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Abstract. In this paper, we introduce the notion of δ-Hopfian

modules. We give some properties of these modules and provide

a characterization of semisimple rings in terms of δ-Hopfian modules

by proving that a ring R is semisimple if and only if every R-module

is δ-Hopfian. Also, we show that for a ring R, δ(R) = J(R) if and

only if for all R-modules, the conditions δ-Hopfian and generalized

Hopfian are equivalent. Moreover, we prove that δ-Hopfian prop-

erty is a Morita invariant. Further, the δ-Hopficity of modules over

truncated polynomial and triangular matrix rings are considered.

Introduction

Throughout rings will have unity and modules will be unitary. Let M
denote a right module over a ring R. The study of modules by properties
of their endomorphisms has long been of interest. The concept of Hopfian
groups was introduced by Baumslag in 1963 ([2]). In [8], Hiremath general-
ized this concept to general module theoretic setting. A right R-module M
is called Hopfian, if any surjective endomorphism of M is an isomorphism.
Later, the dual concept of Hopfian modules (co-Hopfian modules) was
introduced. Hopfian and co-Hopfian modules (rings) have been investi-
gated by several authors [4], [7], [14], [15] and [17]. Direct finiteness (or
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Dedekind finiteness) evolved from the concepts of “finite projections” in
operator algebras and “finite idempotents” in Baer rings (see [5, p. 74]
and [9, p.10]). A module M is called Dedekind-finite, if X = 0 is the only
module for which M ∼= M ⊕X. Equivalently, fg = 1 implies gf = 1 for
each f, g ∈ End(M).

In [4], a proper generalization of Hopfian modules, called generalized
Hopfian modules, was given. A right R-module M is called generalized
Hopfian, if any surjective endomorphism of M has a small kernel. Recall
that a submodule N of a module M is called small, denoted by N ≪ M , if
N +X 6= M for all proper submodules X of M . In [4, Corollary 1.4], it is
shown that the concepts of Dedekind finite modules, Hopfian modules and
generalized Hopfian modules coincide for every (quasi-)projective module.

A submodule N of a module M is called δ-small in M, written N ≪δ M ,
provided N + K 6= M for any proper submodule K of M with M/K
singular (see [18]). In this paper, we introduce and study the notion of
δ- Hopfian modules, which is a generalization of Hopfian modules and
generalized Hopfian modules. We replace “small kernel” by “δ-small kernel”.
We discuss the following questions: When does a module have the property
that every of its surjective endomorphisms has a δ-small kernel? Further,
how can δ-Hopfian modules be used to characterize the base ring itself?

We summarize the contents of this article as follows. In Section 2,
we give some equivalent properties and characterizations of δ-Hopfian
modules. We characterize semisimple rings in terms of δ-Hopfian modules
and show that a ring R is semisimple if and only if every R-module
is δ-Hopfian. We prove that for a ring R, δ(R) = J(R) if and only if
for all R-modules, the conditions δ-Hopfian and generalized Hopfian are
equivalent. It is shown that a direct sum of δ-Hopfian modules and their
endomorphism rings need not have the same property. Also, we prove that
δ-Hopfian property is a Morita invariant.

In Section 3, we consider the δ-Hopfian property of M [x] (as an
R[x]-module) and M [x]/(xn+1) (as an R[x]/(xn+1)-module). We char-
acterize the structures of maximal submodules, essential submodules of
M [x]/(xn+1). Also, we show that

δ(M [x]/(xn+1)) = Rad(M) +Mx+Mx2 + · · ·+Mxn.

Moreover, we prove that if M [x]/(xn+1) is δ-Hopfian as an R[x]/(xn+1)-
module, then M is δ-Hopfian, but the converse is not true.

In Section 3, we characterize the generalized triangular matrix rings
which are right δ-Hopfian and prove that if M is an (S,R)-bimodule, and
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T =

(

S M
0 R

)

, then δ(TT ) =

(

H M
0 δ(RR)

)

, where,

H = δ(SS) ∩ {I : I is a maximal right ideal of S with annS(M) ⊆ I}.

At the end of the paper, some open problems are given.

We now fix our notations and state a few well known preliminary results
that will be needed. Let M be a right R-module. For submodules N and K
of M , N 6 K denotes that N is a submodule of K, Rad(M) denotes the
Jacobson radical of M and End(M) denotes the ring of endomorphisms
of M . By N 6ess M , we mean that N is an essential submodule of M .
Also, for a module M and a set Λ, let M (Λ) denote the direct sum of
|Λ| copies of M , where |Λ| is the cardinality of Λ. The symbols J(R),
Mn(R) and Tn(R) denote the Jacobson radical of R, the full ring of n-by-n
matrices over R, and the ring of n-by-n upper triangular matrices over R,
respectively. As in [18], we define δ(M) to be

RejP(M) = ∩{N 6 M : M/N ∈ P},

where P is the class of all singular simple modules.

Recall that a ring R is said to satisfy the rank condition if a right
R-epimorphism Rm → Rn can exist only when m > n (see [10]).

Lemma 1 ([18, Lemma 1.2]). Let N be a submodule of M . The following
are equivalent:

(1) N ≪δ M .
(2) If X + N = M , then M = X ⊕ Y for a projective semisimple

submodule Y with Y ⊆ N ;
(3) If X +N = M with M/X Goldie torsion, then X = M .

Lemma 2 ([18, Lemma 1.3]). Let M be a module.

(1) For submodules N,K,L of M with K ⊆ N , we have
(a) N ≪δ M if and only if K ≪δ M and N/K ≪δ M/K.
(b) N + L ≪δ M if and only if N ≪δ M and L ≪δ M .

(2) If K ≪δ M and f : M → N is a homomorphism, then f(K) ≪δ N .
(3) Let K1 6 M1 6 M , K2 6 M2 6 M , and M = M1 ⊕ M2. Then

K1 ⊕K2 ≪δ M1 ⊕M2 if and only if K1 ≪δ M1 and K2 ≪δ M2.

Lemma 3 ([18, Lemma 1.5, Theorem 1.6]). Let R be a ring and M an
R-module. Then δ(M) =

∑

{L 6 M : L ≪δ M} and δ(R) equals the
intersection of all essential maximal right ideals of R.



“adm-n4” — 2019/1/24 — 10:02 — page 173 — #23

S. E. Atani, M. Khoramdel, S. D. Pishhesari 173

Lemma 4 ([3, 5, 10]). Let T =

(

S M
0 R

)

, where R and S are rings and

M is an (S,R)-bimodule.

(1) Every right ideal of T has the form

(

I N
0 J

)

such that I 6 SS,

J 6 RR and IM ⊆ N .

(2) Let Q =

(

I N
0 J

)

. Then Q is a maximal right ideal of T if and only

if N = M and either I = S and J is a maximal right ideal of R or
J = R and I is a maximal right ideal of S.

(3) The right ideal Q =

(

I N
0 J

)

of T is essential in TT if and only if

N 6ess MR, J 6ess RR and I ∩ (annS(M)) 6ess annS(M).

1. δ-Hopfian modules

Motivated by the definition of generalized Hopfian modules, we intro-
duce the key definition of this paper.

Definition 1. Let M be an R-module. We say that M is δ-Hopfian (δH
for short) if any surjective R-endomorphism of M has a δ-small kernel in
M .

The next result gives several equivalent conditions for a δH module.

Theorem 1. Let M be an R-module. The following statements are equiv-
alent:

(1) M is δH;
(2) For any epimorphism f : M → M , if N ≪δ M , then f−1(N) ≪δ M ;
(3) If N 6 M and there is an R-epimorphism M/N → M , then N ≪δ

M ;
(4) If M/N is nonzero and singular for some N 6 M , then f(N) 6= M ,

for each R-surjective endomorphism f of M ;
(5) There exists a fully invariant δ-small submodule N of M such that

M/N is δH;
(6) If f : M → M ⊕X is an epimorphism, where X is a module, then

X is projective and semisimple.

Proof. (1) ⇒ (2) Assume that f : M → M is an epimorphism and N ≪δ

M . Let f−1(N) + K = M for some K 6 M , where M/K is singular.
Hence N + f(K) = M . As M/K is singular and M/f(K) is an image of
M/K, M/f(K) is singular. Hence N + f(K) = M and N ≪δ M , giving
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f(K) = M . So K +Ker(f) = M . Since M is δH, Ker(f) ≪δ M . Hence
M/K is singular implies that K = M . Thus f−1(N) ≪δ M .

(2) ⇒ (3) Let f : M/N → M be an epimorphism. It is clear that
N 6 (fπ)−1(0), where π : M → M/N is the canonical epimorphism. By
(2), (fπ)−1(0) ≪δ M , Hence by Lemma 2, N ≪δ M .

(3) ⇒ (4) Let N be a proper submodule of M such that M/N is
singular and f a surjective endomorphism of M with f(N) = M . Then
N + Ker(f) = M . Hence Ker(f) ≪δ M by (3), and so N = M , a
contradiction.

(4) ⇒ (1) Let f : M → M be an epimorphism. If M = N + Ker(f),
with M/N is singular, then M = f(M) = f(N). Hence N = M by (4).
Thus Ker(f) ≪δ M .

(1) ⇒ (5) Take N = 0.

(5) ⇒ (1) Let M/N be δH for some fully invariant δ-small submodule
N of M . If f : M → M is an epimorphism, then f̄ : M/N → M/N
with f̄(m + N) = f(m) + N (m ∈ M) is an epimorphism. As M/N
is δH, ker(f̄) ≪δ M/N . Since (Ker(f) + N)/N ⊆ ker(f̄) ≪δ M/N ,
Ker(f) +N ≪δ M by Lemma 2. Hence Ker(f) ≪δ M by Lemma 2, and
so M is δH.

(1) ⇒ (6) Let f : M → M⊕X be an epimorphism, π : M⊕X → M the
natural projection. It is clear that Ker(πf) = f−1(0⊕X). By (1), M is δH.
Hence Ker(πf) ≪δ M . Since f is an epimorphism, f [f−1(0⊕X)] = 0⊕X.
Hence by Lemma 2, 0⊕X = f(Ker(πf)) ≪δ M ⊕X. Therefore X ≪δ X
by Lemma 2. So, by Lemma 1, X is projective and semisimple.

(6) ⇒ (1) Let f be a surjective endomorphism of M and Ker(f)+L =
M for some L 6 M , where M/L is singular. Since

M/Ker(f) ∩ L = Ker(f)/(Ker(f) ∩ L)⊕ L/(Ker(f) ∩ L)
∼= M/L⊕M/Ker(f) ∼= M/L⊕M,

the epimorphism M → M ⊕M/L exists. By (6), M/L is semisimple and
projective. As M/L is singular,M/L = 0. Thus M = L and Ker(f) ≪δ M .

Corollary 1. Let M be a δH module, f ∈ End(M) an epimorphism
and N 6 M . Then N ≪δ M if and only if f(N) ≪δ M if and only if
f−1(N) ≪δ M . Moreover δ(M) =

∑

N≪δM
f(N) =

∑

N≪δM
f−1(N).

Proposition 1. Let M be a δH module. If N is a direct summand of M ,
then N is δH.
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Definition 2. Let M and N be two R-modules. M is called δ-Hopfian (δH,
for short) relative to N , if for each epimorphism f : M → N ,Ker(f) ≪δ M .

In view of the above definition, an R-module M is δH if and only if
M is δH relative to M .

In the following, we characterize the δ-Hopfian modules in terms of
their direct summands and factor modules.

Proposition 2. Let M and N be two R-modules. Then the following
statements are equivalent:

(1) M is δH relative to N ;
(2) for each L 6⊕ M , L is δH relative to N ;
(3) for each L 6 M , M/L is δH relative to N .

Proof. (1) ⇒ (2) Let L 6⊕ M say M = L ⊕ K, where K 6 M and
f : L → M an epimorphism. Let π : M → L be the natural projection.
Then fπ : M → N is an epimorphism and so Ker(fπ) ≪δ M by (1). It is
clear that Ker(fπ) = Ker(f) ⊕K. Thus Ker(fπ) = Ker(f) ⊕K ≪δ M .
By Lemma 2(3), Ker(f) ≪δ L.

(2) ⇒ (1) Take L = M .

(1) ⇒ (3) Let L 6 M and f : M/L → N be an epimorphism. Then
fπ : M → N is an epimorphism, where π : M → M/L is the natu-
ral homomorphism. As Ker(fπ) = π−1(Ker(f)) and Ker(fπ) ≪δ M ,
π(Ker(fπ)) = Ker(f) ≪δ M/L by Lemma 2. Therefore M/L is δH
relative to N .

(3) ⇒ (1) Take L = 0.

In the following, we present some characterizations of projective δH
modules.

Theorem 2. Let M be a projective R-module. Then the following state-
ments are equivalent:

(1) M is δH;
(2) If f ∈ End(M) has a right inverse, then Ker(f) is semisimple and

projective;
(3) If f ∈ End(M) has a right inverse in End(M), then Ker(f) ≪δ M ;
(4) If f ∈ End(M) has a right inverse g, then (1− gf)M ≪δ M .

Proof. Let f ∈ End(M) be an epimorphism. Then there exists g ∈
End(M) such that fg = 1 ∈ End(M). It is clear that Ker(f) = (1−gf)M
and M = Ker(f)⊕ (gf)M .
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(1) ⇒ (2) Let f ∈ End(M) have a right inverse in End(M). Then fg =
1 for some g ∈ End(M). Thus f is an epimorphism and so Ker(f) ≪δ M .
As Ker(f) = (1− gf)M is a direct summand of M , it is semisimple and
projective by Lemma 1.

(2) ⇒ (3) Let f ∈ End(M) have a right inverse in End(M). Then by
(2), Ker(f) is semisimple and projective. We show that Ker(f) ≪δ M .
Let Ker(f) + L = M for some L 6 M . Since Ker(f) is semisimple,
(Ker(f) ∩ L)⊕ T = Ker(f) for some T 6 Ker(f). Therefore T ⊕ L = M .
As T is semisimple and projective, Ker(f) ≪δ M , by Lemma 1.

(3) ⇒ (4) Let f ∈ End(M) have a right inverse g. Hence by (3),
Ker(f) = (1− gf)M ≪δ M .

(4) ⇒ (1) Let f ∈ End(M) be an epimorphism. As M is projective,
f ∈ End(M) has a right inverse g and Ker(f) = (1− gf)M . Therefore by
(4), Ker(f) ≪δ M and M is δH.

Next, we characterize the class of rings R for which every (free) R-
module is δH.

Theorem 3. Let R be a ring. Then the following statements are equivalent:
(1) Every R-module is δH;
(2) Every projective R-module is δH;
(3) Every free R-module is δH;
(4) R is semisimple.

Proof. (1) ⇒ (2) ⇒ (3) They are clear.
(3) ⇒ (4) By (3), R(N) is δH. As R(N) ∼= R(N) ⊕R(N), by Theorem 1,

R(N) is semisimple. Hence R is semisimple.
(4) ⇒ (1) Let M be an R-module. Hence M is projective and for each

surjective endomorphism f of M , Ker(f) is semisimple and projective.
Hence by Theorem 2, M is δH.

It is clear that every generalized Hopfian module is δH. The following
example shows that the converse is not true, in general. Also, it shows
that a δH module need not be Dedekind-finite.

Example 1. Let R be a semisimple ring. Then by Theorem 3, M = R(N)

is a δH R-module. Since R(N) ∼= R(N)⊕R(N) and R(N) 6= 0, M is not a gH
(Dedekind-finite) module (see [4, Corollary 1.4]).

The following lemma gives a source of examples of δH modules.

Lemma 5. Let M be a projective and semisimple R-module. Then M
is δH.
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Proof. If M be a projective and semisimple R-module, then M ≪δ M ,
by [12, Lemma 2.9] and so every surjective endomorphism of M has a
δ-small kernel.

In the following, it is shown that every δH R-module is gH if and only
if δ(R) = J(R).

Theorem 4. Let R be a ring. Then the following statements are equivalent:
(1) The class of δH R-modules coincide with the class of gH R-modules;
(2) Every projective δH R-module is gH;
(3) Every maximal right ideal of R is essential in RR;
(4) R has no non-zero semisimple projective R-module;
(5) δ(R) = J(R).

Proof. (1) ⇒ (2) Is clear.
(2) ⇒ (3) Let m be a maximal right ideal of R. It is clear that either

m is essential in RR or a direct summand of RR. If m is a direct summand
of RR, then M = (R/m)(N) is projective and semisimple. Hence M is δH
by Lemma 5. Therefore by (2), M is gH. As M ∼= M ⊕M , M = 0, by
[4, Theorem 1.1]. This is a contradiction, and so m is essential in RR.

(3) ⇒ (4) Is clear.
(4) ⇒ (1) Let M be a δH module and f : M → M⊕X an epimorphism.

Since M is δH, X is projective and semisimple by Theorem 1. Therefore
X = 0, by (4), and so M is gH, by [4, Theorem 1.1].

(3) ⇒ (5) Is clear.
(5) ⇒ (3) Let R be a ring such that δ(R) = J(R). If m is a maximal

right ideal of R such that m 6⊕ RR, say R = m ⊕ m
′ for some right

ideal m′ of R, then m
′ ⊆ Soc(R) ⊆ δ(R) ⊆ J(R) ⊆ m, a contradiction.

Therefore every maximal right ideal of R is essential in RR.

Lemma 6. Let R be a domain, which is not a division ring. Then δ(R) =
J(R).

Proof. Let x ∈ δ(R). Then xR ≪δ R. We show that xR ≪ R. Let
xR+K = R for some K 6 RR. By Lemma 1, there exists Y 6 xR such
that Y ⊕K = R. As R is a domain, Y = R or K = R. If Y = R, then
xR = R. Hence δ(R) = R, therefore R is semisimple by [18, Corollary 1.7].
Hence R is a division ring, a contradiction. Therefore K = R and so
xR ≪ R. It implies that δ(R) = J(R).

A direct sum of δH modules need not be a δH module, as the following
example shows.
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Example 2. ([4, Remark 1.5], [10, Page 19, Exercise 18]) Let R be the
K-algebra generated over a field K by {s, t, u, v, w, x, y, z} with relations

sx+ uz = 1, sy + uw = 0, tx+ vz = 0 and ty + vw = 1.

Then R is a domain which is not a division ring. Hence by Lemma 6,
δ(R) = J(R). By [4, Remark 1.5],R is gH, however R2 is not gH. Therefore
R is δH, but R2 is not δH.

The next result gives a condition that a direct sum of two δH modules
is δH.

Proposition 3. Let M1 and M2 be two R-modules. If for every i ∈ {1, 2},
Mi is a fully invariant submodule of M = M1 ⊕M2, then M is δH if and
only if Mi is δH for each i ∈ {1, 2}.

Proof. The necessity is clear from Proposition 1. For the sufficiency, let
f = (fij) be a surjective endomorphism of M , where fij ∈ Hom(Mi,Mj)
and i, j ∈ {1, 2}. By assumption, Hom(Mi,Mj) = 0 for every i, j ∈ {1, 2}
with i 6= j. Since f is an epimorphism, fii is a surjective endomorphism
of Mi for each i ∈ {1, 2}. As Mi is δH for each i ∈ {1, 2}, Ker(fii) ≪δ Mi.
Since Ker(f) = Ker(f11)⊕Ker(f22), Ker(f) ≪δ M by Lemma 2(3). Hence
M is δH.

In the following example, it is shown that the δH property of a module
dose not inherit by its endomorphism ring.

Example 3. Let M be an infinite dimensional vector space over a division
ring K. Then by Theorem 3, M is δH. Since S ∼= S2 by [5, Example 5.16]
and S is not a semisimple ring, S = End(M) is not δH, by Theorem 1.

Theorem 5. Let M be a quasi-projective R-module. Then M is δH if
and only if M/N is δH for any small submodule N of M .

Proof. Let M be δH, N 6 M and f : M/N → M/N be an epimorphism.
Since M is quasi-projective, there exists a homomorphism g : M → M
such that πg = fπ, where π : M → M/N is the natural epimorphism. As
N ≪ M , g is an epimorphism, by [16, 19.2]. Therefore Ker(g) ≪δ M .
Since πg = fπ, g(N) 6 N and Ker(f) = (g−1(N))/N . As N ≪ M (and
so N ≪δ M) and g is an epimorphism, g−1(N) ≪δ M , by Theorem 1(2).
Therefore Ker(f) ≪δ M/N , by Lemma 2. Therefore M/N is δH. The
converse is clear by taking N = 0.
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Theorem 6. Let M be an R-module. If M satisfies a.c.c or d.c.c on non
δ-small submodules, then M is a δH module.

Proof. Let M be a module that satisfies a.c.c. on non δ-small submodules
and f : M → M an epimorphism. If Ker(f) is not δ-small in M , then
Ker(f) ⊆ Ker(f2) ⊆ Ker(f3) ⊆ . . . is an ascending chain of non δ-small
submodules of M . Hence there exists n > 1 such that Ker(fn) = Ker(fn+i)
for each i > 1. By a usual argument,Ker(f) = 0, a contradiction. Therefore
Ker(f) ≪δ M and so M is δH.

Assume that M satisfies d.c.c on non δ-small submodules and M is not
δH. Hence there exists an epimorphism f : M → M such that K = Ker(f)
is not a δ-small submodule of M . Therefore then each submodule L of
M , which contains K, is not a δ-small submodule of M . As M is not
δH, it is not Artinian. Hence M/K ∼= M is not Artinian and there is a
descending chain L1/K ⊃ L2/K ⊃ L3/K ⊃ . . . of submodules of M/K.
Thus L1 ⊃ L2 ⊃ L3 ⊃ . . . is a descending chain of non δ-small submodule
of M , a contradiction.

Proposition 4. Let R be a ring. If R/δ(R) is a semisimple ring, then
every finitely generated right R-module M is δH.

Proof. Assume that R/δ(R) is a semisimple ring, and M is a finitely
generated right R-module. Hence δ(M) = δ(R)M by [18, Theorem 1.8].
Therefore M/δ(M) is semisimple as an R/δ(R) − module, and so it is
semisimple as R-module. Therefore M/δ(M) is δH, by Theorem 6. As M
is finitely generated, δ(M) ≪δ M , and so M is δH, by Theorem 1(5).

The following result shows δH property is preserved under Morita
equivalences.

Theorem 7. δ-Hopfian is a Morita invariant property.

Proof. Let R and S be Morita equivalent rings with inverse category
equivalences α : Mod -R → Mod-S, β : Mod -S → Mod -R. Let M be
a δH R-module. We show that α(M) is a δH S-module. Assume that
φ : α(M) → α(M)⊕X be an S-module epimorphism where X is a right S-
module. Since any category equivalence preserves epimorphisms and direct
sums, we have β(φ) : βα(M) → βα(M)⊕β(X), as an epimorphism of right
R-modules. As βα(M) ∼= M , we have an epimorphism M → M ⊕β(X) of
R-modules. Therefore β(X) is semisimple and projective as an R-module,
by Theorem 1. Since any category equivalence preserves semisimple and
projective properties, X is semisimple and projective as an S-module.
Therefore α(M) is δH.
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Corollary 2. Let n > 2. Then the following statements are equivalent
for a ring R:

(1) Every n-generated R-module is δH;
(2) Every cyclic Mn(R)-module is δH.

Proof. Let P = Rn and S = End(P ). Then, it is known that HomR(P,−):
NR → HomR(SPR, NR) defines a Morita equivalence between Mod-R and
Mod-S with the inverse equivalence −⊗S P : MS → M ⊗ P . Moreover, if
N is an n-generated R-module, then HomR(P,N) is a cyclic S-module
and for any cyclic S-module M , M ⊗S P is an n-generated R-module. By
Theorem 7, a Morita equivalence preserves the δH property of modules.
Therefore, every cyclic S-module is δH if and only if every n-generated
R-module is δH.

In the following, we characterize the rings R for which every finitely
generated free R-module is δH.

Corollary 3. Let R be a ring. Then the following statements are equiva-
lent:

(1) Every finitely generated free R-module is δH;
(2) Every finitely generated projective R-module is δH;
(3) Mn(R) is δH (as an Mn(R)-module) for each n > 1.

Proof. (1) ⇒ (2) It is clear from Proposition 1.
(2) ⇒ (1) It is clear.
(1) ⇔ (3) Let n be a positive integer and S = Mn(R). By the proof

of Corollary 2 and Theorem 7, if Rn is δH, then HomR(R
n, Rn) is δH as

an S-module. Conversely, if S is δH as an S-module, then S ⊗S Rn is δH
as an R-module.

2. Polynomial extensions of δ-Hopfian modules

Let M be an R-module. In this section we will briefly recall the
definitions of the modules M [X] and M [x]/(xn+1) from [13] and [17]. The
elements of M [X] are formal sums of the form m0 +m1x+ · · ·+mnx

n

with mi ∈ M and n ∈ N. We denote this sum by
∑n

i=0mix
i(m0x

0 is to
be understood as the element of M). Addition is defined by adding the
corresponding coefficients. The R[x]-module structure is given by

( k
∑

i=0

mix
i

)( t
∑

i=0

rix
i

)

=
k+t
∑

i=0

m′

ix
i,
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where m′
p =

∑

i+j=pmirj , rj ∈ R and mi ∈ M . Any nonzero element β

of M [x] can be written uniquely as
∑l

i=k mix
i with l > k > 0, mi ∈ M ,

mk 6= 0 and ml 6= 0. In this case, we refer to k as the order of β, l as
the degree of β, mk as the initial coefficient of β, and ml as the leading
coefficient of β.

Let n be any non-negative integer and

In+1 = {0} ∪ {β| 0 6= β ∈ R[x], order of β > n+ 1}.

Then In+1 is a two-sided ideal of R[x]. The quotient ring R[x]/In+1 will
be called the truncated polynomial ring, truncated at degree n+ 1. Since
R has an identity element, In+1 is the ideal generated by xn+1. Even when
R does not have an identity element, we will denote the ring R[x]/In+1

by R[x]/(xn+1). Any element of R[x]/(xn+1) can be uniquely written as
∑t

i=0 rix
i, with ri ∈ R. Let Dn+1 = {0}∪{β| 0 6= β ∈ M [x], order of β >

n+1}. Then Dn+1 is an R[x]-submodule of M [x]. Since In+1M [x] ⊆ Dn+1,
we can see that R[x]/(xn+1) acts on M [x]/Dn+1. We denote the module
M [x]/Dn+1 by M [x]/xn+1. The action of R[x]/(xn+1) on M [x]/xn+1 is
given by

( n
∑

i=0

mix
i

)( n
∑

i=0

rix
i

)

=
n
∑

i=0

m′

ix
i,

where m′
p =

∑

i+j=pmirj , rj ∈ R and mi ∈ M . Any nonzero element β

of M [x]/Dn+1 can be written uniquely as
∑n

i=k mix
i with n > k > 0,

mi ∈ M and mk 6= 0. In this case, k is called the order of β and mk the
initial coefficient of β.

Proposition 5. Let M be an R-module. If M [x] is δH as an R[x]-module,
then M is δH.

Proof. Let M [x] be δH as an R[x]-module and f a surjective endomor-
phism of M . Assume that Ker(f)+K = M , for some K 6 M , with M/K
singular. Define f̄ : M [x] → M [x] by f̄(

∑n
j=0mjx

j) =
∑n

j=0 f(mj)x
j . It

is easy to see that f̄ is a surjective endomorphism of M [x] and Ker(f̄) =
Ker(f)[x]. Hence Ker(f̄) +K[x] = M [x]. We show that M [x]/K[x] is a
singular R[x]-module. Let β = m0 +m1x+ · · ·+mnx

n ∈ M [x]. As M/K
is singular, for each 0 6 i 6 n, there exists Ii 6

ess R such that miIi ⊆ K.
Put I = ∩n

i=0Ii. Therefore I 6ess RR and βI ⊆ K[x]. We claim that
I[x] 6ess R[x]. Let α = r0+ r1x+ · · ·+ rtx

t ∈ R[x], where t ∈ N. If r0 6= 0,
then t0 ∈ R exists such that 0 6= r0t0 ∈ I (because I 6ess RR). Now, if
r1t0 6= 0, then there exists t1 ∈ R such that 0 6= r1t0t1 ∈ I. Continuing
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this process, we get r ∈ R such that 0 6= αr ∈ I[x] and I[x] 6ess R[x]. As
βI ⊆ K[x], βI[x] ⊆ K[x]. Thus M [x]/K[x] is singular. Since M [x] is δH,
Ker(f̄) ≪δ M [x]. Therefore K[x] = M [x] and so M = K. This implies
that Ker(f) ≪δ M and M is δH.

The following example shows that the converse of proposition 5 is not
correct.

Example 4. Let R be a semisimple ring, where R[x] is not semisimple,
and M = R(N). As M ∼= M ⊕ M and M [x] ∼= M ⊗R R[x], we have
M [x] ∼= M [x]⊕M [x]. Since R is semisimple, M is δH, by Theorem 3. As
M [x] is not semisimple, M [x] is not δH, by Theorem 1.

Remark 1. Let M be an R-module and N a submodule of M [x]/(xn+1)
as an R[x]/(xn+1)-module, where n > 0. Define

Ni = {0} ∪ {initial coefficients of elements of order i in N}

for each 1 6 i 6 n. By [17], Ni 6 M and N0 ⊆ N1 ⊆ · · · ⊆ Nn.

Definition 3. Let M be an R-module and N a submodule of M [x]/(xn+1)
as an R[x]/(xn+1)-module, where n > 0. Then we say that N0 ⊆ N1 ⊆
· · · ⊆ Nn is the adjoint chain of N .

In the following, we show that for each submodule N of M [x]/(xn+1)
as an R[x]/(xn+1)-module, its adjoint chain plays an important role to
find its properties. By the definition of Ni (1 6 i 6 n), it is clear that Ni

is uniquely determined by N .

Lemma 7. Let N be a submodule of M [x]/(xn+1) as an R[x]/(xn+1)-
module, where n > 0. Then N 6ess M [x]/(xn+1) if and only if Nn 6ess

MR.

Proof. Let N 6ess M [x]/(xn+1) and 0 6= m ∈ M . Then there exists r0 +
r1x+ · · ·+rnx

n ∈ R[x]/(xn+1) such that 0 6= m(r0+r1x+ · · ·+rnx
n) ∈ N .

Let s be the order of m(r0+r1x+· · ·+rnx
n). Hence 0 6= mrsx

s ∈ Ns ⊆ Nn.
Therefore Nn 6ess M .

Conversely, assume that Nn 6ess M and msx
s + ms+1x

s+1 + · · · +
mnx

n ∈ M [x]/(xn+1) of order s. Since ms 6= 0 and Nn 6ess M , there
exists r ∈ R such that 0 6= msr ∈ Nn. Therefore 0 6= (msx

s +ms+1x
s+1 +

· · · +mnx
n)(rxn−s) = msrx

n. Clearly msrx
n ∈ N (by the definition of

Nn). Therefore N 6ess M [x]/(xn+1).
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Lemma 8. Let N be a submodule of M [x]/(xn+1) as an R[x]/(xn+1)-
module (n > 0) and N0 ⊆ N1 ⊆ · · · ⊆ Nn the adjoint chain of N . Then
N is a maximal submodule of M [x]/(xn+1) if and only if N0 is a maximal
submodule of M and Ni = M for each 1 6 i 6 n. Moreover, if N is a
maximal submodule of M [x]/(xn+1), then N = N0 +Mx+ · · ·+Mxn.

Proof. Let N be a maximal submodule of M [x]/(xn+1). Let N0 ⊆ N ′
0 for

some N ′
0 6 M . Set

N ′ = {m0 +m1x+ · · ·+mnx
n ∈ M [x]/(xn+1) : m0 ∈ N ′

0,mi ∈ M}.

It is clear that N ′ 6 M [x]/(xn+1) and N ⊆ N ′. Since N is maximal,
N = N ′ or N ′ = M [x]/(xn+1). Therefore N0 = N ′

0 or N ′
0 = M , where N ′

0

is the first component of the adjoint chain of N ′. This implies that N0 is
maximal in M . Also, maximality of N gives Ni = M for each 1 6 i 6 n.

Conversely, assume that N0 is a maximal submodule of M and Ni = M
for each 1 6 i 6 n. If there exists N ′ � M [x]/(xn+1) such that N ⊆ N ′,
then N0 ⊆ N ′

0 and Ni ⊆ N ′
i for each 1 6 i 6 n, where N ′

0 ⊆ N ′
1 ⊆ · · · ⊆ N ′

n

is the adjoint chain of N ′. As N ′ 6= M [x]/(xn+1), N0 = N ′
0 and N ′

i = M
for each 1 6 i 6 n. Therefore N = N ′ and N is a maximal submodule of
M [x]/(xn+1).

Now, it is clear that, if N is a maximal submodule of M [x]/(xn+1) ,
then N = N0 +Mx+ · · ·+Mxn.

Now, we are ready to determine the δ(M [x]/(xn+1)) for a module M .

Theorem 8. Let M be an R-module. Then δ(M [x]/(xn+1)) = Rad(M) +
Mx+Mx2 + · · ·+Mxn.

Proof. By Lemmas 7 and 8, every maximal submodule of M [x]/(xn+1) is
essential. Hence

δ(M [x]/(xn+1))

=
⋂

{N6M [x]/(xn+1) : (M [x]/(xn+1))/N is simple and singular}

=
⋂

{N : N is maximal in M [x]/(xn+1)}

= Rad(M) +Mx+Mx2 + · · ·+Mxn.

It is known that, ifM is anR-module andK ≪ M , thenK[x]/(xn+1) ≪
M [x]/(xn+1) as an R[x]/(xn+1)-module, by [17, Lemma 2.1]. However, it
is not true for δ-small submodules, as the following example shows.
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Example 5. Let F be a field and R = T2(F ), the ring of upper triangular

matrices over F . Then δ(RR) =

(

0 F
0 F

)

and J(R) =

(

0 F
0 0

)

. Let

I =

(

0 0
0 F

)

. Then I ≪δ R, because I ⊆ δ(RR) and δ(RR) ≪δ R.

However I[x]/(xn+1) is not a δ-small right ideal of R[x]/(xn+1), because
I[x]/(xn+1) 6⊂ δ(R[x]/(xn+1)) = J(R) +Rx+ · · ·+Rxn, by Theorem 8.

In [17, Theorem 2.2], it is shown that, if M is a gH R-module, then
M [x]/(xn+1) is gH as an R[x]/(xn+1)-module, however it is not true that,
if M is a δH R-module, then M [x]/(xn+1) is δH as an R[x]/(xn+1)-module,
as the following example shows.

Example 6. Let R be a semisimple ring and M = R(N). Then M
is δH by Theorem 3. Define f : M → M by f((r1, r2, . . . , rn, . . . )) =
(r2, r3, . . . , rn, . . . ). Then f is an epimorphism and

Ker(f) = {(r, 0, 0, 0, . . . ) ∈ R(N) : r ∈ R}.

It is clear that α : M [x]/(xn+1) → M [x]/(xn+1) defined by

α

( n
∑

j=0

mjx
j

)

=
n
∑

j=0

f(mj)x
j

is an R[x]/(xn+1)-epimorphism and Ker(α) = (Ker(α))[x]/(xn+1). If
Ker(α) ≪δ M [x]/(xn+1), then

Ker(α) ⊆ δ(M [x]/(xn+1)) = Rad(M) +Mx+Mx2 + · · ·+Mxn

by Theorem 8. But Rad(M) = 0 and Ker(α) 6⊂ δ(M [x]/(xn+1)). Therefore
Ker(α) is not a δ-small submodule of M [x]/(xn+1) and M [x]/(xn+1) is
not a δH module.

Theorem 9. Let M be an R-module. If M [x]/(xn+1) is δH as an
R[x]/(xn+1)-module, then M is δH.

Proof. Assume that M [x]/(xn+1) is δH as an R[x]/(xn+1)-module and
f : M → M an R-epimorphism. Define α : M [x]/(xn+1) → M [x]/(xn+1)
by

α

( n
∑

j=0

mjx
j

)

=
n
∑

j=0

f(mj)x
j .
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Then α is an R[x]/(xn+1)-epimorphism and Ker(α) = (Ker(f))[x]/(xn+1).
We show that Ker(f) ≪δ M . Let H be a submodule of M such that
Ker(f) +H = M with M/H singular. Hence

M [x]/(xn+1) = (Ker(f))[x]/(xn+1) +H[x]/(xn+1).

We claim that M [x]/(xn+1)
H[x]/(xn+1)

is singular as R[x]/(xn+1)-module. Let

m = m0 +m1x+ · · ·+mnx
n ∈ M [x]/(xn+1).

For each 0 6 j 6 n, there exists Ij 6
ess R such that mjIj ⊆ H. Put I =

∩n
i=1Ij . Then I 6ess R and so I[x]/(xn+1) 6ess R[x]/(xn+1), by Lemma 7.

As mjI ⊆ H for each 0 6 j 6 n, m(I[x]/(xn+1)) ⊆ H[x]/(xn+1). There-

fore M [x]/(xn+1)
H[x]/(xn+1)

is singular. As Ker(α) ≪δ M [x]/(xn+1), H[x]/(xn+1) =

M [x]/(xn+1), and so H = M . Therefore Ker(f) ≪δ M and M is δH.

3. Triangular matrix extensions

Throughout this section T will denote a 2-by-2 generalized (or formal)

triangular matrix ring

(

S M
0 R

)

, where R and S are rings and M is an

(S,R)-bimodule.

Proposition 6. Assume that M is an (S,R)-bimodule, and T =

(

S M
0 R

)

.

Then δ(TT ) =

(

H M
0 δ(RR)

)

, where

H = δ(SS) ∩ {I : I is a maximal right ideal of S with annS(M) ⊆ I}.

Proof. By Lemma 4, every maximal essential right ideal of T has the form
(

S M
0 J

)

, where J is a maximal essential right ideal of R or

(

I M
0 R

)

,

where I is a maximal right ideal with I ∩ annS(M) 6ess (annS(M))S .

Therefore δ(TT ) =

(

K M
0 δ(RR)

)

, where

K = {I 6 S : I is a maximal right ideal of S

with I ∩ annS(M) 6ess (annS(M))S}.

We prove K = H. If annS(M) = 0, then it is clear that K = H = δ(SS).
Assume that annS(M) 6= 0. Let x ∈ K and I be a maximal right ideal
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of S. If annS(M) ⊆ I, then annS(M) = I ∩ annS(M) 6ess (annS(M))S .
Therefore x ∈ K implies that x ∈ I. If I 6ess SS , then I ∩ annS(M) 6ess

(annS(M))S . Hence x ∈ I. Therefore x ∈ H and so K ⊆ H . For the reverse
of the inclusion, let x ∈ H . Let I be a maximal right ideal of S such that
I ∩ annS(M) 6ess (annS(M))S . If annS(M) ⊆ I, then x ∈ I. Assume
that annS(M) 6⊂ I. Hence annS(M)+ I = S and so S/I ∼= annS(M)/(I ∩
annS(M)). As annS(M) 6= 0 and annS(M)∩ I 6ess (annS(M))S , we have
annS(M)∩ I 6= 0 and S/I is singular. Therefore I 6ess SS . Thus x ∈ δ(S)
gives x ∈ I; hence K = H.

The next result gives a characterization for the δH condition for a
2-by-2 generalized triangular matrix ring.

Theorem 10. Assume that M is an (S,R)-bimodule, and T =

(

S M
0 R

)

.

Then the following statements are equivalent:

(1) TT is δH.
(2) (i) SS is δH and if a ∈ S has the right inverse b, then 1− ba ∈ I,

for each maximal right ideal of R with annS(M) ⊆ I.
(ii) RR is δH.

Proof. (1) ⇒ (2) Let a ∈ S have the right inverse b ∈ S. Then
(

a 0
0 1

)(

b 0
0 1

)

=

(

1 0
0 1

)

. Since T is δH,

(

1 0
0 1

)

−

(

b 0
0 1

)(

a 0
0 1

)

∈

δ(TT ), by Theorem 2. Thus

1−ba ∈ δ(SS)∩{I : I is a maximal right ideal of S with annS(M) ⊆ I},

by Proposition 6. Hence SS is δH, by Theorem 2 and 1− ba ∈ I, for each
maximal right ideal of S with annS(M) ⊆ I.

(ii) It is similar to the proof of (i).

(2) ⇒ (1) Let

(

a m
0 p

)(

b n
0 q

)

=

(

1 0
0 1

)

, where a, b ∈ S, p, q ∈ R

and m,n ∈ M . Hence ab = 1 and pq = 1. By (1) and Proposition 6,
(

1 0
0 1

)

−

(

b n
0 q

)(

a m
0 p

)

∈ δ(TT ). Hence by Theorem 2, TT is δH.

Theorem 11. Let T =

(

S M
0 R

)

, where M is an (S,R)-bimodule. If M

is a faithful left R-module, then TT is δH if and only if SS is Dedekind
finite and RR is δH.
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Proof. By Proposition 10, δ(TT ) =

(

H M
0 δ(RR)

)

, where

H = δ(SS) ∩ {I : I is a maximal right ideal of S with annS(M) ⊆ I}.

Since annS(M) = 0, H = J(S). Let TT be δH. If ab = 1 (a, b ∈ S), then
similar to the proof of Theorem 10, 1− ba ∈ J(S), and so ba = 1. This
implies that S is Dedekind-finite. Also, from Theorem 10, RR is δH. The
converse can be concluded from Theorem 10.

Since MR is always a faithful left S-module for S = End(MR), we have
the following corollary. It is known that an R-module M is Dedekind-finite
if and only if EndR(M) is a Dedekind-finite ring.

Corollary 4. Let T =

(

End(MR) M
0 R

)

. Then TT is δH if and only if

M is Dedekind-finite and RR is δH.

Theorem 12. Assume R is a ring. Then the following are equivalent:

(1) RR is Dedekind-finite;
(2) Tn(R) is δH, for every positive integer n.

Proof. (1) ⇒ (2) We proceed by induction on n. Note that Tn+1(R) =
(

R M
0 Tn(R)

)

, where M = (R,R, . . . , R) (n-tuple). For n = 2, if R is

Dedekind-finite, then T2(R) is δH, by Theorem 11. Now, assume that R is
Dedekind-finite and Tn(R) is δH. Hence by Theorem 11, Tn+1(R) is δH.

(2) ⇒ (1) It is clear from Theorem 11.

Theorem 13. Let R be a ring and U(R) the countably upper triangular
matrix ring over R. Then R is Dedekind-finite if and only if U(R) is δH.

Proof. It is clear that U(R) ∼=

(

R M
0 U(R)

)

, where M = (R,R, . . . ). Now,

the result is clear from Theorem 11.

Motivated by [1, Proposition 2.14], we have the following theorem.

Theorem 14. Let SMR be a nonzero (S,R)-bimodule such that Mn
R is

δH for all n > 1. Then either MR is semisimple and projective or one of
the rings R or S satisfies the rank condition.
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Proof. Assume that MR is not projective or semisimple. Let T =

(

S M
0 R

)

and I =

(

0 M
0 0

)

. Since MR is not projective or semisimple, IT is not

projective or semisimple. By hypothesis, we can conclude that InT is δH for
each n > 1. Now we will show that the ring T satisfies the rank condition.
Assume that T does not satisfy the rank condition and f : T p → T q is
an epimorphism with q > p. Thus f(Ip) = f(T pI) = f(T p)I = T qI = Iq.
Hence f : Ip → Ip⊕Iq−p is an epimorphism. Since InT is δH for each n > 1,
Iq−p is semisimple and projective as T -module, by Theorem 1. But then
I should be projective and semisimple, which is not. Hence T satisfies
the rank condition. Therefore one of the rings R or S satisfies the rank
condition, by [6, Proposition 4.1].

Open Problems. (1) What is the structure of rings whose finitely gen-
erated right modules are δH?

(2) Does Theorem 5 hold for δ-small submodules? (That is, let M be
a quasi-projective R-module. Then M is δH if and only if so is M/N for
any δ-small submodule N of M).
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