

Lemma 6. Let a mapping ϕ : Part(M) → Part(N) be an isomorphism

of lattices. Then the following holds

(a) rank(ϕ(ρ)) = rank(ρ);
(b) if ρ is an atom of the lattice Part(M), then ϕ(ρ) is an atom of the

lattice Part(N);
(c) a(ϕ(ρ)) = a(ρ);
(d) if a partition σ ∈ Part(M) is a covering partition for ρ, then the

partition ϕ(σ) is a covering partition for ϕ(ρ).

Corollary 7. Let a mapping ϕ : Part(M) → Part(N) ba an isomorphism

of lattices. If a partition ρ ∈ Part(M) is a finite k–uniblock, then ϕ(ρ) is

a finite k–uniblock.

Proof. Let a partition ρ be a k–uniblock, then the interval [0, ρ] is isomor-
phic to the lattice Partk. Moreover by Lemma 6 (a), rank(ϕ(ρ)) = rank(ρ).
If a partition ϕ(ρ) was not a k–uniblock, then by Lemma 4 the interval
[0, ϕ(ρ)] and the lattice Partk would have a different number of atoms.
But, by Lemma 6 (c), we have that a(ϕ(ρ)) = a(ρ). Hence ϕ(ρ) is a finite
k–uniblock.

Lemma 8. Let µ and σ be partitions of types (l1, l2, l3, . . . , l∞) and

(t1, t2, t3, . . . , t∞), respectively. If the interval [0, µ] is isomorphic to the

interval [0, σ], then, for each k ∈ N such that k > 2, we have lk = tk.
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Proof. Let µ be a partition of the form
⋃

i∈I Ai and σ be a partition of
the form

⋃

j∈J Bj . Let ϕ : [0, µ] → [0, σ] be an isomorphism of lattices
of partitions. Note that an isomorphism maps atoms to atoms and a
covering partition for τ ∈ [0, µ] to a covering partition for ϕ(τ). Moreover,
an isomorphism preserves ranks of elements.

For any k > 2 and any k–element block Ai from the partition µ, the
interval [0, µ] contains k–uniblock µAi

such that it has only one non-trivial
block Ai. Similarly, we define uniblocks σBj

for blocks of partition σ.

Since different blocks of a partition do not intersect, it follows that any
covering partition for k–uniblock µAi

is not a uniblock. Hence all covering
partitions for µAi

have a type (l1, 12, 0, . . . , 0, 1k, 0, . . . , 0). By Corollary 7
the partition ϕ(µAi

) is a k–uniblock. Then all covering partitions for ϕ(µAi
)

have type (p1, 12, 0, . . . , 0, 1k, 0, . . . , 0) or type (q1, 0, . . . , 0, 1k+1, 0, . . . , 0).

A partition of the last type is a (k + 1)–uniblock. By Lemma 6 and
Corollary 7 the preimage (inverse image) of this partition is a (k + 1)–
uniblock such that it is a covering partition for µAi

. Since the last statement
contradicts to the previously proved, it follows that all covering partitions
for ϕ(µAi

) have type (p1, 12, 0, . . . , 0, 1k, 0, . . . , 0). Hence ϕ(µAi
) has the

form σBj
for some k–element block Bj of the partition σ.

Thus the isomorphism ϕ induce an injective mapping from the set of
k–element blocks of the partition µ to the set of k–element blocks of the
partition σ. Since inverse mapping ϕ−1 is an isomorphism, we have that
for any k > 2 we have a bijection from k–element blocks of the partition
µ to k–element blocks of the partition σ.

Lemma 9. A partition µ contains an infinite block if and only if the

interval [0, µ] has an infinite increasing chain

0 < τ1 < τ2 < τ3 < · · · , (8)

such that, for any k, the partition τk has rank k, and the interval [0, τk]
contains

(

k+1
2

)

atoms.

Proof. Let A be an infinite block of the partition µ. Consider an infinite
increasing chain

{a0, a1} ⊂ {a0, a1, a2} ⊂ {a0, a1, a2, a3} ⊂ · · ·

of subsets Ak = {a0, a1, a2, . . . , ak} of the set A. For any subset Ak let
µAk

∈ [0, µ] be a (k + 1)–uniblock such that Ak is the non-trivial block
from this (k + 1)–uniblock. Since the number of atoms for the interval
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µAk
is equal to the number of atoms for the lattice Partk+1, we have that

a(µAk
) =

(

k+1
2

)

. Obviously, the partition µAk
has rank k. Hence the chain

0 < µA1
< µA2

< µA3
< · · ·

of partitions satisfies the conditions of the lemma.
Suppose the interval [0, µ] contains an infinite increasing chain (8)

such that it satisfies the conditions of the lemma. Since the rank of the
interval τk and the height of the lattice Partk+1 are equal, and, moreover,
[0, τk] and Partk+1 have the same number of atoms, then according to
Lemma 4, we see that the partition τk is a uniblock. By Ak we denote the
non-trivial block of the partition τk. Since partitions τk form a chain, we
have that blocks Ak also form a chain with respect to inclusion. Hence all
sets Ak must be contained in the same block A of the partition µ. Then,
since A contains an infinite set

⋃

k>1Ak, it follows that the block A is
infinite.

Lemma 10. Let µ be a partition of type (l1, l2, . . . , l∞), where k ∈ N.

Then l∞ = k if and only if there exist k different chains L1, . . . , Lk from

the interval [0, µ] such that these chains satisfy the following conditions:

(a) any chain Li is an infinite increasing chain and it has the form

0 < τ i1 < τ i2 < τ i3 < · · · ;
(b) for any partition τ it the equalities rank(τ it ) = t and a(τ it ) =

(

t+1
2

)

hold;

(c) if i 6= j and for partitions τki , τmj and for some partition ν from

[0, µ], the inequalities ν > τ
p
i and ν > τ

q
j hold, then ν is a finite

uniblock, and the number k of such chains is maximal possible.

Proof. Necessity. Let l∞ = k and A1, A2, · · · , Ak be all infinite blocks of
the partition µ. Similarly to the proof of Lemma 9, for any block Ai, we can
construct a chain 0 < τ i1 < τ i2 < τ i3 < · · · such that it satisfies conditions
(a) and (b).

Suppose that the inequalities ν > τ
p
i and ν > τ

q
j holds for partitions

τ
p
i , τ qj and ν from [0, µ], moreover, suppose that ν is a finite uniblock.

Partitions τpi and τ
q
j are finite uniblocks by the construction. Let Ai

p ⊂ Ai,

A
j
q ⊂ Aj and B be the non-trivial blocks of τpi , τ qj and ν. Since ν > τ

p
i and

ν > τ
q
j , it follows that Ai

p ⊂ B and A
j
q ⊂ B. Hence B has a non-empty

intersection with each of the blocks Ai and Aj such that Ai ∩ Aj = ∅.
On the other hand, by the inequality ν 6 µ and since ν is a uniblock, it
follows that B is contained in one of the blocks of the partition µ. This
contradiction shows that the constructed chains satisfy the condition (c).
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Suppose that there are k + 1 chains L1, . . . , Lk+1 such that each of
this chains satisfies conditions (a) and (b). By the proof of Lemma 9 all
partitions τmi are uniblocks. We denote the single non-trivial block of the
partition τmi by Ai

m. Then
⋃

n>1A
i
n is contained in some infinite block

of the partition µ. Hence there exist p, q and r such that
⋃

n>1A
p
n and

⋃

n>1A
q
n are contained in Ar. Let ν be a finite uniblock such that Ap

1 ∪A
q
1

is the single non-trivial block of this uniblock. Then ν ∈ [0, µ] and we
have ν > τ

p
1 and ν > τ

q
1 . Hence condition (c) is not satisfied for the chains

L1, . . . , Lk+1.
Sufficiency. Suppose that the k chains L1, . . . , Lk satisfy conditions

(a) – (c). Similarly to the proof of Lemma 9, for any chain Li we can
construct an infinite block Ai of the partition µ. By condition (c), it
follows that different blocks correspond to different chains. Hence µ has at
least k infinite blocks. On the other hand, if there are more then k infinite
blocks, then, similarly to above proof, we will be able to construct more
than k chains such that this chains satisfying conditions (a) – (c). Hence
l∞ = k.

Corollary 11. Let µ and σ be partitions of types (l1, l2, . . . , l∞) and

(t1, t2, . . . , t∞), respectively. If the interval [0, µ] is isomorphic to the in-

terval [0, σ], then l∞ = t∞.

Proof. Let ϕ : [0, µ] → [0, σ] be an isomorphism. If l∞ = k and k ∈ N,
then the interval [0, µ] contains k different chains L1, . . . , Lk such that
these chains satisfy the conditions of Lemma 10. Let ϕ(Li) be an infinite
increasing chain of the form 0 < ϕ(τ i1) < ϕ(τ i2) < ϕ(τ i3) < · · ·. Then, by
Corollary 7, the chains ϕ(L1), . . . , ϕ(Lk) in the interval [0, σ] also satisfy
the conditions of Lemma 10. Hence t∞ = k.

If l∞ = ∞, then the interval [0, µ] contains infinitely many chains L1,
L2, L3, . . . such that these chains satisfy conditions (a) – (c) of Lemma 10.
It follows that the chains ϕ(L1), ϕ(L2), ϕ(L3), . . . also satisfy the same
conditions, and thus t∞ = ∞.

2. The main result

Proposition 12. Let Part(M) be the lattice of partitions of a countable

set M . Two intervals [0, µ] and [0, σ] of the lattice Part(M) are isomorphic

if and only if the partitions µ and σ have the same 1-reduced type.

Proof. Necessity. Let [0, µ] and [0, σ] be two isomorphic intervals of the
lattice Part(M). Assume that µ and σ are partitions of types (l1, l2,. . .,l∞)
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and (t1, t2, . . . , t∞), respectively. Then, by Lemma 8, for any positive
integer k such that k > 2, we have lk = tk and, by Corollary 11, we have
l∞ = t∞. Hence µ and σ have the same type up to the number of trivial
blocks.

Sufficiency. Let µ and σ be partitions of types (l1,m2,m3, . . . ,m∞)
and (t1,m2,m3, . . . ,m∞) respectively. We denote by A and B the union
of all non-trivial blocks of partitions µ and σ, respectively.

Since 1-reduced types of the partitions µ and σ are equal, it follows
that there exists a bijection π : A → B which maps non-trivial blocks
of the partition µ to the non-trivial blocks of the partition σ. In other
words, for any block C = {c1, c2, . . .} of the partition µ the set π(C) =
{π(c1), π(c2), . . .} is a block of the partition σ. Any partition τ ∈ [0, µ]

has the form τ =
(

⋃

a∈M\A{a}
)

⋃
(
⋃

i∈I Mi

)

. It is easily seen that the

mapping

ϕ : [0, µ] → [0, σ], τ 7→





⋃

b∈M\B

{b}





⋃

(

⋃

i∈I

π(Mi)

)

is an isomorphism from the interval [0, µ] onto the interval [0, σ].

Corollary 13. If partitions µ and σ have the same type, then there exists

an isomorphism from the interval [0, µ] to the interval [0, σ] such that this

isomorphism is induced by a permutation on the set M .

Proof. Let π : A → B be a bijection from the proof of Proposition 12.
If partitions µ and σ have the same type, then π can be extended to a
permutation π′ on the set M .

Let us consider the commutative idempotent semigroup (Part(M),∧).
As defined in the introduction, for a fixed partition ρ ∈ Part(M) the
weight ωρ(χ) of a partition χ ∈ [0, ρ] is the number

ωρ(χ) = |{ξ ∈ Part(M) | ρ ∧ ξ = χ}|.

Proposition 14 (On weights of partitions). (a) If a partition ρ contains

infinitely many blocks, then the weight ωρ(χ) of each element χ ∈ [0, ρ] is

the continuum c.

(b) If a partition ρ contains a finite number n of blocks, then ωρ(ρ)
equals Bn, the n-th Bell number.



“adm-n3” — 2018/10/20 — 9:02 — page 17 — #23

O. Desiateryk, O. Ganyushkin 17

Proof. a) Let ρ be a partition of M of the form M =
⋃

i∈I Mi, where
I is infinite. Let χ ∈ [0, ρ] be of the form M =

⋃

i∈I

⋃

j∈Ji
Nij , where

Mi =
⋃

j∈Ji
Nij is a partition of a block Mi. Let us consider a partition ξ

such that unions of blocks Nij are blocks of ξ, moreover, no block of the
partition ξ contains two blocks Nij with the same first index. Since the
set I is countable, we see that the number of this partitions is c. On the
other hand, by the construction of ξ, we have that the intersection of any
block of the partition ξ with any block of the partition ρ is either empty
or it is a block of the form Nij that is a block of the partition χ. Hence
ρ ∧ ξ = χ. Thus the cardinality of the set {ξ ∈ Part(M) | ρ ∧ ξ = χ} is c,
and hence ω(χ) = c.

b) By the definition ωρ(ρ) = |{ξ ∈ Part(M) | ρ ∧ ξ = ρ}|. In other
words, ωρ(ρ) is equals to the cardinality of the set of partitions ξ from the
interval [ρ, 1]. Since the partition ρ contains n blocks it follows that [ρ, 1]
is isomorphic to the lattice Partn, then it has the cardinality Bn.

By Propositions 12 and 14, we have the next corollary.

Corollary 15. If intervals [0, µ] and [0, σ] are isomorphic and if weights

ωµ(µ), ωσ(σ) are the same, then one of the following holds:

(a) both µ and σ have infinite number of blocks;

(b) the partitions µ and σ have the same finite number of blocks and the

same type.

Theorem 16 (Isomorphism criterion for variants of the lattice of parti-
tions). Let PartM be the lattice of partitions of a countable set M . The

variants (PartM , ∗µ) and (PartM , ∗σ) are isomorphic if and only if one of

the following conditions holds:

(a) the partitions µ and σ both have infinitely many blocks and the same

1-reduced type;
(b) the partitions µ and σ both have finitely many blocks and the same

type.

Proof. From Theorem 1 it follows that the variants (Part(M), ∗µ) and
(Part(M), ∗σ) are isomorphic if and only if there exists a weight-preserving
isomorphism ϕ : [0, µ] → [0, σ]. Since µ and σ are the maximum elements
in the interval [0, µ] and [0, σ], respectively, Lemma 6 shows that ϕ maps
µ to σ. Moreover, by Proposition 14 and Corollary 15 we have that
ωµ(µ) = ωσ(σ).

By Proposition 14, we have that the variants (Part(M), ∗µ) and
(Part(M), ∗σ) are isomorphic if partitions µ and σ have a countable number
of blocks or the same finite number of blocks. Let us consider both cases.
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(1) The partitions µ and σ both have countable many blocks. By
Proposition 12 the intervals [0, µ] and [0, σ] are isomorphic if and only
if the partitions µ and σ have the same 1-reduced type. Moreover, by
Proposition 14 weights of all elements in these intervals are the continuum.
Thus any isomorphism from [0, µ] to [0, σ] preserves weights. In this case
the variants (Part(M), ∗µ) and (Part(M), ∗σ) are isomorphic if and only
if partitions µ and σ have the same 1-reduced type.

(2) The partitions µ and σ both have finitely many blocks. Since
these partitions have the same type, it follows that µ and σ have the
same number of trivial blocks. Then, by Corollary 13, there exists an
isomorphism from [0, µ] to [0, σ] such that this isomorphism is induced
by a permutation of the set M . Obviously, this isomorphism preserves
weights of elements. Hence, in this case, the variants (Part(M), ∗µ) and
(Part(M), ∗σ) are isomorphic if and only if the partitions µ and σ have
the same type.
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