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ABSTRACT. In this paper, we introduce the notion of §-Hopfian
modules. We give some properties of these modules and provide
a characterization of semisimple rings in terms of J-Hopfian modules
by proving that a ring R is semisimple if and only if every R-module
is 6-Hopfian. Also, we show that for a ring R, 6(R) = J(R) if and
only if for all R-modules, the conditions J-Hopfian and generalized
Hopfian are equivalent. Moreover, we prove that d-Hopfian prop-
erty is a Morita invariant. Further, the J-Hopficity of modules over
truncated polynomial and triangular matrix rings are considered.

Introduction

Throughout rings will have unity and modules will be unitary. Let M
denote a right module over a ring R. The study of modules by properties
of their endomorphisms has long been of interest. The concept of Hopfian
groups was introduced by Baumslag in 1963 (|2]). In [8], Hiremath general-
ized this concept to general module theoretic setting. A right R-module M
is called Hopfian, if any surjective endomorphism of M is an isomorphism.
Later, the dual concept of Hopfian modules (co-Hopfian modules) was
introduced. Hopfian and co-Hopfian modules (rings) have been investi-
gated by several authors [4], [7], [14], [15] and [17]. Direct finiteness (or
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Dedekind finiteness) evolved from the concepts of “finite projections” in
operator algebras and “finite idempotents” in Baer rings (see [5, p. 74]
and [9, p.10]). A module M is called Dedekind-finite, if X = 0 is the only
module for which M =2 M @ X. Equivalently, fg = 1 implies gf = 1 for
each f,g € End(M).

In [4], a proper generalization of Hopfian modules, called generalized
Hopfian modules, was given. A right R-module M is called generalized
Hopfian, if any surjective endomorphism of M has a small kernel. Recall
that a submodule N of a module M is called small, denoted by N <« M, if
N + X # M for all proper submodules X of M. In [4, Corollary 1.4], it is
shown that the concepts of Dedekind finite modules, Hopfian modules and
generalized Hopfian modules coincide for every (quasi-)projective module.

A submodule N of a module M is called d-small in M, written N <5 M,
provided N + K # M for any proper submodule K of M with M/K
singular (see [18]). In this paper, we introduce and study the notion of
6- Hopfian modules, which is a generalization of Hopfian modules and
generalized Hopfian modules. We replace “small kernel” by “d-small kernel”.
We discuss the following questions: When does a module have the property
that every of its surjective endomorphisms has a d-small kernel? Further,
how can J-Hopfian modules be used to characterize the base ring itself?

We summarize the contents of this article as follows. In Section 2,
we give some equivalent properties and characterizations of -Hopfian
modules. We characterize semisimple rings in terms of d-Hopfian modules
and show that a ring R is semisimple if and only if every R-module
is 0-Hopfian. We prove that for a ring R, §(R) = J(R) if and only if
for all R-modules, the conditions §-Hopfian and generalized Hopfian are
equivalent. It is shown that a direct sum of §-Hopfian modules and their
endomorphism rings need not have the same property. Also, we prove that
d-Hopfian property is a Morita invariant.

In Section 3, we consider the J-Hopfian property of Mz| (as an
R[z]-module) and M([z]/(z"*!) (as an R[x]/(z"*!)-module). We char-
acterize the structures of maximal submodules, essential submodules of
M(z]/(z™*1). Also, we show that

S(M[z]/(z"t)) = Rad(M) + Mz + Mx* + - + Ma™.

Moreover, we prove that if M[z]/(z""!) is 5-Hopfian as an R[z]/(x™+1)-
module, then M is §-Hopfian, but the converse is not true.

In Section 3, we characterize the generalized triangular matrix rings
which are right 6-Hopfian and prove that if M is an (S,R)-bimodule, and
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S M H M
T_<O R>,then(5(TT)—<O 5(RR>>,where,

H = 6(Ss) N{I: I is a maximal right ideal of S with anng(M) C I}.

At the end of the paper, some open problems are given.

We now fix our notations and state a few well known preliminary results
that will be needed. Let M be a right R-module. For submodules N and K
of M, N < K denotes that N is a submodule of K, Rad(M) denotes the
Jacobson radical of M and End(M) denotes the ring of endomorphisms
of M. By N <*° M, we mean that N is an essential submodule of M.
Also, for a module M and a set A, let M@ denote the direct sum of
|A| copies of M, where |A| is the cardinality of A. The symbols J(R),
M, (R) and T}, (R) denote the Jacobson radical of R, the full ring of n-by-n
matrices over R, and the ring of n-by-n upper triangular matrices over R,
respectively. As in [18], we define (M) to be

Rejp(M) =N{N < M: M/N € P},

where P is the class of all singular simple modules.
Recall that a ring R is said to satisfy the rank condition if a right
R-epimorphism R™ — R™ can exist only when m > n (see [10]).

Lemma 1 (|18, Lemma 1.2|). Let N be a submodule of M. The following
are equivalent:
(1) N <5 M.
(2) If X4+ N = M, then M = X ®Y for a projective semisimple
submodule Y with' Y C N;
(3) If X + N = M with M/X Goldie torsion, then X = M.

Lemma 2 ([18, Lemma 1.3]). Let M be a module.
(1) For submodules N, K,L of M with K C N, we have
(a) N <5 M if and only if K <5 M and N/K <5 M/K.
(b) N+ L <s M if and only if N <s M and L <5 M.
(2) If K <5 M and f: M — N is a homomorphism, then f(K) <5 N.
(3) Let K1 S M1 S M, K2 < Mg g M, and M = Ml@MQ. Then
K1 ® Ko <5 My ® My if and only if K1 <5 My and Ko <5 M.

Lemma 3 (|18, Lemma 1.5, Theorem 1.6]). Let R be a ring and M an
R-module. Then 6(M) = Y {L < M: L <5 M} and 6(R) equals the

intersection of all essential maximal right ideals of R.



S. E. Atani, M. KHORAMDEL, S. D. PISHHESARI 173

S

Lemma 4 ([3,5,10]). Let T = (0

M is an (S,R)-bimodule.
1) FEwery right ideal of T has the form LN such that I < Sg,
0 J
J < Rr and IM C N.

I N
(2) Let Q= <0 J
if N =M and either I =S and J is a mazimal right ideal of R or

J =R and I is a mazximal right ideal of S.
(3) The right ideal Q = (é ]j
N <% Mp, J <** Rp and I N (anng(M)) <®° anng(M).

Ag), where R and S are rings and

> . Then Q is a mazimal right ideal of T if and only
of T is essential in T if and only if

1. é4-Hopfian modules

Motivated by the definition of generalized Hopfian modules, we intro-
duce the key definition of this paper.

Definition 1. Let M be an R-module. We say that M is §-Hopfian (0H
for short) if any surjective R-endomorphism of M has a §-small kernel in
M.

The next result gives several equivalent conditions for a §H module.

Theorem 1. Let M be an R-module. The following statements are equiv-
alent:
(1) M is 6H;
(2) For any epimorphism f: M — M, if N <5 M, then f~Y(N) <5 M;
(3) If N < M and there is an R-epimorphism M /N — M, then N <s
M:;
(4) If M/N 1is nonzero and singular for some N < M, then f(N) # M,
for each R-surjective endomorphism f of M;
(5) There ezists a fully invariant §-small submodule N of M such that
M/N is 6H;
(6) If f: M — M & X is an epimorphism, where X is a module, then
X s projective and semisimple.

Proof. (1) = (2) Assume that f: M — M is an epimorphism and N <
M. Let f=Y(N) 4+ K = M for some K < M, where M/K is singular.
Hence N + f(K) = M. As M/K is singular and M/ f(K) is an image of
M/K, M/f(K) is singular. Hence N + f(K) = M and N <5 M, giving
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f(K) =M. So K + Ker(f) = M. Since M is ¢H, Ker(f) <5 M. Hence
M/K is singular implies that K = M. Thus f~}(N) <5 M.

(2) = (3) Let f: M/N — M be an epimorphism. It is clear that
N < (fn)~1(0), where 7: M — M/N is the canonical epimorphism. By
(2), (fm)~1(0) <5 M, Hence by Lemma 2, N <5 M.

(3) = (4) Let N be a proper submodule of M such that M/N is
singular and f a surjective endomorphism of M with f(N) = M. Then
N + Ker(f) = M. Hence Ker(f) <5 M by (3), and so N = M, a
contradiction.

(4) = (1) Let f: M — M be an epimorphism. If M = N + Ker(f),
with M/N is singular, then M = f(M) = f(N). Hence N = M by (4).
Thus Ker(f) <5 M.

(1) = (5) Take N = 0.

(5) = (1) Let M/N be 6H for some fully invariant d-small submodule
N of M. If f: M — M is an epimorphism, then f: M/N — M/N
with f(m + N) = f(m) + N (m € M) is an epimorphism. As M/N
is 6H, ker(f) <s M/N. Since (Ker(f) + N)/N C ker(f) <s M/N,
Ker(f) + N <5 M by Lemma 2. Hence Ker(f) <5 M by Lemma 2, and
so M is 6H.

(1) = (6) Let f: M — M@ X be an epimorphism, 7: M®X — M the
natural projection. It is clear that Ker(rf) = f~1(0® X). By (1), M is 6H.
Hence Ker(wf) <5 M. Since f is an epimorphism, f[f (0@ X)] = 0 X.
Hence by Lemma 2, 0@ X = f(Ker(rf)) <s M & X. Therefore X <5 X
by Lemma 2. So, by Lemma 1, X is projective and semisimple.

(6) = (1) Let f be a surjective endomorphism of M and Ker(f)+ L =
M for some L < M, where M /L is singular. Since

M/Ker(f)NL=ZKer(f)/(Ker(f)NL)® L/(Ker(f)NL)
>~ M/L& M/Ker(f)= M/L& M,

the epimorphism M — M @ M/L exists. By (6), M/L is semisimple and
projective. As M /L is singular, M /L = 0. Thus M = L and Ker(f) <5 M.
O

Corollary 1. Let M be a dH module, f € End(M) an epimorphism
and N < M. Then N <s M if and only if f(N) <s M if and only if

f~YN) <5 M. Moreover §(M) = EN<<5M f(N) = ZN<<5M f7HN).

Proposition 1. Let M be a 6H module. If N is a direct summand of M,
then N is 0H.
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Definition 2. Let M and N be two R-modules. M is called §-Hopfian (§H,
for short) relative to N, if for each epimorphism f: M — N, Ker(f) <5 M.

In view of the above definition, an R-module M is 0H if and only if
M is 0H relative to M.

In the following, we characterize the §-Hopfian modules in terms of
their direct summands and factor modules.

Proposition 2. Let M and N be two R-modules. Then the following
statements are equivalent:

(1) M is 6H relative to N;

(2) for each L <% M, L is 6H relative to N;

(3) for each L < M, M/L is §H relative to N.

Proof. (1) = (2) Let L <¥ M say M = L ® K, where K < M and
f: L — M an epimorphism. Let m: M — L be the natural projection.
Then fr: M — N is an epimorphism and so Ker(fr) <5 M by (1). It is
clear that Ker(fm) = Ker(f) ® K. Thus Ker(fr) = Ker(f) ® K <5 M.
By Lemma 2(3), Ker(f) <5 L.

(2) = (1) Take L = M.

(1) = (3) Let L < M and f: M/L — N be an epimorphism. Then
fm: M — N is an epimorphism, where 7: M — M/L is the natu-
ral homomorphism. As Ker(fr) = 7 '(Ker(f)) and Ker(fr) <5 M,
m(Ker(fr)) = Ker(f) <s M/L by Lemma 2. Therefore M/L is ¢H
relative to N.

(3) = (1) Take L = 0. O

In the following, we present some characterizations of projective dH
modules.

Theorem 2. Let M be a projective R-module. Then the following state-
ments are equivalent:
(1) M is 0H;
(2) If f € End(M) has a right inverse, then Ker(f) is semisimple and
projective;
(3) If f € End(M) has a right inverse in End(M), then Ker(f) <s M;
(4) If f € End(M) has a right inverse g, then (1 — gf)M <s M.

Proof. Let f € End(M) be an epimorphism. Then there exists g €
End(M) such that fg =1 € End(M). It is clear that Ker(f) = (1—gf)M
and M = Ker(f)® (gf)M.
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(1) = (2) Let f € End(M) have a right inverse in End(M). Then fg =
1 for some g € End(M). Thus f is an epimorphism and so Ker(f) <5 M.
As Ker(f) = (1 — gf)M is a direct summand of M, it is semisimple and
projective by Lemma 1.

(2) = (3) Let f € End(M) have a right inverse in End(M). Then by
(2), Ker(f) is semisimple and projective. We show that Ker(f) <5 M.
Let Ker(f) + L = M for some L < M. Since Ker(f) is semisimple,
(Ker(f)NL)® T = Ker(f) for some T < Ker(f). Therefore T'® L = M.
As T is semisimple and projective, Ker(f) <5 M, by Lemma 1.

(3) = (4) Let f € End(M) have a right inverse g. Hence by (3),
Ker(f) = (1 - gf)M <5 M.

(4) = (1) Let f € End(M) be an epimorphism. As M is projective,
f € End(M) has a right inverse g and Ker(f) = (1 — gf)M. Therefore by
(4), Ker(f) <5 M and M is 0H. O

Next, we characterize the class of rings R for which every (free) R-
module is dH.

Theorem 3. Let R be a ring. Then the following statements are equivalent:
(1) Every R-module is 0H;

(2) Every projective R-module is dH;

(3) Every free R-module is 6H;

(4)

4) R is semisimple.

Proof. (1) = (2) = (3) They are clear.

(3) = (4) By (3), R™ is 6H. As R™ = RN ¢ RN by Theorem 1,
RM) is semisimple. Hence R is semisimple.

(4) = (1) Let M be an R-module. Hence M is projective and for each
surjective endomorphism f of M, Ker(f) is semisimple and projective.
Hence by Theorem 2, M is §H. O

It is clear that every generalized Hopfian module is dH. The following
example shows that the converse is not true, in general. Also, it shows
that a dH module need not be Dedekind-finite.

Example 1. Let R be a semisimple ring. Then by Theorem 3, M = R
is a 6H R-module. Since RN = RN ¢ RM) and RN £ 0, M is not a gH
(Dedekind-finite) module (see [4, Corollary 1.4]).

The following lemma gives a source of examples of dH modules.

Lemma 5. Let M be a projective and semisimple R-module. Then M
15 OH.
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Proof. If M be a projective and semisimple R-module, then M <5 M,
by [12, Lemma 2.9] and so every surjective endomorphism of M has a
d-small kernel. ]

In the following, it is shown that every 0H R-module is gH if and only
if 6(R) = J(R).

Theorem 4. Let R be a ring. Then the following statements are equivalent:
(1) The class of H R-modules coincide with the class of gH R-modules;

(2) FEvery projective SH R-module is gH;

(3) Every mazimal right ideal of R is essential in Rp;

(4) R has no non-zero semisimple projective R-module;

(5) 6(R) = J(R).

Proof. (1) = (2) Is clear.

(2) = (3) Let m be a maximal right ideal of R. It is clear that either
m is essential in Rp or a direct summand of Rg. If m is a direct summand
of Rg, then M = (R/m)®™ is projective and semisimple. Hence M is 6H
by Lemma 5. Therefore by (2), M is gH. As M = M & M, M = 0, by
[4, Theorem 1.1|. This is a contradiction, and so m is essential in Rp.

(3) = (4) Is clear.

(4) = (1) Let M be a 6H module and f: M — M@ X an epimorphism.
Since M is dH, X is projective and semisimple by Theorem 1. Therefore
X =0, by (4), and so M is gH, by [4, Theorem 1.1].

(3) = (5) Is clear.

(5) = (3) Let R be a ring such that 6(R) = J(R). If m is a maximal
right ideal of R such that m <% Rp, say R = m @ m’ for some right
ideal m’ of R, then m’ C Soc(R) C §(R) C J(R) C m, a contradiction.
Therefore every maximal right ideal of R is essential in Rg. O

Lemma 6. Let R be a domain, which is not a division ring. Then §(R) =
J(R).

Proof. Let z € §(R). Then zR <5 R. We show that R < R. Let
xR+ K = R for some K < Rr. By Lemma 1, there exists Y < xR such
that Y @ K = R. As Risadomain, Y = Ror K = R. If Y = R, then
xR = R. Hence §(R) = R, therefore R is semisimple by [18, Corollary 1.7|.
Hence R is a division ring, a contradiction. Therefore K = R and so

rR < R. It implies that §(R) = J(R). O

A direct sum of §H modules need not be a éH module, as the following
example shows.
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Example 2. ([4, Remark 1.5], [10, Page 19, Exercise 18|) Let R be the
K-algebra generated over a field K by {s,t,u,v,w,x,y, z} with relations

st+uz=1, sy+uw=0, tr+vz=0 and ty+ow=1.

Then R is a domain which is not a division ring. Hence by Lemma 6,
§(R) = J(R). By [4, Remark 1.5, R is gH, however R? is not gH. Therefore
R is 6H, but R? is not §H.

The next result gives a condition that a direct sum of two dH modules
is 0H.

Proposition 3. Let My and My be two R-modules. If for everyi € {1,2},
M; is a fully invariant submodule of M = My & Mo, then M is 0H if and
only if M; is 0H for each i € {1,2}.

Proof. The necessity is clear from Proposition 1. For the sufficiency, let
f = (fij) be a surjective endomorphism of M, where f;; € Hom(M;, M;)
and ¢, j € {1, 2}. By assumption, Hom(M;, M;) = 0 for every ,j € {1, 2}
with i # j. Since f is an epimorphism, f;; is a surjective endomorphism
of M; for each i € {1,2}. As M; is 0H for each ¢ € {1,2}, Ker(fi;) <s M;.
Since Ker(f) = Ker(f11)®Ker(fa2), Ker(f) <s M by Lemma 2(3). Hence
M is 6H. O

In the following example, it is shown that the dH property of a module
dose not inherit by its endomorphism ring.

Example 3. Let M be an infinite dimensional vector space over a division
ring K. Then by Theorem 3, M is 6H. Since S = S? by [5, Example 5.16]
and S is not a semisimple ring, S = End(M) is not dH, by Theorem 1.

Theorem 5. Let M be a quasi-projective R-module. Then M is 0H if
and only if M/N is 6H for any small submodule N of M.

Proof. Let M be 6H, N < M and f: M/N — M/N be an epimorphism.
Since M is quasi-projective, there exists a homomorphism g: M — M
such that mg = fm, where m: M — M/N is the natural epimorphism. As
N <« M, g is an epimorphism, by [16, 19.2]. Therefore Ker(g) <5 M.
Since 7g = fm, g(N) < N and Ker(f) = (g7'(N))/N. As N < M (and
so N <5 M) and g is an epimorphism, g~ (V) <5 M, by Theorem 1(2).
Therefore Ker(f) <5 M/N, by Lemma 2. Therefore M/N is ¢H. The
converse is clear by taking N = 0. 0J
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Theorem 6. Let M be an R-module. If M satisfies a.c.c or d.c.c on non
d-small submodules, then M is a SH module.

Proof. Let M be a module that satisfies a.c.c. on non d-small submodules
and f: M — M an epimorphism. If Ker(f) is not d-small in M, then
Ker(f) C Ker(f?) C Ker(f3) C ... is an ascending chain of non §-small
submodules of M. Hence there exists n > 1 such that Ker(f") = Ker(f"*)
for each i > 1. By a usual argument, Ker(f) = 0, a contradiction. Therefore
Ker(f) <5 M and so M is §H.

Assume that M satisfies d.c.c on non d-small submodules and M is not
0H. Hence there exists an epimorphism f: M — M such that K = Ker(f)
is not a d-small submodule of M. Therefore then each submodule L of
M, which contains K, is not a d-small submodule of M. As M is not
0H, it is not Artinian. Hence M /K = M is not Artinian and there is a
descending chain Ly /K D Lo/K D L3/K D ... of submodules of M/K.
Thus Ly D Ly D Ly D ... is a descending chain of non §-small submodule
of M, a contradiction. O

Proposition 4. Let R be a ring. If R/§(R) is a semisimple ring, then
every finitely generated right R-module M is 6H.

Proof. Assume that R/0(R) is a semisimple ring, and M is a finitely
generated right R-module. Hence §(M) = 6(R)M by [18, Theorem 1.8|.
Therefore M /(M) is semisimple as an R/J(R) — module, and so it is
semisimple as R-module. Therefore M/§(M) is 6H, by Theorem 6. As M
is finitely generated, 6(M) <5 M, and so M is dH, by Theorem 1(5). O

The following result shows dH property is preserved under Morita
equivalences.

Theorem 7. d-Hopfian is a Morita invariant property.

Proof. Let R and S be Morita equivalent rings with inverse category
equivalences a: Mod-R — Mod-S, 8: Mod-S — Mod-R. Let M be
a 0H R-module. We show that a(M) is a dH S-module. Assume that
¢: (M) — a(M)@ X be an S-module epimorphism where X is a right S-
module. Since any category equivalence preserves epimorphisms and direct
sums, we have 5(¢): fa(M) — pa(M)®S(X), as an epimorphism of right
R-modules. As fa(M) = M, we have an epimorphism M — M & (X)) of
R-modules. Therefore 5(X) is semisimple and projective as an R-module,
by Theorem 1. Since any category equivalence preserves semisimple and
projective properties, X is semisimple and projective as an S-module.
Therefore a(M) is 0H. O
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Corollary 2. Let n > 2. Then the following statements are equivalent
for a ring R:

(1) Every n-generated R-module is 0H;

(2) Every cyclic M, (R)-module is 6H.

Proof. Let P = R" and S = End(P). Then, it is known that Hompg(P, —):
Nr — Homp(sPr, Ngr) defines a Morita equivalence between Mod-R and
Mod-S with the inverse equivalence — ®g P: Mg — M ® P. Moreover, if
N is an n-generated R-module, then Homp (P, N) is a cyclic S-module
and for any cyclic S-module M, M ®g P is an n-generated R-module. By
Theorem 7, a Morita equivalence preserves the dH property of modules.
Therefore, every cyclic S-module is dH if and only if every n-generated
R-module is dH. O

In the following, we characterize the rings R for which every finitely
generated free R-module is 0H.

Corollary 3. Let R be a ring. Then the following statements are equiva-
lent:

(1) Ewvery finitely generated free R-module is 6H;

(2) Every finitely generated projective R-module is 0H;

(3) My, (R) is 6H (as an My, (R)-module) for each n > 1.

Proof. (1) = (2) It is clear from Proposition 1.

(2) = (1) It is clear.

(1) & (3) Let n be a positive integer and S = M,,(R). By the proof
of Corollary 2 and Theorem 7, if R™ is 6H, then Hompg(R", R") is 0H as
an S-module. Conversely, if S is 0H as an S-module, then S ®¢ R™ is 0H
as an R-module. O

2. Polynomial extensions of d-Hopfian modules

Let M be an R-module. In this section we will briefly recall the
definitions of the modules M[X] and M([z]/(z"*!) from [13] and [17]. The
elements of M[X] are formal sums of the form my + myz + -+ + myz™
with m; € M and n € N. We denote this sum by Y1 mz'(moa? is to
be understood as the element of M). Addition is defined by adding the
corresponding coefficients. The R[z]-module structure is given by

k t k+t
i=0 =0

=0
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where m; = Ziﬂ-:p m;rj, ; € R and m; € M. Any nonzero element 3

of M|z] can be written uniquely as Zi:k mizt with 1 >k >0, m; € M,
my 7% 0 and m; # 0. In this case, we refer to k as the order of 3, [ as
the degree of 3, my, as the initial coefficient of 5, and m; as the leading
coefficient of 3.

Let n be any non-negative integer and

I+1 ={0} U{pB| 0+# B € R[z], order of § >n + 1}.

Then I,1; is a two-sided ideal of R[x]. The quotient ring R[z]/I,4+1 will
be called the truncated polynomial ring, truncated at degree n + 1. Since
R has an identity element, I,, 1 is the ideal generated by 2!, Even when
R does not have an identity element, we will denote the ring R[x]/I,,11
by R[z]/(x™*!). Any element of R[z]/(2"*!) can be uniquely written as
S _griat, withr; € R. Let Dy = {0YU{B3] 0 # B € M([x], order of 8 >
n+1}. Then D,,41 is an R[z]-submodule of M|z]. Since I),11 M[z] C Dy,
we can see that R[z]/(z""!) acts on M[z]/D,+1. We denote the module
M[z]/Dypy1 by M[z]/2" 1. The action of R[z]/(2"*1) on M[z]/x"T! is

given by
n n n
(Lot (i) = S
1=0 =0 =0

where m; = Ziﬂ-:p m;rj, 7j € R and m; € M. Any nonzero element /3
of M[x]/Dy+1 can be written uniquely as Y, m;z* with n > k > 0,
m; € M and my # 0. In this case, k is called the order of g and my the

initial coefficient of 5.

Proposition 5. Let M be an R-module. If M[x] is 6H as an R|x]-module,
then M is 0H.

Proof. Let M|x] be 6H as an R[z]-module and f a surjective endomor-
phism of M. Assume that Ker(f)+ K = M, for some K < M, with M /K
singular. Define f: M([z] — M([z] by fOZigmya?) =370, f(mg)a? Tt
is easy to see that f is a surjective endomorphism of M |[z]| and Ker(f) =
Ker(f)[x]. Hence Ker(f) + K[z] = M[z]. We show that M[z]/K|[z] is a
singular R[z]-module. Let 8 = mg+miz + - +mya™ € Mz]. As M/K
is singular, for each 0 < i < n, there exists I; <*° R such that m;I; C K.
Put I = NI ;. Therefore I <*° Rp and I C K[z]. We claim that
I[z] <*° R[z]. Let « = ro+71x+- - +mat € R[z], where t € N. If r # 0,
then ¢y € R exists such that 0 # rotg € I (because I <*° Rp). Now, if
ritg # 0, then there exists t; € R such that 0 # ritgt; € I. Continuing
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this process, we get r € R such that 0 # ar € I[z] and I[x] <*° R[z]. As
BI C Klz|, pI[z] C Klz]. Thus M[z]/K]|x] is singular. Since M|z] is 0H,
Ker(f) <s M[z]. Therefore K|x] = M|z] and so M = K. This implies
that Ker(f) <5 M and M is ¢H. O

The following example shows that the converse of proposition 5 is not
correct.

Example 4. Let R be a semisimple ring, where R[z] is not semisimple,
and M = RN, As M = M @ M and M[z] = M ®g R[], we have
Mx] =2 M|x] & M|[z]. Since R is semisimple, M is 6H, by Theorem 3. As
M z] is not semisimple, M|[z] is not dH, by Theorem 1.

Remark 1. Let M be an R-module and N a submodule of M[z]/(z""1)
as an R[z]/(z""!)-module, where n > 0. Define

N; = {0} U {initial coefficients of elements of order i in N}
for each 1 <i < n. By [17], N; < M and Ny C N; C--- C N,,.

Definition 3. Let M be an R-module and N a submodule of M [x]/(x"+1)
as an R[z]/(z""!)-module, where n > 0. Then we say that Ng C Ny C
-+ C N, is the adjoint chain of N.

In the following, we show that for each submodule N of M|[z]/(z"+!)
as an R[x]/(z"!)-module, its adjoint chain plays an important role to
find its properties. By the definition of N; (1 < ¢ < n), it is clear that V;
is uniquely determined by V.

Lemma 7. Let N be a submodule of M[x]/(z""1) as an R[z]/(x™*1)-
module, where n > 0. Then N <®5 M[z]/(x™*1) if and only if N, <
Mpg.

Proof. Let N <®° M[z]/(2™"1) and 0 # m € M. Then there exists ro +
ra+--+rpz™ € R[x]/(x™ 1) such that 0 # m(ro+rix+---+r,2") € N.
Let s be the order of m(ro+riz+- - -+r,a™). Hence 0 # mrsax® € Ny C N,.
Therefore N,, <°° M.

Conversely, assume that N, <®5 M and mgz® + mgy 25t + -+ +
mpa"™ € Mx]/(xz") of order s. Since ms # 0 and N,, <®° M, there
exists 7 € R such that 0 # mgr € N,. Therefore 0 # (mgz® + m3+1$8+1 +
<o+ mpa™) (ra™ %) = mgra™. Clearly mgraz™ € N (by the definition of
N,,). Therefore N <% M|x]/(z"1). O
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Lemma 8. Let N be a submodule of M[x]/(z™ ') as an R[z]/(2™*1)-
module (n > 0) and Ng C Ny C --- C N, the adjoint chain of N. Then
N is a mazimal submodule of M[z]/(z™*1) if and only if Ny is a mazimal
submodule of M and N; = M for each 1 < i < n. Moreover, if N is a
mazimal submodule of M[x]/(x"*1), then N = Nog+ Mz + -+ + Mza"™.

Proof. Let N be a maximal submodule of M|z]/(z"*1). Let Ny C N for
some N/ < M. Set

N' = {mo+miz +--- +mupz" € Mz]/(z™): mo € Nj,m; € M}.

It is clear that N’ < Mlx]/(z"!) and N C N’. Since N is maximal,
N = N’ or N' = M[z]/(z" ). Therefore Ny = N} or N}, = M, where N},
is the first component of the adjoint chain of N’. This implies that Ny is
maximal in M. Also, maximality of NV gives N; = M for each 1 < i < n.

Conversely, assume that Ny is a maximal submodule of M and N; = M
for each 1 < i < n. If there exists N’ S M[z]/(2™*1) such that N C N/,
then Ny C Njand N; C N/ foreach 1 < i < n,where NJ C N] C--- C N,
is the adjoint chain of N'. As N’ # M{[z]/(2""1), Ny = Njj and N/ = M
for each 1 < i < n. Therefore N = N’ and N is a maximal submodule of

Mlaz]/(z"*1).
Now, it is clear that, if N is a maximal submodule of M|z]/(z"*!) |
then N = Ny + Mx +---+ Mz". ]

Now, we are ready to determine the 6(M[z]/(z"*1)) for a module M.

Theorem 8. Let M be an R-module. Then §(M[z]/(z""1)) = Rad(M) +
Mz + Ma?+ -+ Ma™.

Proof. By Lemmas 7 and 8, every maximal submodule of M([z]/(z"*!) is
essential. Hence

(Mla]/(z"*1))
= ﬂ{NéM[x}/(m”H): (M|x]/(z" 1)) /N is simple and singular}
= ﬂ{N: N is maximal in M|z]/(z""1)}
=Rad(M) + Mz + Ma* + -+ + Ma". O

It is known that, if M is an R-module and K < M, then K[z]/(z" ") <
M[z]/(2™*1) as an R[x]/(z""!)-module, by [17, Lemma 2.1]. However, it
is not true for d-small submodules, as the following example shows.
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Example 5. Let F' be a field and R = T(F'), the ring of upper triangular

matrices over F. Then 6(Rg) = (8 11::) and J(R) = <8 1(;) Let

1 = <8 2) Then I <5 R, because I C 0(Rp) and §(Rr) <5 R.

However I[x]/(x™*1) is not a d-small right ideal of R[z]/(xz"*1), because
I[z]/(z") ¢ 6(R[z]/(2™*1)) = J(R) + Rz + - - - + Ra™, by Theorem 8.

In [17, Theorem 2.2], it is shown that, if M is a gH R-module, then
M(z]/(z"1) is gH as an R[x]/(2""!)-module, however it is not true that,
if M is a 6H R-module, then Mx]/(z"1) is 6H as an R[z]/(2™*!)-module,
as the following example shows.

Example 6. Let R be a semisimple ring and M = R®™. Then M
is H by Theorem 3. Define f: M — M by f((ri,ro,...,Tn,...)) =
(ro,73,...,7n,...). Then f is an epimorphism and

Ker(f) = {(r,0,0,0,...) € R™: r € R}.
It is clear that a: M[z]/(2™ ') — M[z]/(2™*!) defined by
a(Z mj:cj> = Zf(mj)xj
=0 =0
is an R[z]/(2"!)-epimorphism and Ker(a) = (Ker(a))[z]/(z"1). If
Ker(a) <5 M[z]/(z"1), then
Ker(a) C §(M[z]/(2")) = Rad(M) + Mz + Ma* + - + Ma"

by Theorem 8. But Rad(M) = 0 and Ker(a) ¢ 6(M|x]/(z™1)). Therefore
Ker(a) is not a §-small submodule of M|[z]/(z"*!) and M|x]/(z") is
not a 6H module.

Theorem 9. Let M be an R-module. If Mlx]/(z"*1) is 0H as an
R[z]/ (2" 1) -module, then M is 6H.

Proof. Assume that M[z]/(z"*1) is 6H as an R[z]/(z""!)-module and
f: M — M an R-epimorphism. Define a: M|[x]/(z" ") — M[z]/(2"*1)

by
a(Z mij) = Zf(mj)xj.
3=0 3=0
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Then « is an R[z]/(z""1)-epimorphism and Ker(a) = (Ker(f))[z]/(2™*1).
We show that Ker(f) <5 M. Let H be a submodule of M such that
Ker(f) + H = M with M/H singular. Hence

M(z]/(a"*1) = (Ker(f))[z]/(z"*1) + Hlz]/(@"T1).

We claim that % is singular as R[z]/(z""1)-module. Let

m=mg+miz+ -+ muz”™ € Mlz]/(z").

For each 0 < j < n, there exists I; <**® R such that m;I; C H. Put I =
N 1. Then I <*°% R and so I[z]/(2™"1) <®* R[z]/(2"™!), by Lemma 7.
As m;I C firfor each 0 < j < n, m(I[z]/(z"*1)) C H[z]/(x"*!). There-
fore % is singular. As Ker(a) <5 M[z]/(z"™), H[z]/(z"T!) =

M(z]/(z"*1), and so H = M. Therefore Ker(f) <5 M and M is §H. O

3. Triangular matrix extensions

Throughout this section 7" will denote a 2-by-2 generalized (or formal)

0 Aé), where R and S are rings and M is an

triangular matrix ring (

(S,R)-bimodule.

Proposition 6. Assume that M is an (S,R)-bimodule, and T = <§ Ag) .

Then 6(Tr) = (I(L)I 5&‘5}%)), where

H =6(Ss) N{I:1I is a mazimal right ideal of S with anng(M) C I}.

Proof. By Lemma 4, every maximal essential right ideal of T" has the form

(g ]\J4>7 where J is a maximal essential right ideal of R or é ]\];[ ’

where [ is a maximal right ideal with I N anng(M) <*° (anng(M))s.

Therefore §(Tr) = <IO{ 5(% )), where
R

K ={I < §: I is a maximal right ideal of S
with I Nanng(M) <®* (anng(M))s}.

We prove K = H. If anng(M) = 0, then it is clear that K = H = §(Sg).
Assume that anng(M) # 0. Let x € K and I be a maximal right ideal
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of S. If anng(M) C I, then anng(M) = I Nanng(M) < (anng(M))g.
Therefore x € K implies that x € I. If I <®° Sg, then I Nanng(M) <
(anng(M))s. Hence x € I. Therefore x € H and so K C H. For the reverse
of the inclusion, let x € H. Let I be a maximal right ideal of S such that
I Nanng(M) <*° (anng(M))s. If anng(M) C I, then = € I. Assume
that anng(M) ¢ I. Hence anng(M)+1 = S and so S/I = anng(M)/(IN
anng(M)). As anng(M) # 0 and anng(M )N 1 <*° (anng(M))g, we have
anng(M)NI # 0 and S/I is singular. Therefore I <** Sg. Thus x € 4(5)
gives x € I; hence K = H. O

The next result gives a characterization for the éH condition for a
2-by-2 generalized triangular matrix ring.

Theorem 10. Assume that M is an (S,R)-bimodule, and T = <§ Ag)

Then the following statements are equivalent:
(1) T is 6H.
(2) (i) Ss is 0H and if a € S has the right inverse b, then 1 —ba € I,
for each mazimal right ideal of R with anng(M) C I.
(ii) Ry is 6H.

Proof. (1) = (2) Let a € S have the right inverse b € S. Then

a O b 0 1 0 . . 1 0 b 0 a O
<O 1) <0 1>_<O 1>.SmceTls(5H, <0 1)—<0 1> <0 1>€

d(Tr), by Theorem 2. Thus
1—ba € 6(Ss)N{I: I is a maximal right ideal of S with anng(M) C I},

by Proposition 6. Hence Sg is 0H, by Theorem 2 and 1 — ba € I, for each
maximal right ideal of S with anng(M) C I.
(ii) It is similar to the proof of (i).

=i (5 7) (5 7) = (). whew v spa e

and m,n € M. Hence ab = 1 and pg = 1. By (1) and Proposition 6,

1 0 b n a m )
(0 1> — <O q) <O p> € 6(Tr). Hence by Theorem 2, Tp is 0H. [J

Theorem 11. Let T = ﬁ ]\é , where M is an (S,R)-bimodule. If M
s a faithful left R-module, then T is 6H if and only if Sg is Dedekind

finite and Ry 1s 6H.
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Proof. By Proposition 10, 6(Tr) = (}(;I 5(% >>, where
R

H =0(Sg)N{I:Iis a maximal right ideal of S with anng(M) C I}.

Since anng(M) =0, H = J(S). Let Tr be 6H. If ab =1 (a,b € S), then
similar to the proof of Theorem 10, 1 — ba € J(5), and so ba = 1. This
implies that S is Dedekind-finite. Also, from Theorem 10, Rg is H. The
converse can be concluded from Theorem 10. O

Since Mg is always a faithful left S-module for S = End(MEg), we have
the following corollary. It is known that an R-module M is Dedekind-finite
if and only if Endg(M) is a Dedekind-finite ring,.

Corollary 4. Let T = EndE)MR) ]g

M is Dedekind-finite and Rp is 0H.

). Then T is O0H iof and only if

Theorem 12. Assume R is a ring. Then the following are equivalent:
(1) Rg is Dedekind-finite;
(2) Tn(R) is 6H, for every positive integer n.

Proof. (1) = (2) We proceed by induction on n. Note that 1,41 (R) =
R M . .
<O Tn(R)>’ where M = (R, R,...,R) (n-tuple). For n = 2, if R is
Dedekind-finite, then T5(R) is 6H, by Theorem 11. Now, assume that R is
Dedekind-finite and 77,(R) is 0H. Hence by Theorem 11, 7,41 (R) is 0H.

(2) = (1) It is clear from Theorem 11. O

Theorem 13. Let R be a ring and U(R) the countably upper triangular
matriz ring over R. Then R is Dedekind-finite if and only if U(R) is 6H.

R M
0 U(R)
the result is clear from Theorem 11.

Proof. 1t is clear that U(R) = ( ), where M = (R, R,...). Now,

Motivated by [1, Proposition 2.14], we have the following theorem.

Theorem 14. Let sMpg be a nonzero (S, R)-bimodule such that MF; is
OH for allm > 1. Then either Mg is semisimple and projective or one of
the rings R or S satisfies the rank condition.



188 6-HOPFIAN MODULES

Proof. Assume that Mp, is not projective or semisimple. Let T = (g Aé)

M
and I = (8 0 ) Since Mp is not projective or semisimple, I is not

projective or semisimple. By hypothesis, we can conclude that I7. is 0H for
each n > 1. Now we will show that the ring 7T satisfies the rank condition.
Assume that T does not satisfy the rank condition and f: TP — TY is
an epimorphism with ¢ > p. Thus f(IP) = f(T?PI) = f(TP)] =T = 11.
Hence f: IP — IP @ 197" is an epimorphism. Since I is 0H for each n > 1,
197P ig semisimple and projective as T-module, by Theorem 1. But then
I should be projective and semisimple, which is not. Hence T satisfies
the rank condition. Therefore one of the rings R or S satisfies the rank
condition, by [6, Proposition 4.1]. O

Open Problems. (1) What is the structure of rings whose finitely gen-
erated right modules are dH?

(2) Does Theorem 5 hold for §-small submodules? (That is, let M be
a quasi-projective R-module. Then M is §H if and only if so is M /N for
any d-small submodule N of M).
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