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Abstract. We develop the theory dg algebras with enough
idempotents and their dg modules and show their equivalence with
that of small dg categories and their dg modules. We introduce the
concept of dg adjunction and show that the classical covariant tensor-
Hom and contravariant Hom-Hom adjunctions of modules over
associative unital algebras are extended as dg adjunctions between
categories of dg bimodules. The corresponding adjunctions of the
associated triangulated functors are studied, and we investigate
when they are one-sided parts of bifunctors which are triangulated
on both variables. We finally show that, for a dg algebra with enough
idempotents, the perfect left and right derived categories are dual
to each other.

Introduction

All throughout this paper, we fix a commutative ground ring K
with unit and the term ‘category’ will mean ‘K-linear category’, unless
otherwise specified, and all functors will be K-linear.
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Small differential graded (dg) categories and their dg modules have
played a fundamental role in Mathematics for a long time. In the 70’s and
80’s of last century, they were the major tool to study matrix problems re-
lated to representation theory of algebras (see [13], [6], [3], [4],. . . ), which,
among other things, led to Drozd’s proof of the tame-wild dichotomy theo-
rem (see [3] and [4], Theorem 2). In modern times, their main importance
comes from a fundamental result of Keller (see [10, Theorem 4.3]) which
states that any compactly generated algebraic triangulated category is
equivalent to the derived category of a small dg category. That impor-
tance grew even bigger when Tabuada (see [21]) showed that the category
Dgcat of small dg categories admits a model structure on which the
weak equivalences are the so-called quasi-equivalences and Toën (see [22])
studied in depth the associated homotopy category Ho(Dgcat), showing
in particular that it had an internal Hom and deriving several applications
of this fact to Homotopy Theory and Algebraic Geometry.

By definition, a small dg category is a small category with a grading and
a differential satisfying certain conditions (see the details in next section).
But from the time of Gabriel’s thesis (see [5]) one knows that small
categories may be viewed as algebras with enough idempotents (or rings
with several objects in the spirit of [14]), and vice versa. Furthermore, if A
is such a small category then the category [Aop,Mod−K] of contravariant
functors is equivalent to Mod−A, the category of unitary right A-modules,
when A is viewed as an algebra with enough idempotents. It is natural
to expect that the mentioned one-to-one correspondence extends to the
dg setting. That requires the development of a theory of dg algebras
with enough idempotents and their dg modules. This development is, in
some sense, a demand of a part of the mathematical community. Indeed,
apart from the unavoidable technicalities concerning the use of signs, the
language of small dg categories and their dg modules is very technical
and elusive for many people and, although the terminology is sometimes
similar, concepts as dg modules or dg bimodules over small dg categories
are intuitively far from the traditional concepts of module or bimodule
over an associative algebra. This leads some mathematicians to avoid
the topic and others to present results about small dg categories and
their derived categories only in terms of dg algebras (equivalently, dg
categories with just one object). This demand is the main motivation
for these notes. They were initially thought as an appendix to a joint
paper with Alexander Zimmermann (see [20]), where we needed to use
some adjunctions between categories of dg bimodules, which we could not
find explicit in the literature of small dg categories and which became
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excessively unintuitive in that language (see [18]). As the notes grew
longer than expected, we decided to offer them as a separated paper.
Since a thorough development of the topic is out of question, we have
concentrated on the basic aspects, with emphasis on those needed for [20],
leaving aside other important features of the theory.

Our goal in the paper is to develop the basics of the theory of dg
algebras with enough idempotents and their dg modules, to show its
equivalence with the theory of small dg categories and their dg modules,
and to revisit dg functors between categories of dg modules and their
derived versions. In particular, we construct explicitly the correspondents
in the new setting of the covariant tensor-Hom and the contravariant
Hom-Hom adjunctions of (bi)module categories over algebras with unit,
together with their derived versions. Since the notes are specially aimed
at making the dg world more accessible to people that work with algebras
and modules in the classical way, even at the cost of an excessive length,
we have taken care in checking essentially all the details in proofs. This
care has been special on what concerns signs in equations, which are most
elusive for beginners and very important in the dg context, but whose
associated calculations are rarely found explicit in the literature.

The organization of the paper goes as follows. In Section 1 we recall
the definitions of dg category (not necessarily small) and dg functor.
In Section 2 we define what a dg algebra with enough idempotents is
and give its category Dg − A of right dg modules, proving in Section 3
that there is a one-to-one correspondence between small dg categories
and dg algebras with enough idempotents, and showing a dg equivalence
between Dg−A and the category CdgA of dg modules over the associated
small dg category (see Theorem 3.1). In Sections 4 and 5 we define
left dg modules and dg bimodules, respectively, and show that their
corresponding categories can be realized as categories of right dg modules.
In Section 6 we introduce the homotopy and derived category of a dg
algebra with enough idempotents, and state the corresponding version of
the mentioned Keller’s theorem (see Corollary 6.11). In Section 7 we study
derived functors of dg functors between categories of dg modules over
algebras with enough idempotents and study when they appear as ‘one-
sided part’ of a bifunctor which is triangulated on both variables. In our
approach, a fundamental role is played by the concept of dg adjunction
(see Definition 7.7). In section 8 we define the correspondents of the
classical tensor and Hom bifunctors. Concretely, we show that if A, B and
C are dg algebras with enough idempotents, then there are canonical dg
functors HOMA(?, ?) : (C −Dg −A)op ⊗ (B −Dg −A) −→ B −Dg − C
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and ?⊗B?: (C − Dg − B) ⊗ (B − Dg − A) −→ C − Dg − A, where
HOMA(M,X) := BHOMA(M,X)C is the ‘unitarization’ of the non-
unitary dg B − C-bimodule HOMA(M,X). In Section 9, we show that if
X is a dg B −A-bimodule, then we have dg adjunctions (?⊗B X : C −
Dg−B −→ C−Dg−A,HOMA(X, ?) : C−Dg−A −→ C−Dg−B) and
(HOMBop(?, X)o : B −Dg − C −→ (C −Dg − A)op,HOMA(?, X) : (C −
Dg − A)op −→ B − Dg − C), both of which give rise to adjunctions
between the corresponding derived functors (see Theorems 9.1 and 9.5).
In the final Section 10 we use the last contravariant adjunction to prove
that, for any dg algebra with enough idempotents A and taking X = A,
the adjunction (HOMAop(?, A),HOMA(?, A)) gives rise to quasi-inverse

dualities per(Aop)
∼=o

←→ per(A) between the left and right perfect derived
categories.

The paper tries to be as self-contained as possible, but some classical
concepts are used without being explicitly introduced. For the general
theory of modules over algebras, the reader is referred to [1] and [25], and
specifically for modules over nonunital rings and algebras, we refer to [24].
All right (resp. left) modules M over an algebra A will be assumed to be
unitary. That is, we will assume that MA = M (resp. AM = M). The
corresponding category is denoted by Mod−A (resp. A−Mod). When a
non-unitary module eventually appears it will be explicitly mentioned. On
what concerns graded algebras (or rings) and graded modules, the reader
is referred to [15] for the basic concepts. Although this reference deals with
graded unital rings, only a minimal adaptation is needed when passing to
graded nonunital algebras. Finally, we freely use some terminology about
triangulated categories. Basic references for this are [16] and [9, Chapter
10+ss], but, for a given triangulated category, we denote by ?[1] the shift
or suspension functor, that was denoted by Σ or T in these references.
Given a triangulated category D, a subcategory T is a thick subcategory
when it is closed under extensions, shifts and direct summands. When S
is a class of objects of D, we shall denote by thickD(S) the smallest thick
subcategory of D containing S. Recall (see [16, Definition 2.1.1]) that a
functor F : D −→ D′ between triangulated categories is a triangulated

functor when there is a natural isomorphism φF : F ◦ (?[1])
∼=
−→ (?[1]) ◦F

such that, for each triangle X
u
−→ Y

v
−→ Z

w
−→ X[1] in D, the sequence

F (X)
F (u)
−→ F (Y )

F (v)
−→ F (Z)

φF,X◦F (w)
−→ F (X)[1] is a triangle in D′. If

F,G : D −→ D′ are triangulated functors, then a natural transformation
of triangulated functors τ : F −→ G is a natural transformation such that,
for each triangle in D as above, one has φG,X ◦ τX[1] = τX [1] ◦ φF,X . It
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is well-known, and will be frequently used through these notes, that if
τ : F −→ G is a natural transformation as above, then the class of objects
X ∈ Ob(D) such that τX is an isomorphism is a thick subcategory of D.

1. Dg categories and dg functors

In this section we collect some basic notions, mainly taken from [10]
and [12], which will be used all throughout these notes. Recall that a
differential graded (dg) K-module is a graded K-module V =

⊕
n∈Z V

n,
together with a graded K-linear map d : V −→ V of degree +1 such that
d ◦ d = 0. The category which will be indistinctly denoted by Dg −K or
CdgK has as objects the dg K-modules. Moreover each space of morphisms
HOMK(V,W ) has a structure of dg K-module given by the following
data:

i) The grading is HOMK(V,W ) =
⊕

n∈Z HOMn
K(V,W ), where

HOMn
K(V,W ) consists of the graded K-linear maps α : V −→ W

of degree n, i.e., such that α(V k) ⊆W k+n, for all k ∈ Z.
ii) The differential d : HOMK(V,W ) −→ HOMK(V,W ), which is a

graded K-linear map of degree +1 such that d ◦ d = 0, is defined
by the rule d(α) = dW ◦ α − (−1)|α|α ◦ dV , where |?| denotes the
degree, whenever α is a homogeneous element of HOMK(V,W ).

For any dg K-module V and for any n ∈ Z, one puts
dn := d|V n : V n −→ V n+1, and defines Zn(V ) := Ker(dn), Bn(V ) :=
Im(dn−1) and Hn(V ) := Zn(V )/Bn(K), which are called respectively the
(K)-module of n-cycles, the module of n-boundaries and the n-homology
module of V , respectively. We say that V is acyclic when Hn(V ) = 0, for
all n ∈ Z.

Note that if V and W are dg K-modules, the tensor product V ⊗W :=
V ⊗KW also becomes an object of Dg−K, where the grading is given by
(V ⊗W )n = ⊕i+j=nV

i ⊗W j and the differential d : V ⊗W −→ V ⊗W
by the rule

dV⊗W (v ⊗ w) = d(v)⊗ w + (−1)|v|v ⊗ dW (w),

for all homogeneous elements v ∈ V and w ∈ W . All throughout these
notes, we use the unadorned symbol ⊗ to denote ⊗K . Given a dg K-
module V , one has an associated dg K-module V [1], where the grading is
given by V [1]n = V n+1, for each n ∈ Z, and where dV [1] = −dV [1]. That
is, dV [1](v) = −dV (v), for each homogeneous element v ∈ V .

The category Dg −K is the prototype of a differential graded (=dg)
category. This is any category A such that, for each pair (A,B) of its
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objects, the K-module of morphisms, denoted indistinctly by A(A,B)
or HomA(A,B), has a structure of differential graded K-module so that
the composition map A(B,C)⊗A(A,B) −→ A(A,C) (g ⊗ f  g ◦ f) is
a morphism of degree zero of the underlying graded K-modules which
commutes with the differentials. This means that d(g ◦ f) = d(g) ◦ f +
(−1)|g|g ◦ d(f) whenever g ∈ A(B,C) and f ∈ A(A,B) are homogeneous
morphisms. If A is a dg category, then the opposite dg category Aop

has the same class of objects as A and the differential on morphisms
d : Aop(A,B) = A(B,A) −→ A(B,A) = Aop(A,B) is the same as in A,
but the composition of morphisms is given as βo ◦ αo = (−1)|α||β|(α ◦ β)o,
where we use the superscript o to emphasize that a morphism is viewed
as one in Aop.

If A and B are dg categories, then the tensor product dg category
A ⊗ B has Ob(A) × Ob(B) as its class of objects and, for all pairs
(A,B), (A′, B′) ∈ Ob(A)×Ob(B), we define HomA⊗B[(A,B), (A′, B′)] =
A(A,A′)⊗ B(B,B′), with its canonical structure of dg K-module. The
composition of homogeneous morphisms in A⊗ B is given by the rule

(α1 ⊗ β1) ◦ (α2 ⊗ β2) = (−1)|α2||β1|(α1 ◦ α2)⊗ (β1 ◦ β2).

When A and B are dg categories, a dg functor F : A −→ B is a
graded functor (i.e. F (An(A,A′)) ⊆ Bn(F (A), F (A′)), for all n ∈ Z and
A,A′ ∈ Ob(A)) such that F (dA(α)) = dB(F (α)), for each homogeneous
morphism α in A. We will frequently use the following criterion for dg
functors from a tensor product dg category.

Lemma 1.1. Let A, B and C be dg categories and let F : A⊗ B −→ C
be an assignment on objects (A,B)  F (A,B) and an assignment on
homogeneous morphisms α⊗β  F (α⊗β) such that |F (α⊗β)| = |α|+|β|.
The following assertions are equivalent:

1) The given assignments define a dg functor F : A⊗ B −→ C.
2) The following conditions hold:

(a) For any fixed object A ∈ A, the assignments B  F (A,B) on
objects and β  F (1A ⊗ β) on morphisms define a dg functor
B −→ C.

(b) For any fixed object B ∈ B, the assignments A F (A,B) on
objects and α F (α⊗ 1B) on morphisms define a dg functor
A −→ C.
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(c) For all homogeneous morphisms α : A −→ A′ and β : B −→ B′,
in A and B, respectively, there is the equality

(−1)|α||β|F (1A′ ⊗ β) ◦ F (α⊗ 1B)

= F (α⊗ β) = F (α⊗ 1B′) ◦ F (1A ◦ β).

Proof. 1) =⇒ 2) Since F is a dg functor it commutes with the differentials,
so that dC(F (α⊗ β)) = F (dA⊗B(α⊗ β)), for all homogeneous morphisms
α : A −→ A′ in A and β : B −→ B′ in B. That is, we have an equality

dC(F (α⊗ β)) = F (dA(α)⊗ β) + (−1)|α|F (α⊗ dB(β)). (∗)

On the other hand, by the definition of composition of morphisms in
A⊗ B, we have an equality

(α⊗ 1B′) ◦ (1A ◦ β) = α⊗ β = (−1)|α||β|(1A′ ⊗ β) ◦ (α⊗ 1A).

Applying F to all members of this equality and using the functoriality
of F , we get condition 2.c.

We next check condition 2.a, condition 2.b following by an analogous
argument. The fact that, for fixed A ∈ A, the assignments B  F (A,B)
and β  F (1A⊗β) define a K-linear graded functor FA : B −→ C follows
directly from the functoriality of F . (The corresponding construction
fixing an object B of B is denoted FB). We just need to check the dg
condition of FA. That is, we need to prove that if B,B′ ∈ B are any two
objects, then the following square is commutative

B(B,B′)
dB //

FA

��

B(B,B′)

FA

��
C(FA(B), FA(B′))

dC // C(FA(B), FA(B′)) C(F (A,B), F (A,B′)).

Indeed we have (FA ◦ dB)(β) = F (1A ⊗ dB(β)) while

(dC ◦ FA)(β) = dC(F (1A ⊗ β))

= F (dA(1A)⊗ β) + (−1)|1A|F (1A ⊗ dB(β)) = F (1A ⊗ dB(β)),

due to the equality (∗) above and the fact that dA(1A) = 0.

2) =⇒ 1) Let α1 : A1 −→ A2 and α2 : A2 −→ A3 be homogeneous mor-
phisms in A and let β1 : B1 −→ B2 and β2 : B2 −→ B3 be homogeneous
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morphisms in B. Due to condition 2.c, we have

F [(α2 ⊗ β2) ◦ (α1 ⊗ β1)] =

= (−1)|α1||β2|F ((α2α1)⊗ (β2β1))

= (−1)|α1||β2|F ((α2α1)⊗ 1B3) ◦ F (1A1 ◦ (β2β1)))

= (−1)|α1||β2|FB3(α2α1) ◦ FA1(β2β1)

= (−1)|α1||β2|FB3(α2) ◦ FB3(α1) ◦ FA1(β2) ◦ FA1(β1)

= (−1)|α1||β2|F (α2 ⊗ 1B3) ◦ F (α1 ⊗ 1B3) ◦ F (1A1 ⊗ β2) ◦ F (1A1 ⊗ β1).

and

F (α2⊗β2)◦F (α1⊗β1)=F (α2⊗1B3)◦F (1A2⊗β2)◦F (α1⊗1B2)◦F (1A1⊗β1).

We then get that

F [(α2 ⊗ β2) ◦ (α1 ⊗ β1)] = F (α2 ⊗ β2) ◦ F (α1 ⊗ β1)

because, by condition 2.c, we have

F (1A2 ⊗ β2) ◦ F (α1 ⊗ 1B2) = (−1)|α1||β2|F (α1 ⊗ 1B3) ◦ F (1A1 ⊗ β2).

Moreover, we have F (1A ⊗ 1B) = FA(1B) = 1FA(B) = 1F (A,B), for all
A ∈ A and B ∈ B, due to the functoriality of FA : B −→ C. Therefore F
is a (clearly graded) K-linear functor A⊗ B −→ C.

It remains to check that F is a dg functor, which amounts to prove
the equality (*) above for all α and β as there. Indeed, using condition 2.c,
we have

dC(F (α⊗ β)) = dC(F (α⊗ 1B′) ◦ F (1A ⊗ β))

= dC(F (α⊗ 1B′)) ◦ F (1A ⊗ β)

+ (−1)|F (α⊗1B′ )|F (α⊗ 1B′) ◦ dC(F (1A ⊗ β))

= (dC ◦ F
B′

)(α) ◦ F (1A ⊗ β) + (−1)|α|F (α⊗ 1B′) ◦ (dC ◦ FA)(β).

But the fact that FA and FB
′

are dg functors implies that dC ◦ F
B′

=
FB

′

◦ dA and dC ◦FA = FA ◦ dB. Then, using condition 2.c again, we have

dC(F (α⊗ β))

= (FB
′

◦ dA)(α) ◦ F (1A ⊗ β) + (−1)|α|F (α⊗ 1B′) ◦ (FA ◦ dB)(β)

= F (dA(α)⊗ 1B′) ◦ F (1A ⊗ β)+(−1)|α|F (α⊗ 1B′) ◦ F (1A⊗dB(β))

= F (dA(α)⊗ β) + (−1)|α|F (α⊗ dB(β)),

so that the equality (∗) holds.
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Example 1.2. If A is a dg category, then the following data give a dg
functor A(?, ?) : Aop ⊗A −→ Dg −K:

1) An assignment on objects (A,A′) A(A,A′) = HomA(A,A′).
2) If α : A −→ B and α′ : A′ −→ B′ are homogeneous morphisms in A,

then A(αo⊗α′) : A(B,A′)−→A(A,B′) takes f (−1)|α|(|α′|+|f |)α′◦
f ◦ α, for each homogeneous element f ∈ A(B,A′).

Proof. For a fixed object A in A, A(?, A) = A∧ : Aop −→ CdgK = Dg−K
acts on morphisms as A∧(α)(f) = (−1)|α||f |f ◦ α whenever f and α are
composable homogeneous morphisms in A. Then A(?, A) is what Keller
calls the free right dg A-module associated to A (see [10, Section 1.1]),
today more commonly known as the representable right dg A-module
associated to A, and it is then a dg functor. Dually A∨ = A(A, ?) : A −→
CdgK = Dg −K is the representable left dg A-module, which acts on
morphisms as A∨(α)(f) = α◦f , and is then a dg functor. So conditions 2.a
and 2.b of the last lemma hold.

On the other hand, if α : A −→ B, α′ : A′ −→ A′ and f : B −→ A′ are
as in the statement, then one has

[A(αo⊗1B′)◦A(1oB⊗α
′)](f) = A(αo⊗1B′)(α′◦f) = (−1)|α|(|α′|+|f |)α′◦f◦α

while

[A(1oA ⊗ α
′) ◦ A(αo ⊗ 1A′)](f)

= (−1)|α||f |A(1oA ⊗ α
′)(f ◦ α) = (−1)|α||f |α′ ◦ f ◦ α.

Therefore condition 2.c in last lemma also holds.

Example 1.3. Let F : A −→ A′ and G : B −→ B′ be dg functor between
dg categories. The following data define a dg functor F ⊗G : A⊗ B −→
A′ ⊗ B′:

1) On objects one defines (F ⊗G)(A,B) = (F (A), G(B)).
2) If α : A1 −→ A2 and β : B1 −→ B2 are morphisms in A and B,

respectively, then

(A ⊗ B)[(A1, B1), (A2, B2)] (A′ ⊗ B′)[(F ⊗ G)(A1, B1), (F ⊗ G)(A2, B2)]

A(A1, A2) ⊗ B(B1, B2) //A′(F (A1), F (A2)) ⊗ B′(G(B1), G(B2))

is the map given by (F ⊗G)(α⊗ β) = F (α)⊗G(β).

Proof. We do not need to use Lemma 1.1, but the definition of the
composition of morphisms in the tensor product dg category. Then a
direct proof is easy and left as an exercise.
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With each dg categoryA, one canonically associates its 0-cycle category
Z0A and its 0-homology category H0A. Both of them have the same
objects as A, and as morphisms one puts HomZ0A(A,A′) = Z0(A(A,A′))
and HomH0A(A,A′) = H0(A(A,A′)). In both cases, the composition of
morphisms is induced from that of A. If F : A −→ B is any dg functor, the
fact that it induces a morphism A(A,A′) −→ B(F (A), F (A′)) of graded
K-modules which commutes with the differentials implies that it also
induces a morphism of K-modules

HomZ0A(A,A′) = Z0(A(A,A′)) −→ Z0(B(F (A), F (A′)))

= HomZ0B(F (A), F (A′))

resp.

HomH0A(A,A′) = H0(A(A,A′)) −→ H0(B(F (A), F (A′)))

= HomH0B(F (A), F (A′)),

for all objects A,A′ ∈ Ob(A). It immediately follows that these are the
assigments on morphisms of well-defined K-linear functors Z0F : Z0A −→
Z0B and H0F : H0A −→ H0B.

The following concepts will be useful in the sequel.

Definition 1.4. Let F,G : A −→ B be dg functors between dg cate-
gories. A natural transformation of dg functors τ : F −→ G is a natural
transformation of K-linear functors such that τA : F (A) −→ G(A) is a
homogeneous morphism of zero degree in B, for each object A ∈ A. We
will say that F is a homological natural transformation of dg functors
when, in addition, τA ∈ Z

0B(F (A), G(A)), for each A ∈ A.
A natural isomorphism of dg functors is a homological natural trans-

formation τ : F −→ G which is pointwise an isomorphism.

2. Dg algebras with enough idempotents and their cate-

gories of right dg modules

With ’algebra’ instead of ’ring’, the following concept is well-known
(see [24, Chapter 10, Section 49]). Note that we use the term ’distinguished
family’ instead of the term ’complete family’ used in this reference.

Definition 2.1. An algebra with enough idempotents is an algebra A
which admits a family of nonzero orthogonal idempotents (ei)i∈I such
that

⊕
i∈I eiA = A =

⊕
i∈I Aei. This family (ei)i∈I will be called a
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distinguished family of orthogonal idempotents. A graded algebra with
enough idempotents is an algebra with enough idempotents together with
a grading A =

⊕
n∈ZA

n on it such that A admits a distinguished family
of orthogonal idempotents consisting of homogeneous elements of degree 0.
Without further remark, on a graded algebra with enough idempotents we
only consider distinguished families consisting of degree zero homogeneous
idempotents.

Note that, for A as above, to say that a right (resp. left) A-module
is unitary is equivalent to say that we have an internal decomposition
M =

⊕
i∈IMei (resp. M =

⊕
i∈I eiM) as K-module. Recall that all our

modules will be unitary, unless explicitly said otherwise.
The crucial concept for us is the following:

Definition 2.2. A differential graded (dg) algebra with enough idempo-
tents is a pair (A, d), where A is a graded algebra with enough idempotents
and d : A −→ A is a morphism of degree +1 of graded K-modules, called
the differential, satisfying the following conditions: i) d◦d = 0; ii) d(ei) = 0
for all i ∈ I; and iii) (Leibniz rule) d(ab) = d(a)b+ (−1)|a|ad(b), for all
homogeneous elements a, b ∈ A.

Given a dg algebra with enough idempotents A = (A, d), the usual
opposite algebra has a canonical structure of graded algebra. However,
the differential d would not satisfy Leibniz rule when viewed as a map
do : Aop −→ Aop. This forces to redefine the concept of opposite graded
algebra with enough idempotents Aop as the one having the same underly-
ing graded K-module as A, but where the multiplication of homogeneous
elements is defined by ao · bo := (−1)|a||b|(ba)o, for all a, b ∈ A. Here we
use the upper index o to indicate that we are viewing the element as one
of the opposite graded algebra. The following is now routine:

Exercise 2.3. If (A, d) is a dg algebra with enough idempotents and
Aop is the opposite graded algebra in the above sense, then do : Aop −→
Aop is a differential making the pair (Aop, do) to be a dg algebra with
enough idempotents (with the same distinguished family of homogeneous
idempotents as A).

The following gives the definition of the tensor product of two dg
algebras with enough idempotents.

Lemma 2.4. Let A = (A, d) and B = (B, d) be two dg algebras with
enough idempotents and let A⊗B their tensor product in Dg−K. When



M. Saorín 73

one defines the multiplication of homogeneous tensors by the rule that
(a⊗b) · (c⊗d) = (−1)|b||c|ac⊗bd, A⊗B becomes a dg algebra with enough
idempotents, with the same differential as in Dg −K.

Proof. It is routine to check the associativity, so that A ⊗ B becomes
an associative graded algebra with the given multiplication. Moreover, if
(ei)i∈I and (e′

j)j∈J are distinguished families of homogeneous idempotents
of degree 0 in A andB, respectively, then (ei⊗e

′
j)(i,j)∈I×J is a distinguished

family of homogeneous orthogonal idempotents of degree 0 in A⊗B. On
the other hand, the differential d : A ⊗ B −→ A ⊗ B vanishes on each
ei ⊗ e

′
j It remains to check Leibniz rule. It is also routine, but for the

convenience of the reader we explicitly give the calculations:

d[(a1 ⊗ b1) · (a2 ⊗ b2)] = (−1)|b1||a2|d[(a1a2)⊗ (b1b2)]

= (−1)|b1||a2|[d(a1a2)⊗ (b1b2) + (−1)|a1|+|a2|(a1a2)⊗ d(b1b2)]

= (−1)|b1||a2|[(d(a1)a2 + (−1)|a1|a1d(a2))⊗ (b1b2)]

+ (−1)|b1||a2|+|a1|+|a2|[(a1a2)⊗ (d(b1)b2 + (−1)|b1|b1d(b2))]

= (−1)|b1||a2|d(a1)a2 ⊗ b1b2

+ (−1)|b1||a2|+|a1|a1d(a2)⊗ b1b2

+ (−1)|b1||a2|+|a1|+|a2|a1a2 ⊗ d(b1)b2

+ (−1)|b1||a2|+|a1|+|a2|+|b1|a1a2 ⊗ b1d(b2).

while, on the other side, we have:

d(a1 ⊗ b1) · (a2 ⊗ b2) + (−1)|a1|+|b1|(a1 ⊗ b1) · d(a2 ⊗ b2)

= [d(a1)⊗ b1 + (−1)|a1|a1 ⊗ d(b1)] · (a2 ⊗ b2)

+ (−1)|a1|+|b1|(a1 ⊗ b1) · [d(a2)⊗ b2 + (−1)|a2|a2 ⊗ d(b2)]

= (−1)|b1||a2|d(a1)a2 ⊗ b1b2

+ (−1)|a1|(−1)(|b1|+1)|a2|a1a2 ⊗ d(b1)b2

+ (−1)|a1|+|b1|(−1)|b1|(|a2|+1)a1d(a2)⊗ b1b2

+ (−1)|a1|+|b1|(−1)|a2|(−1)|b1||a2|a1a2 ⊗ b1d(b2).

Therefore Leibniz rule holds for the given multiplication in A⊗B.

Associated with any graded algebra with enough idempotents A, we
have the category Gr−A of graded right A-modules, where the morphisms
between two objects M and N are the homomorphisms of right A-modules
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f : M −→ N such f(Mn) ⊆ Nn, for all n ∈ Z. The category Gr − A
comes with a shift functor ?[1] : Gr − A −→ Gr − A. For each graded
right A-module M , M [1] has the same underlying (ungraded) A-module
as M , but the grading on M [1] is given by M [1]n = Mn+1, for all n ∈ Z.
The action of ?[1] on morphisms is the identity. It is clear that ?[1] is
an equivalence of categories, which allows to define the iterated powers
?[n] = (?[1])n, for all n ∈ Z. We then form the graded category GR−A. Its
objects are the same as in Gr−A and, given two graded right A-modules
M and N , we define

HOMA(M,N) :=
⊕

n∈Z

HomGr−A(M,N [n])

as space of morphisms in GR−A. On this space of morphisms we have an
obvious grading given by HOMn

A(M,N) := HomGr−A(M,N [n]), for each
n ∈ Z. The composition g ◦ f in GR−A of two homogeneous morphisms
f : M −→ N [n] and g : N −→ P [p] is defined as the composition g[n] ◦ f
in Gr−A.

Definition 2.5. Let A = (A, d) be a dg algebra with enough idempotents.
A right (resp. left) differential graded (dg) A-module is a pair (M,dM )
consisting of a graded right (resp. left) A-module M =

⊕
n∈ZM

n together
with a morphism dM : M −→ M [1] in Gr − K such dM ◦ dM = 0 and
dM (xa) = dM (x)a+(−1)|x|xd(a) (resp. dM (ax) = d(a)x+(−1)|a|adM (x)),
for all homogeneous elements x ∈M and a ∈ A.

Suppose that A is a dg algebra with enough idempotents and that
M is a right dg A-module. The graded right A-module M [1] with its
differential dM [1] = −dM as dg K-module (see Section 1) becomes a right
dg A-module. Indeed, if one has x ∈M [1]n = Mn+1 and a ∈ Ap, then

dM [1](xa) = −dM (xa) = −[d(x)a+ (−1)n+1xd(a)]

= −d(x)a+ (−1)nxd(a) = dM [1](x)a+ (−1)|x|xd(a),

where |x| = n is the degree of x in M [1]. In this way, we get a functor
?[1] : Dg−A −→ Dg−A which is ’almost’ a dg functor, in the sense that
if d : HOMA(M,N) −→ HOMA(M,N) and δ : HOMA(M [1], N [1]) −→
HOMA(M [1], N [1]) are the respective differentials on Hom spaces, then
δ(f [1]) = −d(f)[1], for each homogeneous morphism f ∈ HOMA(M,N).
The reader is referred to section 4 to see that the corresponding functor
for left dg modules produces suprising effects.
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Proposition 2.6. Let A be a dg algebra with enough idempotents. The
following data give a dg category Dg − A, the dg category of right dg
A-modules:

• The objects of Dg−A are the right dg A-modules (see Definition 2.5);
• The morphisms in Dg−A and the composition of them is defined

as in the category GR −A.
• For each pair (M,N) of objects, the differential

d : HOMA(M,N) −→ HOMA(M,N)

on Hom spaces is defined by the rule d(f) = dN ◦ f − (−1)|f |f ◦ dM ,
for each homogeneous morphism f .

Proof. We first need to check that the differential on Hom spaces is well-
defined, i.e. that d(f) is a homomorphism of graded right A-modules,
which is homogeneous of degree |f |+ 1, whenever f ∈ HOMA(M,N) is
homogeneous. Indeed if x ∈ M and a ∈ A are homogeneous elements,
then we have:

d(f)(xa) = [dN ◦ f − (−1)|f |f ◦ dM ](xa)

= dN (f(x)a)− (−1)|f |f(dM (xa))

= dN (f(x))a+ (−1)|f |+|x|f(x)d(a)− (−1)|f |f(dM (x)a

+ (−1)|x|xd(a))

= (dN ◦ f)(x))a+ (−1)|f |+|x|f(x)d(a)− (−1)|f |(f ◦ dM )(x)a

− (−1)|f |+|x|f(x)d(a)

= (dN ◦ f)(x))a− (−1)|f |(f ◦ dM )(x)a

= d(f)(x)a.

Then d(f) is a homogeneous morphism in GR−A, clearly of degree |f |+1.

Given the fact that the differential on HOMA(M,N) is the restriction
of the differential on HOMK(M,N) and that the composition of morphism
in Dg − A is defined as in Dg −K, and the latter is a dg category, the
equality

d(g ◦ f) = d(g) ◦ f + (−1)|g|g ◦ d(f), (∗)

holds for all homogeneous morphisms f ∈ HOMA(M,N) and g ∈
HOMA(N,P ). Then Dg −A is also a dg category.
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3. Dg algebras with enough idempotents versus small dg

categories

Let A = (A, d) be a dg algebra with enough idempotents on which we
fix a distinguished family of orthogonal idempotents (ei)i∈I , which are
homogeneous of degree zero and such that d(ei) = 0, for all i ∈ I. We can
view A as a small dg category as follows:

• The set of objects is Ob(A) = I;
• If i, j ∈ A, the set of morphisms of degree n from i to j is An(i, j) :=
ejA

nei, for all n ∈ Z;
• The composition map A(j, k)×A(i, j) = ekAej×ejAei −→ ekAei =
A(i, k) is the multiplication map.
• The differential d : A(i, j) = ejAei −→ ejAei = A(i, j) is the differ-

ential of A as a dg algebra, for all i, j ∈ I.

It is routine to check that the data above make A into a small dg
category. Conversely, let A be a small dg category. We can view A as a
dg algebra with enough idempotents as follows:

• The elements of A are those of
⊕

A,B∈Ob(A)A(A,B), and we put

An =
⊕

A,B∈Ob(A)

An(A,B)

for the K-module of elements of degree n in A, for all n ∈ Z.
• The multiplication in A extends by K-linearity the composition of

morphisms in A.
• The differential d : A −→ A is the direct sum of the differentials
dA,B : A(A,B) −→ A(A,B), as A,B vary on the set of objects of A.

It is routine to see that the data above make A into a dg algebra with
enough idempotents, where the identities eA := 1A (A ∈ Ob(A)) form a
distinguished family of orthogonal idempotents of degree zero. Note that
we have A(A,B) = eBAeA.

The processes explained above of passing from dg algebras with enough
idempotents to small dg categories, and viceversa, are clearly inverse to
each other. This allows us to pass freely from one language to the other.
Note, in particular, that the opposite dg algebra with enough idempotent
corresponds to the opposite dg category by this bijective correspondence.

To be consistent with our notation in the previous section, we shall
denote by Gr −K the category of graded K-modules with degree zero
morphisms and GR −K the graded category with the same objects and
where, for each pair (V,W ) of objects, the graded K-module of morphisms
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is
HOMK(V,W ) =

⊕

p∈Z

HOMp
K(V,W ),

where HOMp(V,W ) = HomGr−K(V,W [p]) consists of those morphisms
of K-modules f : V −→W such that f(V n) ⊆ V n+p, for all n ∈ Z. Note
that GR −K is just the underlying graded category of the dg category
Dg −K.

Given a small dg category A, a graded right A-module was defined
in [10] as a graded functor M : Aop −→ GR −K. The category GA has
as objects the graded right A-modules and as morphisms their natural
transformations. Note that, by definition, if f : M −→ N is a morphism
in GA then fA : M(A) −→ N(A) is a morphism in Gr−K, for each A ∈
Ob(A). The category GA comes with a graded functor ?[1] : GA −→ GA
given on objects by the rule M [1](A) = M(A)[1]. If ao ∈ Aop(A,B) =
A(B,A) is a homogeneous element, then M [1](ao) : M(A)[1] −→M(B)[1]
is the map (−1)|a|M(ao) : M(A) −→ M(B). We claim that with this
definition we have a well-defined graded right A-module. Indeed, if bo ∈
Aop(B,C) = A(C,B) is another homogeneous element, then we have

M [1](bo ◦ ao) = (−1)|a||b|M [1]((a ◦ b)o) = (−1)|a||b|(−1)|a|+|b|M((a ◦ b)o)

= (−1)|a|+|b|M [(−1)|a||b|(a ◦ b)o] = (−1)|a|+|b|M(bo ◦ ao)

while
M [1](bo) ◦M [1](ao) = (−1)|a|+|b|M(bo) ◦M(ao).

Therefore M [1] is a well-defined graded right A-module. Note the
discrepancy of the definition of M [1] with the definition in [10]. The assign-
ment M  M [1] extends to an auto-equivalence of categories GA −→ GA
which acts as the identity on morphisms. Then the graded category GraA
was defined in [10] as the one having the same objects as GA and as graded
K-module of morphisms HomGraA(M,N) =

⊕
n HomGA(M,N [n]), where

the composition of homogeneous element is given as g ◦ f = g[p] ◦ f ,
provided |f | = p.

A dg functor M : Aop −→ Dg − K is called a right dg A-
module. It becomes an object of GraA when considering the

composition Aop M
−→ Dg − K

forgetful
−→ GR − K. The category CdgA

(see [12]), denoted DifA in [10], has as objects the right dg A-
modules with spaces of morphisms HomCdgA(M,N) = HomGraA(M,N),
where the differential d : HomCdgA(M,N) −→ HomCdgA(M,N) acts as

d(f) = dN ◦ f − (−1)|f |f ◦ dM . Note that one extends ?[1] from GraA to
?[1] : CdgA −→ CdgA, by defining the differential as dM [1] = −dM [1].
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Theorem 3.1. Let A = (A, d) be a graded algebra with enough idempo-
tents, where (ei)i∈I is a fixed distinguished family of orthogonal idempo-
tents, all of them homogeneous of zero degree and annihilated by d. We
also view A as a dg category with Ob(A) = I as described above. Let
M,N be arbitrary objects of Dg −A and f : M −→ N be a homogeneous
morphism in this category. The following assertions hold:

1) The assignments i M̃(i) := Mei, and

eiA
nej −→ Homn

GR−K(Mei,Mej),

ao  M̃(ao), where M̃(ao)(x) = (−1)|a||x|xa for each x ∈ Mei
homogeneous, define a dg functor M̃ : Aop −→ CdgK and, hence, an
object of CdgA.

2) If f̃ = (f̃i)i∈I , where f̃i := f|Mei
: M̃(i) = Mei −→ Nei = Ñ(i), for

each i ∈ I, then f̃ is a morphism M̃ −→ Ñ of degree |f | in CdgA.

3) The assignments M  M̃ and f  f̃ of the two previous assertions

define an equivalence of dg categories Dg −A
∼=
−→ CdgA.

Proof. 1) We first prove that M̃ is a graded functor between the underlying
graded categories of A and CdgK = Dg −K, for which we just need to

check that M̃(bo ◦ ao) = M̃(bo) ◦ M̃(ao) whenever ao ∈ Aop(i, j) = eiAej
and bo ∈ Aop(j, k) = ejAek are homogeneous elements, where i, j, k ∈ I.
Note that both sides of the desired equality are then K-linear maps
M̃(i) = Mei −→Mek = M̃(k). When applying them to a homogeneous
element x ∈Mei, we have:

M̃(bo ◦ ao)(x) = (−1)|a||b|M̃((ab)o)(x) = (−1)|a||b|(−1)|ab||x|x(ab)

= (−1)|a||b|+|a||x|+|b||x|x(ab) = (−1)|a||x|(−1)|b||xa|(xa)b

= (−1)|a||x|M̃(bo)(xa) = M̃(bo)[(−1)|a||x|xa] = (M̃(bo) ◦ M̃(ao))(x)

The desired equality then holds due to the fact that M is a right A-module.

In order to see that M̃ is a dg functor, we need to check that it
commutes with the differentials on Hom spaces of Aop and CdgK. That is,

that if a ∈ eiAej = Aop(i, j) is a homogeneous element, then M̃(d(a)o) =

d
HOMK(M̃(i),M̃(j))

(M̃(a)). To check this equality, we evaluate the two maps
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on a homogeneous element x ∈ M̃(i) = Mei. We then have:

d
HOMK(M̃(i),M̃(j))

(M̃(ao))(x)

= [dMej
◦ M̃(ao)− (−1)|M̃(ao)|M̃(ao) ◦ dMei

](x)

= dM ((−1)|a||x|xa)− (−1)|a|(−1)|a||dM (x)|dM (x)a

= (−1)|a||x|(dM (xa)− dM (x)a) = (−1)|a||x|(−1)|x|xd(a)

= (−1)(|a|+1)|x|xd(a) = (−1)|d(a)||x|xd(a) = M̃(d(a)o)(x),

as desired.
2) In order to prove this assertion, we first show that M̃ [1] is isomor-

phic to M̃ [1]. On objects, we have M̃ [1](i) = M [1]ei = Mei[1] = M̃ [1](i),
for each i ∈ I. On the other hand, if ao ∈ Aop(i, j) = eiAej and

x ∈ M̃ [1](ei) = Mei are homogeneous elements, then we have that

M̃ [1](ao)(x) = (−1)|a||x|M [1]xa, where |x|M [1] denotes the degree of x as
an element of M [1]. We know that |x|M [1] = |x|−1, where |x| is the degree

of x as an element of M . Therefore we have M̃ [1](ao)(x) = (−1)|a|(|x|−1)xa.
On the other side, by definition of the shift in Gra −K, we have that
M̃ [1](ao) = (−1)|a|M̃(ao). It follows that

(M̃ [1])(ao)(x) = (−1)|a|M̃(ao)(x) = (−1)|a|(−1)|a||x|xa.

As a consequence, we have that M̃ [1](ao)(x) = (M̃ [1])(ao)(x).
Let ao ∈ Aop(i, j) = eiAej be homogeneous and assume that |f | = n,

that is, that f : M −→ N [n] is a morphism in Gr−A. We need to prove
that the following diagram in Gr−K is commutative:

M̃(i)
f̃i //

M̃(a◦)
��

Ñ [n](i)

(Ñ [n])(a◦)
��

M̃(j)
f̃j // Ñ [n](j)

Indeed, for each x ∈ M̃(i) = Mei homogeneous, we have

(f̃j ◦ M̃(ao))(x) = f̃j((−1)|a||x|Mxa) = (−1)|a||x|M f(xa),

and, using the previous paragraph, we also have

(Ñ [n](ao) ◦ f̃i)(x) = (Ñ [n](ao) ◦ f̃i)(x)

= Ñ [n](ao)(f(x)) = (−1)|a||f(x)N [n]|f(x)a.
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Note that |f(x)|N [n] = |x|M because f : M −→ N [n] is a morphism of
degree zero. On the other hand, the product f(x)a is considered in the
graded right A-module N [n]. The commutativity of the desired diagram
follows from that fact that f : M −→ N [n] is a morphism of right A-
modules.

3) Since the definition of (?)̃ on morphisms is the ‘identity’, i.e.
f̃i : M̃(i) = Mei −→ Ñ(i) = Nei is just the restriction of f to Mei,
we readily see that we have a well-defined K-linear functor between the
underlying graded categories (?)̃ : GR − A −→ Gra − A. This functor
is clearly graded since |f̃ | = |f | for each homogeneous morphism f in
GR −A. Moreover the differential of the graded K-module Mei = M̃(i)
is the same when coming from M that when coming from M̃ . Again the
fact that the action of (?)̃ on morphisms is the identity implies that (?)̃
commutes with the differentials on Hom spaces. That is, it is actually a
dg functor Dg−A −→ CdgA.

On the other hand, the ‘identity’ condition on the action on morphisms
immediately implies that (?)̃ is a faithful functor. We shall now prove

that (?)̃ is full. If ψ : M̃ −→ Ñ [n] is a morphism in GA, then for each
ao ∈ Aop(i, j) = eiAej , we have that ψj ◦ M̃(ao) = Ñ [n](ao) ◦ ψi. When

applying both members of this equality to an element x ∈ M̃(i) = Mei,
we get that

(ψj ◦ M̃(ao))(x) = ψj [(−1)|a||x|Mxa] = (−1)|a||x|Mψj(xa)

while

(Ñ [n](ao) ◦ ψi)(x) = (Ñ [n](ao) ◦ ψi)(x) = (−1)|a||ψi(x)|N [n]ψi(x)a.

Bearing in mind that |ψi(x)|N [n] = |x|M , we conclude thatψj(xa) = ψi(x)a.
This means that if we define f : M =

⊕
i∈IMei −→

⊕
i∈I N [n]ei = N [n]

as the direct sum of the ψi : Mei = M̃(i) −→ Ñ [n](i) = N [n]ei, then f is
a morphism of graded right A-modules such that f̃ = ψ. We showed that
the functor (?)̃ is also full.

It remains to check that (?)̃ is a dense functor. Let F be an object of
CdgA and consider the dg K-module MF :=

⊕
i∈I F (i). We endow MF

with a structure of graded right A-module as follows. Given x ∈ F (i) and
ao ∈ Aop(j, k) = ejAek, we define xa := (−1)|a||x|δijF (ao)(x), where δij is
the Kronecker symbol. Then one extends this multiplication byK-linearity.
In order to see that this rule gives M := MF the structure of a graded
right A-module, we just need to consider x ∈ F (i) = Mei, a ∈ eiAej
and b ∈ ejAek homogeneous elements and check that x(ab) = (xa)b.
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Indeed, bearing in mind that (ab)o = (−1)|a||b|(bo ◦ ao) when looking at
the elements of A as morphism in the underlying graded K-category, we
have an equality

x(ab) = (−1)|ab||x|F ((ab)o)(x) = (−1)|ab||x|(−1)|a||b|F (bo ◦ ao)(x)

= (−1)|a||x|+|b||x|+|a||b|[F (bo) ◦ F (ao)](x)

= (−1)|b||xa|(−1)|a||x|F (bo)(F (ao)(x))

= (−1)|b||xa|F (bo)(xa) = (xa)b,

which shows that x(ab) = (xa)b as desired.
We claim that the differential d = ⊕dF (i) : M = ⊕i∈IF (i) −→

⊕i∈IF (i) = M satisfies Libniz rule, thus making M into a right dg A-
module. To see this, note that since F : Aop −→ CdgK is a dg functor we
have an equality δ(F (ao)) = F (d(a)o), for any morphism ao ∈ Aop(i, j) =
eiAej , where d : eiAej −→ eiAej is the restriction of the differential of A
and δ : HOMK(F (i), F (j)) = HOMK(Mei,Mej) −→ HOMK(Mei,Mej)
is the differential on Hom spaces of CdgK. We then have that F (d(a)o) =
dMej

◦F (ao)−(−1)|F (ao)|F (ao)◦dMei
. Bearing in mind that |F (ao)| = |a|,

when making act both members of the last equality on a homogeneous
element x ∈Mei, we have

(−1)|d(a)||x|xd(a) = (−1)|a||x|dMej
(xa)− (−1)|a|(−1)|dMei

(x)||a|dMei
(x)a.

Cancelling (−1)|a||x| from this equality, we get that

(−1)|x|xd(a) = dM (xa)− dM (x)a,

from which Leibniz rule immediately follows.
The fact that M̃F

∼= F follows in a straightforward way, and hence
(?)̃ is a dense functor.

Remark 3.2. Note that the equivalence of categories (?)̃ : Dg −A −→
CdgA given by Theorem 3.1 takes eiA to the representable dg A-module
i∧ : A(?, i) : Aop −→ CdgK = Dg −K (see Example 1.2 and its proof).

4. Right versus left dg modules

From the definition of left dg A-module we get the following:

Lemma 4.1. If (M,dM ) is a left dg A-module, then it is a right dg
Aop-module with the multiplication map M ⊗ Aop −→ M defined as
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(x, ao)  xao := (−1)|a||x|ax, for all homogeneous elements a ∈ A and
x ∈ M . Conversely, if (M,dM ) is a right dg Aop-module, then it is a
left dg A-module, where the multiplication map A ⊗ M −→ M takes
(a, x) ax := (−1)|a||x|xao, for a and x as above.

Proof. We just prove the first implication, the reverse one being then
clear. Given x ∈M and a, b ∈ A homogeneous elements, we have:

(xao)bo = (−1)|xao||b|b(xao) = (−1)(|x|+|a|)|b|)(−1)|x||a|b(ax)

and

x(aobo) = (−1)|a||b|x(ba)o = (−1)|a||b|(−1)|x||ba|(ba)x

= (−1)|a||b|(−1)|x|(|b|+|a|)(ba)x.

Therefore we have (xao)bo = x(aobo). Since up to here the differential has
played no role, we have actually proved that any graded left A-module is
a graded right Aop-module.

We next check that the differential of M as a left A-module satisfies
Leibniz rule as a right Aop-module. We have that

dM (xao) = (−1)|x||a|dM (ax) = (−1)|x||a|[d(a)x+ (−1)|a|adM (x)],

while we have

dM (x)ao + (−1)|x|xd(a)o

= (−1)(|x|+1)|a|adM (x) + (−1)|x|(−1)|x|(|a|+1)d(a)x,

so that dM (xao) = dM (x)ao + (−1)|x|xd(a), for all homogeneous elements
x ∈M and ao ∈ Aop.

As with graded right A-modules, one first defines the category A−Gr
of graded left A-modules, where morphisms are the graded morphisms
of zero degree. By the sign trick of the previous lemma this category
should be canonically identified with Gr−Aop. We next need to define
a shift functor ?[1] : A − Gr −→ A − Gr which, viewed as a functor
Gr−Aop −→ Gr−Aop, coincides with the shift for graded right modules
(see the paragraph after the proof of Lemma 2.4). This forces the definition
of the multiplication map A ⊗M [1] −→ M [1] ((a, x)  a · x). Indeed
we will have a · x = (−1)|a||x|M [1]xao. But the multiplication xao is the
same in M [1] and M , due the the definition of ?[1] for graded right Aop-
modules. Then in M we have xao = (−1)|a||x|Max, where ax is given by
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the multiplication A ⊗M −→ M . We then get that the multiplication
map in M [1] is given by

a · x = (−1)|a||x|M [1](−1)|a||x|Max = (−1)|a|ax,

where ax is the multiplication in M .

This readily gives a graded K-category A − GR whose objects are
the objects of A−Gr and where the space of morphisms HomAop(M,N)
between two objects M and N is graded in such a way that the n-
th homogeneous component is HOMn

Aop(M,N) = HomA−Gr(M,N [n]).
Note that, viewing an element f ∈ HomA−Gr(M,N [n]), as a morphism
f : M −→ N of degree n, we have

f(ax) = ((−1)|a|)naf(x) = (−1)|f ||a|af(x),

for all homogeneous elements a ∈ A and x ∈M . This is due to the fact
that the multiplication map A⊗N [n] −→ N [n] acts as

a · y = ((−1)|a|)nay = (−1)naay,

for all homogeneous elements a ∈ A and y ∈ N [n], where ay is the product
in N .

Remark 4.2. We have an obvious forgetful functor A−Gr −→ A−Mod
acting as the identity on objects and morphisms. However, we have such
a functor for the category A−GR only in case A is evenly graded (i.e.
A2k+1 = 0, for all k ∈ Z). In the general case one has a forgetful ‘pseudo-
functor’ A−GR −→ A−Mod. It acts as the identity on objects, but takes
f  f̂ , where f̂(x) = (−1)|f ||x|f(x), for all homogeneous elements f ∈
HOMAop(M,N) and x ∈M (note that f̂ is a morphism in Mod−A). This

assignment satisfies the equality ĝ ◦ f = (−1)|f ||g|ĝ◦f̂ , for all homogeneous
morphisms f, g in A−GR. The ultimate reason for this disruption is that
Aop is not the opposite algebra of A as an ungraded algebra.

We have essentially proved the following expected result.

Proposition 4.3. Let A be a dg algebra with enough idempotents. The
following data give a dg category A − Dg which is equivalent to the dg
category Dg −Aop:

• The objects of A−Dg are the left dg A-modules (see Definition 2.5);
• The morphisms in A−Dg are defined as in the category A−GR;
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• For each pair (M,N) of objects, the differential d : HomAop(M,N)→
HomAop(M,N) on Hom spaces is defined by the rule d(f) := dN ◦
f − (−1)|f |f ◦ dM .

Proof. Once we identify the objects of A−Dg with those of Dg−Aop, we
only need to identify the spaces of morphisms in A−GR and GR −Aop

for the differential d : HomAop(M,N) −→ HomAop(M,N) is just the
restriction of that of the dg K-module HOMK(M,N). Indeed, if f : M −→
N is a homogeneous morphism in A−GR, then

f(xao) = (−1)|a||x|f(ax) = (−1)|a||x|(−1)|a||f |af(x)

= (−1)|a||f(x)|af(x) = f(x)ao.

As in the case of right modules, the shift functor ?[1] : A−Gr −→ A−Gr
extends to a functor ?[1] : A−Dg −→ A−Dg such that d(f [1]) = −d(f)[1],
for all homogeneous f ∈ HOMAop(M,N), where d is the differential on
Hom spaces.

5. Dg bimodules

Definition 5.1. Let A and B be dg algebras with enough idempotents. A
graded A−B-bimodule is graded K-module M together with the following
data:

1) A morphism of gradedK-vector spaces µleft : A⊗M −→M (a⊗x 
ax) making M into a graded left A-module,

2) and a morphism of graded K-vector spaces µright : M ⊗B −→M
(x⊗ b xb) making M into a graded right B-module,

3) such that (ax)b = a(xb), for all (a, x, b) ∈ A×M ×B.
A differential graded (dg) A−B-bimodule is a pair (M,dM ) consisting of
a graded A−B-bimodule M and a morphism dM : M −→M in GR−K
of degree +1, called the differential, such that dM ◦ dM = 0 and

dM (axb) = dA(a)xb+ (−1)|a|adM (x)b+ (−1)|a|+|x|axdB(b),

for all homogeneous elements a ∈ A, x ∈ M and b ∈ B. This latter
formula is called Leibniz rule (for the the dg bimodule).

As in the case of right or left dg modules, we successively consider
the category A−Gr−B of graded A−B−bimodules with morphisms of
zero degree, the graded category A−GR−B, where HOMA−B(M,N) :=
HomA−GR−B(M,N) is the graded K-module with n-th homogeneous
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component HOMn
A−B(M,N) = HomA−Gr−B(M,N [n]), for each n ∈ Z,

and where g ◦ f := g[p] ◦ f in case f and g are homogeneous elements of
HOMA−B(M,N), with |f | = p. Finally, A−Dg − B will denote the dg
category whose objects are the dg A−B−bimodules with morphisms as
in A−GR −B.

Proposition 5.2. Let A and B be dg algebras with enough idempotents.
The following three terms ‘are’ synonymous:

1) Dg A−B-bimodule;
2) Right dg B ⊗Aop-module;
3) Left dg A⊗Bop-module.

In particular, there are equivalences of dg categories

Dg − (B ⊗Aop) ∼= A−Dg −B ∼= (A⊗Bop)−Dg.

Proof. We define the map Φ: A ⊗ Bop −→ (B ⊗ Aop)op by the rule
Φ(a⊗ bo) = (−1)|a||b|(b⊗ ao)o, for all homogeneous elements a ∈ A and
b ∈ B. We will prove that Φ is an isomorphism of dg algebras, which will
imply that left dg A⊗Bop-module is synonymous of right dg B ⊗Aop-
module using Proposition 4.3. We clearly have that Φ a morphism (of
zero degree) of graded K-modules. Moreover, if a1, a2 ∈ A and b1, b2 ∈ B
are homogeneous elements, then we have equalities

Φ[(a1 ⊗ b
o
1) · (a2 ⊗ b

o
2)] = (−1)|b1||a2|Φ(a1a2 ⊗ b

o
1b
o
2)

= (−1)|b1||a2|+|b1||b2|Φ(a1a2 ⊗ (b2b1)o)

= (−1)|b1||a2|+|b1||b2|+(|a1|+|a2|)(|b1|+|b2|)[b2b1 ⊗ (a1a2)o]o

and

Φ(a1 ⊗ b
o
1) · Φ(a2 ⊗ b

o
2)

= (−1)|a1||b1|+|a2||b2|(b1 ⊗ a
o
1)o · (b2 ⊗ a

o
2)o

= (−1)|a1||b1|+|a2||b2|+(|b1|+|a1|)(|b2|+|a2|)[(b2 ⊗ a
o
2)(b1 ⊗ a

o
1)]o

= (−1)|a1||b1|+|a2||b2|+(|b1|+|a1|)(|b2|+|a2|)+|a2||b1|[b2b1 ⊗ a
o
2a
o
1]o

= (−1)|a1||b1|+|a2||b2|+(|b1|+|a1|)(|b2|+|a2|)+|a2||b1|+|a1||a2|[b2b1⊗(a1a2)o]o.

We compare the signs of the two expressions.

|a2||b1|+ |b1||b2|+ |a1||b1|+ |a1||b2|+ |a2||b1|+ |a2||b2|

= |b1||b2|+ |a1||b1|+ |a1||b2|+ |a2||b2|

= |a1||b1|+ |a2||b2|+ |b1||b2|+ |b1||a2|+ |a1||b2|+ |a1||a2|

+ |a2||b1|+ |a1||a2|
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We conclude that Φ is a (clearly bijective) homomorphism of graded
algebras. In order to prove that it is actually an isomorphism of dg
algebras, we need to check that it is compatible with the differentials.
Indeed, if a ∈ A and b ∈ B are homogeneous elements, then we have

[d ◦ Φ](a⊗ bo) = (−1)|a||b|d[(b⊗ ao)o]

= (−1)|a||b|[(d(b)⊗ ao)o + (−1)|b|(b⊗ d(a)o)o]

= (−1)|a||b|(d(b)⊗ ao)o + (−1)(|a|+1)|b|(b⊗ d(a)o)o

= (−1)(|a|+1)|b|(b⊗ d(a)o)o + (−1)|a|+|a|(|b|+1)(d(b)⊗ ao)o

= Φ[d(a)⊗ bo + (−1)|a|a⊗ d(b)o] = [Φ ◦ d](a⊗ bo)

which shows that Φ ◦ d = d ◦ Φ and, hence, that Φ is an isomorphism of
dg algebras.

If M is a dg A−B-bimodule, then we define a multiplication map M⊗
(B⊗Aop) −→M which takes x⊗ b⊗ao  x(b⊗ao) := (−1)(|x|+|b|)|a|axb,
whenever x ∈ M , b ∈ B and a ∈ A are homogeneous elements. We
claim that this map endows M with a structure of graded right B ⊗Aop-
module. For this we just need to check the equality x[(b1⊗a

o
1)(b2⊗a

o
2)] =

[x(b1 ⊗ a
o
1)](b2 ⊗ a

o
2), for all homogeneous elements a1, a2 ∈ A, b1, b2 ∈ B

and x ∈M . Indeed we have:

x[(b1 ⊗ a
o
1)(b2 ⊗ a

o
2)] = (−1)|a1||b2|x[b1b2 ⊗ a

o
1a
o
2]

= (−1)|a1||b2|+|a1||a2|x[b1b2 ⊗ (a2a1)o]

= (−1)|a1||b2|+|a1||a2|+(|x|+|b1|+|b2|)(|a1|+|a2|)a2a1xb1b2

= (−1)(|x|+|b1|)|a1|+(|a1|+|x|+|b1|+|b2|)|a2|a2a1xb1b2

= (−1)(|x|+|b1|)|a1|a1xb1(b2 ⊗ a
o
2) = [x(b1 ⊗ a

o
1)](b2 ⊗ a

o
2)

We conclude that the above mentioned multiplication map endows M
with a structure of graded right B ⊗Aop-module. We finally check that
the differential dM : M −→ M satisfies Leibniz rule dM [x(b ⊗ ao)] =
dM (x)(b⊗ ao) + (−1)|x|xd(b⊗ ao), for all homogeneous elements x ∈M ,
b ∈ B and a ∈ A. Indeed we have an equality

dM (x)(b⊗ ao) + (−1)|x|xd(b⊗ ao)

= (−1)(|x|+1+|b|)|a|adM (x)b+ (−1)|x|x[d(b)⊗ ao + (−1)|b|b⊗ d(a)o]

= (−1)(|x|+1+|b|)|a|adM (x)b+ (−1)|x|(−1)(|x|+|b|+1)|a|axd(b)

+ (−1)|x|+|b|(−1)(|x|+|b|)(|a|+1)d(a)xb
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= (−1)(|x|+|b|)|a|[(−1)|a|adM (x)b+ (−1)|x|+|a|axd(b)

+ (−1)2(|x|+|b|)d(a)xb]

= (−1)(|x|+|b|)|a|d(axb) = dM [x(b⊗ ao)]

where the last equation holds by the definition of right B ⊗Aop-module
structure on M . Then (M,dM ) is a right dg B ⊗Aop-module.

Obviously, one can reverse the arguments step by step, so that if X is a
right dg B⊗Aop-module, then it is also a dg A−B-bimodule when taken
with multiplication axb = (−1)(|x|+|b|)|a|x(b ⊗ ao), for all homogeneous
elements a ∈ A, x ∈M and b ∈ B.

Remark 5.3. We emphasize the structures of right dg B ⊗Aop-module
and left dg A⊗Bop-module coming from Proposition 5.2 and its proof. If
M is a dg A−B-bimodule and a ∈ A, b ∈ B and x ∈M are homogeneous
elements, then we have:

1) x(b⊗ ao) = (−1)(|x|+|b|)|a|axb;
2) (a⊗ bo)x = (−1)|b||x|axb.

Indeed the first equality appears in the proof of Proposition 5.2 and then,
by Proposition 4.3, we have a structure of left dg (B ⊗ Aop)op-module
on M . Using then the isomorphism Φ: A ⊗ Bop −→ (B ⊗ Aop)op from
the proof of , we make M into a left dg A⊗Bop-module. The reader can
check that this module structure is given by equality 2.

Example 5.4. If A is a dg algebra with enough idempotents, then it is
a dg A− A-bimodule with its canonical multiplication and differential.
We will call it the regular dg bimodule.

6. Homotopy category and derived category

As in the case of small dg categories, given a dg algebra with enough
idempotents A, the 0-cycle category Z0(Dg−A), denoted by C(A) in the
sequel, has two structures to take into account. It is a bicomplete abelian
category, where the exact sequences are those sequences 0→ L −→M −→
N → 0 of morphisms in C(A) which are exact as sequences in Gr − A.
But, even more relevant to us, it has a Quillen exact structure where
the conflations (=admissible short exact sequences) are the short exact
sequences which split in Gr−A (see [2] and [11] for the axioms and details
about exact categories). It is called the semi-split exact structure. We are
now going to give an explicit description of the projective (=injective)
objects for this exact structure.
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Lemma 6.1. Any conflation in C(A) is isomorphic to one whose under-

lying exact sequence in Gr−A is 0→ L
( 1

0 )
−→ L⊕N

( 0 1 )
−→ N → 0, where

the differential of L⊕N is of the form δ =
(
dL s
0 dN

)
, for some morphism

s : N −→ L of degree 1 in GR −A such that dL ◦ s+ s ◦ dN = 0.

Proof. By the definition of conflations, the underlying exact sequence in
Gr−A of such a conflation is always as indicated, where L and N are right

dg A-modules. We initially put δ =
(
d11 d12
d21 d22

)
(( xy )  

(
d11(x)+d12(y)
d21(x)+d22(y)

)
).

Since L
( 1

0 )
−→ L ⊕ N should be an element of Z0(HomA(L,L ⊕ N)), we

should have δ ◦ ( 1
0 )− ( 1

0 ) ◦ dL = 0. From this equality we get that d21 = 0

and d11 = dL. Using that L⊕N
( 0 1 )
−→ N is in Z0(HomA(L⊕N,N)) we

then get dN ◦ ( 0 1 )− ( 0 1 ) ◦ δ, from which we get that d22 = dN . Finally,
from the equality δ◦δ = 0 we get that dL◦s+s◦dN = 0, with s = d12.

Remark 6.2. If f : M −→ N is a morphism in C(A), then one can

consider the split exact sequence 0→ N
( 1

0 )
−→ N ⊕M [1]

( 0 1 )
−→ M [1]→ 0 in

Gr−A. Viewing f as morphism of degree +1 from M [1] to N , Lemma 6.1

makes N⊕M [1] into a right dg A-module with differential δ =
(
dN f
0 dM [1]

)
.

This dg A-module is known as the cone of f and will be denoted by C(f)
in the sequel. Note that we have an associated conflation 0 → N −→
C(f) −→M [1]→ 0 in C(A).

Proposition 6.3. For a right dg A-module P , the following assertions
are equivalent:

1) P is projective with respect to the semi-split exact structure;
2) P is injective with respect to the semi-split exact structure;
3) P is isomorphic to a direct summand of a cone C(1M ), for a right

dg A-module M .

Such a P is acyclic. In particular C(A) is a Frobenius exact category with
the semi-split structure.

Proof. The acyclic condition C(1M ) is well-known. It is then enough to
check that C(1M ) is projective and injective, for each right dg A-module
M . Once this is proved, if P is projective (resp. injective) object, then
the canonical conflation 0 → P [−1] −→ C(1P [−1]) → P → 0 (resp.
0 → P −→ C(1P ) → P [1] → 0) must split in C(A), and the rest of the
proof will be trivial.



M. Saorín 89

By Lemma 6.1, any deflation (=admissible epimorphism) in C(A) can
be identified with ( 0 1 ) : L⊕N −→ N , where L⊕N is made into a right

dg A-module with the differential δ =
(
dL s
0 dN

)
described there. If now

f : C(1M ) −→ N is any morphism in C(A), then, viewed in Gr−A, it is

a morphism f = ( u v ) : M ⊕M [1] −→ N such that ( u v ) ◦
(
dM 1M [1]

0 dM [1]

)
=

dN ◦( u v ). The second component of this equality gives that u+v◦dM [1] =

dN ◦ v, which we express as u = d̂(v), where v is viewed as a morphism of
degree −1 in GR−A and d̂ is the internal differential d̂ : HomA(M,N) −→
HomA(M,N) in the dg category Dg − A. We will now check that the

morphism in Gr−A given in matrix form as α =
(
s◦v 0
d̂(v) v

)
: M⊕M [1] −→

L ⊕ N is a morphism in C(A), α : C(1M ) −→ (L ⊕ N, δ), such that
( 0 1 ) ◦ α = ( u v ) = f . In order to see that α is a morphism in C(A), we
just need to check the equality

(
s ◦ v 0

d̂(v) v

)
◦

(
dM 1M [1]

0 dM [1]

)
=

(
dL s
0 dN

)
◦

(
s ◦ v 0

d̂(v) v

)
.

We check the equality entry by entry:
(11) We need to check that s ◦ v ◦ dM = dL ◦ s ◦ v+ s ◦ d̂(v). But we have

s ◦ d̂(v) = s ◦ (dN ◦ v − (−1)|v|v ◦ dM ) = s ◦ dN ◦ v + s ◦ v ◦ dM and,
using the fact that s ◦ dN = −dL ◦ s, the desired equality follows.

(12) The equality s ◦ v = s ◦ v is clear.
(21) We need to check that d̂(v)◦dM = dN ◦d̂(v). But this is an immediate

consequence of the fact that 0 = d̂(d̂(v)) = dN ◦d̂(v)−(−1)|d̂(v)|d̂(v)◦
dM = dN ◦ d̂(v)− d̂(v) ◦ dM .

(22) We need to check that d̂(v) + v ◦ dM [1] = dN ◦ v. This is a direct

consequence of the equality d̂(v) = dN ◦ v − (−1)|v|v ◦ dM = dN ◦
v + v ◦ dM and the fact that dM [1] = −dM .

Once we know that α is a morphism in C(A), it is clear that ( 0 1 ) ◦ α =
( d̂(v) v ) = f . Therefore C(1M ) is projective with respect to the semi-split
exact structure of C(A). That it is also injective can be proved using a
dual argument.

Definition 6.4. A right dg A-module P is called contractible when it
satisfies any one of the equivalent conditions of Proposition 6.3.

Corollary 6.5. When C(A) is considered with its semi-split (Frobenius)
exact structure, its stable category C(A) =: H(A) is a triangulated category
with arbitrary (set-indexed) coproducts, where the suspension functor is
induced by the shift functor ?[1] of Dg − A and where the triangles are,
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up to isomorphism, the images by the quotient functor C(A) −→ H(A)
of conflations in C(A). Moreover, H(A) is equivalent to the 0-homology
category H0(Dg −A).

Proof. It is a standard fact (see [7, Section I.2]) that the stable category
E of a Frobenius exact category E is a triangulated category whose
suspension functor is the cosyzygy functor and whose triangles are, up to
isomorphism, the images by the projection functor E −→ E of conflations
in E . But, for each object M of C(A), we have a conflation 0→M −→
C(1M ) −→ M [1] → 0, where C(1M ) is contractible. It follows that the
shift functor ?[1] : Dg−A −→ Dg−A (or ?[1] : C(A) −→ C(A)) induces
the suspension functor of C(A) =: H(A).

For the last assertion, we need to prove that a morphism f : M −→ N
in C(A) factors through a contractible dg A-module if, and only if, it is in
the image of the internal differential d : HomA(M,N) −→ HomA(M,N).
To avoid confusions, we will denote by d̂ this internal differential. Indeed,
the morphism f factors through a contractible dg A-module if, and only
if, it factors through the canonical deflation (= admissible epimorphism)

C(1N [−1])
( 0 1 )
−→ N . This happens if, and only if, there is a morphism

σ : M −→ N of degree −1 in GR−A such that ( σf ) : M −→ C(1N [−1]) ≡
N [−1] ⊕ N is a morphism in C(A). This in turn is equivalent to the

existence of such a σ such that the matrix equality
(
dN [−1] 1N

0 dN

)
◦ ( σf ) =

( σf ) ◦ dM holds. That is, f factors through a projective object if, and only
if, there is morphism σ : M −→ N of degree −1 in GR − A such that
dN [−1] ◦ σ + f = σ ◦ dM , which is equivalent to saying that f = d̂(σ).

Definition 6.6. The category H(A) of last corollary is called the ho-
motopy category of A. A morphism f : M −→ N in C(A) is called
null-homotopic when it is a 0-boundary f ∈ B0(HOMA(M,N)) (i.e.
f = dN ◦ σ + σ ◦ dM , for some σ ∈ HOM−1

A (M,N)). This is equivalent to
say that f is mapped onto zero by the projection functor C(A) −→ H(A).

Note that if f : M −→ N is a morphism in C(A) then we get
induced morphisms of K-modules Zk(f) := f|Zk(M) : Zk(M) −→ Zk(N)

and Bk(f) := f|Bk(M) : Bk(M) −→ Bk(N), for all k ∈ Z. They

give rise to functors Zk, Bk : C(A) −→ Mod − K, for all k ∈ Z,
and, gathering all together, to functors Z∗, B∗ : C(A) −→ Gr − K
given by Z∗(M) = ⊕k∈ZZ

k(M) (resp. B∗(M) = ⊕k∈ZB
k(M)) and

Z∗(f) = ⊕k∈ZZ
k(f) (resp. B∗(f) = ⊕k∈ZB

k(f)). These functors are
compatible with the inclusions Bk(?) →֒ Zk(?) and, hence, they give rise
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to functors Hk : C(A) −→ Mod−K (k ∈ Z) and H∗ : C(A) −→ Gr−K,
where Hk(M) = Zk(M)/Bk(M) and H∗(M) = ⊕k∈ZH

k(M). We call
Hk the k-th homology functor and, without mentioning the degree,
we call H∗ the homology functor. If f is null-homotopic, and hence
f = dN ◦ σ + σ ◦ dM , for some morphism σ : M −→ N [−1] in Gr − A,
then Im(Zk(f)) ⊆ Bk(N), for all k ∈ N. This implies that the functor
Hk vanishes on null-homotopic morphisms, for all k ∈ Z, which
implies that we have a uniquely determined functor, still denoted and
called the same, Hk : H(A) −→ Mod −K such that the composition

C(A)
proj
−→ H(A)

Hk

−→ Mod−K is the k-th homology functor. We also get
a corresponding functor H∗ : H(A) −→ Mod−A.

Definition 6.7. A quasi-isomorphism of dg modules is a morphism
f : M −→ N in C(A) = Z0(Dg −A) such that H∗(f) is an isomorphism
in Gr−K. This is equivalent to saying that its cone C(f) is an acyclic
dg A-module (see Remark 6.2).

As in the case of small dg categories and their dg modules, the class
of quasi-isomorphisms is a multiplicative system in H(A) compatible with
the triangulation, in the sense of Verdier (see [23, Section II.2], where we
refer the reader for the concepts and terminology concerning localization
of triangulated categories used in this paper).

Definition 6.8. The localization of H(A) with respect to the class of
quasi-isomorphisms, denoted by D(A), is called the derived category of A.
It is a triangulated category with arbitrary coproducts and the canonical
functor q : H(A) −→ D(A) is a triangulated functor. The shift in D(A) is
induced by that ofH(A) and the triangles in D(A) are, up to isomorphism,
the images by q of triangles in H(A).

Note that, by the universal property of the localized category, since the
functor H∗ : H(A) −→ Gr−K takes quasi-isomorphisms to isomorphism,
there is a uniquely determined functor, still denoted and called the same,

H∗ : D(A) −→ Gr −K such that the composition H(A)
qA−→ D(A)

H∗

−→
Gr−K is the homology functor.

Remark 6.9. What we have done for A can be done also for Aop and for
B⊗Aop, where B is another algebra with enough idempotents, obtaining
the categories C(Aop), H(Aop) and D(Aop) (resp. C(B⊗Aop), H(B⊗Aop)
and D(B ⊗ Aop)). Due to the equivalences of dg categories A − Dg ∼=
Dg − Aop (see Proposition 4.3) and A − Dg − B ∼= Dg(B ⊗ Aop) (see
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Proposition 5.2), we will look at C(Aop) (resp. H(Aop)) and C(B ⊗Aop)
(resp. H(B⊗Aop)) as the 0-cycle categories Z0(A−Dg) and Z0(A−Dg−B)
(resp. 0-homology categories H0(A − Dg) and H0(A − Dg − B)). In
particular, the objects of D(Aop) are considered to be left dg A-modules
and those of D(B ⊗Aop) as dg A−B−bimodules.

As in the case of the derived category of an abelian category (see [23]),
we have:

Proposition 6.10. Let A be a dg algebra with enough idempotents. The
canonical composition functor C(A)

p
−→ H(A)

q
−→ D(A) takes short exact

sequences in C(A) (for the abelian structure) to triangles in D(A).

Proof. Let 0→ L
u
−→M

v
−→ N → 0 be a short exact sequence in C(A)

and fix an inflation (=admissible monomorphism with respect to the
semi-split exact structure of C(A)) j : L −→ I, where I is a contractible
dg A-module. If X is the lower right corner of the pushout of u and j,
then we get the following commutative diagram whose rows are exact
sequences:

0 // L
(uj )

//M ⊕ I //

(1,0)
��

X //

ǫ

��

0

0 // L
u //M

v // N // 0

It then follows that the right square of this diagram is bicartesian and, as

a consequence, that I = Ker[
(
1 0

)
] ∼= Ker(ǫ). Since I is acyclic we get

that ǫ is a quasi-isomorphism and, hence, the three vertical arrows of last
diagram are quasi-isomorphisms. Then the images of the ’rows’ of this
diagram by the canonical functor q ◦ p : C(A) −→ D(A) are isomorphic.
But the upper row of the diagram is a conflation (see [2, Proposition 2.12]),
whose image by q ◦ p ’is’ then a triangle in D(A)(see Definition 6.8).

Recall that if D is a triangulated category with (set-indexed) co-
products, then an object C of D is called compact when the functor
HomD(C, ?) : D −→ Ab preserves coproducts. The category D is said to
be compactly generated when there is a set S of compact objects such that⋂
n∈Z,S∈S Ker(HomD(S, ?[n]) = 0, and D is said to be algebraic when it is

triangle equivalent to the stable category of some Frobenius exact category
(see [7, Section I.2]). As an immediate consequence of [10, Theorem 4.3],
our Theorem 3.1 and its proof, we get:
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Corollary 6.11. For a triangulated category D, the following assertions
are equivalent:

1) D is compactly generated and algebraic.
2) D is triangle equivalent to D(A), for some dg algebra with enough

idempotents A.

7. Derived functors

We call the attention of the reader on the following fact, that we shall
freely use.

Remark 7.1. If in Definition 1.4 one has A = Dg−A and B = Dg−B, for
some dg algebras with enough idempotents A and B, then the homological
condition translate into the fact that τM commutes with the differentials.
That is, that dG(M) ◦ τM = τM ◦ dF (M), for each right dg A-module M .

We start with the following observation

Lemma 7.2. Let A and B be dg algebras with enough idempotents and
F : Dg −A −→ Dg −B be a dg functor. Then there is a natural isomor-
phism ρF,? : F ◦ (?[1]) ∼= (?[1]) ◦ F which is natural on F . That is, such
that if τ : F −→ G is a natural transformation of dg functors, then the fol-
lowing diagram in Dg−B is commutative, for each right dg A-module M :

F (M [1])
ξF,M //

τM [1]

��

F (M)[1]

τM [1]

��
G(M [1])

ξG,M // G(M)[1]

Proof. We consider the morphism

1−
M ∈ HOM−1

A (M,M [1]) = HomGr−A(M,M)

given by 1−
M = 1M . Then

F (1−
M ) ∈ HOM−1

B (F (M), F (M [1])) = HOMGr−B(F (M), F (M [1])[−1]),

and hence F (1−
M )[1] ∈ HomGr−B(F (M)[1], F (M [1])).

Similarly, we have 1+
M ∈ HOM1

A(M [1],M) = HOMGr−A(M [1],M [1])
given by 1+

M = 1M [1], so that

F (1+
M ) ∈ HOM1

B(F (M [1]), F (M)) = HomGr−B(F (M [1]), F (M)[1]).
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We then get that

1F (M [1]) = F (1M [1]) = F (1−
M ◦ 1+

M ) = F (1−
M ) ◦ F (1+

M ).

By the definition of the composition of morphisms in GR−B, we then get

that 1F (M [1]) is equal to the composition F (M [1])
F (1+

M
)

−→ F (M)[1]
F (1−

M
)[1]

−→

F (M [1]). On the other hand, we have F (1+
M )◦(F (1−

M )[1]) = (F (1+
M )[−1]◦

F (1−
M ))[1]. But due to the definition of the composition of morphisms in

GR −B, we have

F (1+
M )[−1]◦F (1−

M ) = F (1+
M )◦F (1−

M )) = F (1+
M ◦1

−
M ) = F (1M ) = 1F (M).

We then have

F (1+
M ) ◦ (F (1−

M )[1]) = 1F (M)[1] = 1F (M)[1],

which shows that F (1+
M ) and (F (1−

M )[1] are mutually inverse isomor-
phisms.

We define ρF,M = F (1+
M ) : F (M [1]) −→ F (M)[1], for each right dg

A-module M . Note that if α : M −→ N is any homogeneous morphism

in Dg − A, then the compositions M [1]
α[1]
−→ N [1]

1+
N−→ N and M [1]

1+
M−→

M
α
−→ N coincide in GR −A. It follows that

F (α)[1] ◦ ρF,M = F (α) ◦ F (1+
M ) = F (α ◦ 1+

M ) = F (1+
N ◦ α[1])

= F (1+
N ) ◦ F (α[1]) = ρF,N ◦ F (α[1]),

when we interpret α[1] as an element of HOM−1
A (M [1], N), using the

definition of the composition of morphisms in GR −A and GR −B and
the functoriality of F . It follows that ρ = (ρF,N )N∈Dg−A defines a natural
isomorphism F ◦ (?[1]) ∼= (?[1]) ◦ F .

It remains to check the commutativity of the diagram in the statement,
whenever τ : F −→ G is a natural transformation of dg functors. But we
have τM [1] ◦ ρF,M = τM [1] ◦ F (1+

M ) = τM ◦ F (1+
M ), when viewing F (1+

M )
as an element of HOM1

B(M [1],M). The naturality of τ then gives that
τM [1] ◦ ρF,M = G(1+

M ) ◦ τM [1] = ρG,M ◦ τM [1], as desired.

Proposition 7.3. Let A be a dg algebra with enough idempotents. The
canonical functor q = qA : H(A) −→ D(A) has a left adjoint and a right
adjoint, both of them triangulated and fully faithful.
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Proof. Keller proved (see [10, Theorems 3.1 and 3.2]) that, for each ob-
ject M of H(A), we have quasi-isomorphisms π = πM : PM −→ M and
ι = ιM : M −→ IM in H(A), where PM and IM are right dg A-modules
such that the functors HomH(A)(PM , ?) and HomH(A)(?, IM ) vanish on
acyclic complexes. By a standard argument, one sees that this last prop-
erty implies that the maps HomH(A)(PM , N) −→ HomD(A)(PM , N) and
HomH(A)(N, IM ) −→ HomD(A)(N, IM ) defined by q are both bijective,
for any object N of H(A).

We now define the left adjoint Π: D(A) −→ H(A) as follows. For
each right dg A-module M , we fix a quasi-isomorphism πM : PM −→M
as above, and define Π(M) = PM on objects. If now f : M −→ N is a
morphism in D(A), then π−1

N ◦ f ◦ πM ∈ HomD(A)(PM , PN ). By the last
paragraph, we then get a unique morphism α : PM −→ PN in H(A) such
that q(α) = π−1

N ◦f ◦πM . We define Π(f) = α. It is routine to check that in
this way we have defined a functor Π: D(A) −→ H(A). Moreover the map
HomH(A)(Π(M), N) −→ HomD(A)(M,N) = HomD(A)(M, q(N)) taking

β  q(β) ◦π−1
M is bijective and natural on both arguments. Then Π is left

adjoint to q. The co-unit of this adjunction is just π : Π◦q −→ 1H(A), where
πM : (Π ◦ q)(M) = PM −→M is the quasi-isomorphism fixed above. The
unit λ : 1D(A) −→ q ◦Π is given by λM = π−1

M : M −→ (q ◦Π)(M) = PM .
It follows that λ is a natural isomorphism, which implies that Π is fully
faithful (see [8, Proposition II.7.5]). On the other hand, it is well-known
that the left adjoint of a triangulated functor is also triangulated (see
[16, Lemma 5.3.6]).

The existence of a right adjoint Υ: D(A) −→ H(A) acting on objects
as Υ(M) = IM is proved by an argument dual to the one in the previous
paragraphs.

Definition 7.4. A right dg A-module P (resp. I) is called homotopi-
cally projective (resp. injective) if the functor HomH(A)(P, ?) : H(A) −→
Mod − K (resp. HomH(A)(?, I) = H(A)op −→ Mod − K) vanishes on
acyclic complexes. By the proof of Proposition 7.3, if Π and Υ are the left
and right adjoints of q : H(A) −→ D(A), respectively, then the essential
image Im(Ψ) (resp. Im(Υ)) consists of homotopically projective (resp.
injective) objects. We will call Π and Υ the homotopically projective reso-
lution functor and homotopically injective resolution functor, respectively.
Given a right dg A-module M , a homotopically projective resolution (resp.
homotopically injective resolution) of M will be a quasi-isomorphism
π : P −→ M (resp. ι : M −→ I), where P is a homotopically projective
(resp. injective) right dg A-module.
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Remark 7.5. Note that we have

Hk(HOMA(M,N)) = (H0 ◦ (?[k])(HOMA(M,N))

= H0(HOMA(M,N [k])) = HomH(A)(M,N [k]),

for all k ∈ Z. Then saying that P (resp. Y ) is a homotopically projective
(resp. homotopically injective) dg A-module is equivalent to saying that
the dg K-module HOMA(P,N) (resp. HOMA(N,Y )) is acyclic whenever
N is an acyclic dg A-module.

Example 7.6. If (ei)i∈I is a distinguished family of orthogonal idempo-
tents of A, then all right dg A-modules eiA are homotopically projective.

Proof. It is a consequence of Remark 3.2 and [10, Theorem 3.1].

Let us consider dg functors F : A −→ B and G : B −→ A between
dg categories. By Examples 1.2 and 1.3, we then have dg functors
B(F (?), ?) : Aop ⊗ B −→ Dg −K and B(?, G(?)) : Aop ⊗ B −→ Dg −K.

Definition 7.7. In the situation of last paragraph, we say that the
pair (F,G) is a dg adjunction or that F is left dg adjoint to G or that
G is right dg adjoint to F when there is a natural isomorphism of dg

functors η : B(F (?), ?)
∼=
−→ A(?, G(?)). Due to Lemma 1.1 and Defini-

tion 1.4, this means that, for each pair of objects (A,B) ∈ A×B, the map
ηA,B : B(F (A), B) −→ A(A,G(B)) is an isomorphism in Gr−K, natural
on A and B, such that ηA,B(dB(β)) = dA(ηA,B(β)), for each homogeneous
element β ∈ B(F (A), B).

Lemma 7.8. Let A and B be dg algebras with enough idempotents. If
F : Dg − A −→ Dg − B (resp. F : (Dg − A)op −→ Dg − B) is a dg
functor, then the induced functor F = Z0F : Z0(Dg − A) ∼= C(A) −→
C(B) = Z0(Dg − B) (resp. F := Z0F : Z0((Dg − A)op) ∼= C(A)op −→
C(B) = Z0(Dg − B) ) preserves conflations. If moreover F takes con-
tractible dg modules to contractible dg modules, then the induced func-
tor F := H0F : H0(Dg − A) ∼= H(A) −→ H(B) = H0(Dg − B) (resp.
F := H0F : H0((Dg − A)op) ∼= H(A)op −→ H(B) = H0(Dg − B) ) is
triangulated. When F is part of a dg adjunction, it takes contractible dg
modules to contractible dg modules.

Proof. We prove the covariant part of the lemma, the contravariant
part being entirely similar. Since F is a dg functor the induced func-
tor Z0F : Z0(Dg − A) = C(A) −→ Z0(Dg − B) = C(B) preserves exact
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sequences which split in in the underlying graded categories. That is, Z0F
takes conflations to conflations. As a consequence, H0F takes triangles
to triangles. The initial assertion then follows from [17, Lemma 2.27],
bearing in mind that, by Lemma 7.2, we also have a natural isomorphism
H0F ◦ (?[1]) ∼= (?[1]) ◦H0F . To end the proof, it will be enough to show
that if (F,G) is a dg adjunction, then also (Z0F,Z0G) is an adjunction.
Indeed, if this is proved and if (G,F ) is a dg adjunction, then we will
have that (Z0G,Z0F ) is an adjunction. In any of the two situations,
[17, Lemma 2.27] again gives that Z0F preserves projective (=injective)
objects with respect to the semi-split exact structures, which amounts to
saying that F preserves contractible dg modules.

Let η : HOMB(F (?), ?)
∼=
−→ HOMA(?, G(?)) be a graded natural iso-

morphism which commutes with the differentials. Bearing in mind that,
for each M ∈ Dg−A and X ∈ Dg−B, we have (Z0F )(M) = F (M) and
(Z0G)(X) = G(X), we then get an isomorphism of K-modules

HomC(B)((Z
0F )(M), X) HomC(A)(M, (Z0G)(X))

Z0(HOMB(F (M), X))
Z0(ηM,X)

// Z0(HOMA(M,G(X))),

which is natural on M and X since so is η.

The following functors will be very important in the sequel.

Definition 7.9. Let A and B be dg algebras with enough idempotents
and let Π = ΠA : D(A) −→ H(A) and Υ = ΥA : D(A) −→ H(A) be
the homotopically projective and the homotopically injective resolution
functors, respectively.

1) If F : Dg−A −→ Dg−B is a dg functor which preserves contractible
dg modules and we also put H0F = F : H(A) −→ H(B), then:

(a) The composition RF : D(A)
Υ
−→ H(A)

F
−→ H(B)

qB−→ D(B) is
called the (total) right derived functor of F .

(b) The composition LF : D(A)
Π
−→ H(A)

F
−→ H(B)

qB−→ D(B) is
called the (total) left derived functor of F .

2) If F : (Dg − A)op −→ Dg − B is a dg functor which preserves

contractible dg modules, then the composition RF : D(A)op Πo

−→

H(A)op F
−→ H(B)

qB−→ D(B) is called the (total) right derived
functor of F .
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Remark 7.10. If F : (Dg − A)op −→ Dg − B is a dg functor as in last
definition, we can interpret it also as dg functor F o : Dg−A −→ (Dg−B)op.

We then have that RF = (LF o)o, where LF o is the composition D(A)
Π
−→

H(A)
F o

−→ H(B)op
qo

B−→ D(B)op. This is the reason for which we have not
talked about left derived functors of contravariant dg functors.

Remark 7.11. If in any of the situations of last definition, the dg functor
F also preserves acyclic dg modules, then the induced functor on the
homotopy categories H0F preserves quasi-isomorphisms. Then one gets
a well-defined unique triangulated functor F : D(A) −→ D(B) (resp.
F : D(A)op −→ D(B)) such that qB ◦H

0F ∼= F ◦ qA (resp. qB ◦H
0F ∼=

F ◦ qoA). It immediately follows that there are natural isomorphisms
LF ∼= F ∼= RF .

If F,G : Dg −A −→ Dg −B are dg functors and τ : F −→ G is a ho-
mological natural transformation, then, for each right dg A-module M , we
have that τM : F (M) −→ G(M) belongs to Z0(HOMB(F (M), G(M)) =
HomC(B)(F (M), G(M)). We then get a morphism, still denoted the same,
τM : (H0F )(M) = F (M) −→ G(M) = (H0G)(M) in H(B). It is seen
in a straightforward way that, when M varies, the τM give a natural
transformation H0F −→ H0G. As a consequence we get induced natural
transformations

q(τΠA(?)) : qB ◦H
0F ◦Π = LF −→ LG = qB ◦H

0F ◦Π

and

q(τΥA(?)) : qB ◦H
0F ◦Υ = RF −→ RG = qB ◦H

0F ◦Υ.

An analogous fact holds for when F and G are dg functors (Dg−A)op −→
Dg −B.

Proposition 7.12. Let A and B be dg algebras with enough idempotents.
The following assertions hold:

1) If F,G : Dg−A −→ Dg−B are dg functors which take contractible
dg modules to contractible dg modules and τ : F −→ G is a homo-
logical natural transformation of dg functors, then:
(a) qB(τΠ(?)) : LF −→ LG is a natural transformation of triangu-

lated functors D(A) −→ D(B).
(b) qB(τΥ(?)) : RF −→ RG is a natural transformation of triangu-

lated functors D(A) −→ D(B).



M. Saorín 99

2) If F,G : (Dg − A)op −→ Dg − B are dg functors which take
contractible dg modules to contractible dg modules and τ : F −→ G
is a homological natural transformation of dg functors, then
qB(τΠo

A
()) : RF −→ RG is natural transformation of triangulated

functors D(A)op −→ D(B).
Abusing of notation, all these natural transformations of triangulated

functors will be still denoted by τ . Moreover, if in assertion 1.a (resp.
1.b, resp. 2), M is a right dg A-module such that τΠA(M) (resp. τΥA(M),
resp. τΠo

A
(M)) is a quasi-isomorphism (e.g. an isomorphism in H(B) or

Dg −B), then the evaluation of τ : LF −→ LG (resp. τ : RF −→ RG in
1.b) and 2.b) at M is an isomorphism in D(B).

Proof. The proof in the three cases resemble each other very much. We just
prove 1.b. The paragraph preceding this proposition shows that we have
an induced natural transformation qB(τΠA()) : LF = qB ◦H

0F ◦ΠA −→
qB ◦ H

0G ◦ ΠA = LG. All we need to prove is that it is a natural
transformation of triangulated functors, for which it is enough to check
that the induced natural transformation τ : H0F −→ H0G is a natural
transformation of triangulated functors. Indeed, since ΠA : D(A) −→ H(A)
and qB : H(B) −→ D(B) are triangulated functors, it will follow that
qB(τΠ(?)) : LF = qB ◦ H

0F ◦ ΠA −→ qB ◦ H
0G ◦ ΠA = LG is natural

transformation of triangulated functors, as it is desired.

If L
α
−→ M

β
−→ N

γ
−→ L[1] (*) is a triangle in H(A), then we may

assume that it comes from a conflation 0 → L
α
−→ M

β
−→ N → 0 in

C(A), where M is the cone of some morphism γ[−1] : N [−1] −→ L. If
now ξF : F ◦ (?[1]) ∼= (?[1]) ◦ F and ξG : G ◦ (?[1]) ∼= (?[1]) ◦ G are the
natural isomorphisms of Lemma 7.2, then the image of the triangle (*)
by H0F is

F (L)
F (α)
−→ F (M)

F (β)
−→ F (N)

ξF,L◦F (γ)
−→

and the corresponding is true when replacing F by G. Due to the men-
tioned Lemma 7.2, we then have a commutative diagram in H(B) whose
rows are triangles:

F (L)
F (α) //

τL

��

F (M)
F (β) //

τM

��

F (N)
ξF,L◦F (γ)

//

τN

��

F (L)[1]

τL[1]
��

G(L)
G(α) // G(M)

G(β) // G(N)
ξG,L◦G(γ)

// G(L)[1]

which shows that qB(τΠ(?)) : H0F −→ H0G is a natural transformation
of triangulated functors.
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The last statement is a direct consequence of the definition of the
triangulated transformation τ since the functor q? : H(?) −→ D(?) takes
quasi-isomorphisms to isomorphisms.

Proposition 7.13. Let A and B be dg algebras with enough idempotents.
The following assertions hold:

1) If (F : Dg−A −→ Dg−B,G : Dg−B −→ Dg−A) is a dg adjunction
of dg functors, then (LF : D(A) −→ D(B),RG : D(B) −→ D(A))
is an adjunction of triangulated functors.

2) If (F o : Dg − A −→ (Dg − B)op, G : (Dg − B)op −→ Dg − A)
is a dg adjunction of dg functors, then ((RF )o : D(A) −→
D(B)op,RG : D(B)op −→ D(A)) is an adjunction of triangulated
functors.

Proof. In the proof of Lemma 7.8 we have seen that, in the situation of as-
sertion 1, one has that (Z0F : C(A) −→ C(B), Z0G : C(B) −→ C(A)) is an
adjoint pair. A similar argument proves that, in the situation of assertion 2,
one has that (Z0(F o) = (Z0F )o : C(A) −→ C(B)op, Z0G : C(B)op −→
C(A)) is an adjoint pair.

With the obvious adaptation, [17, Lemma 2.27 and Proposition 2.28]
and their proofs show that assertion 1 holds. As for assertion 2, note
that [17, Lemma 2.27] also shows that (H0(F o) = (H0F )o : H(A) −→
H(B)op, H0G : H(B)op −→ H(A)) is an adjoint pair of triangulated func-
tors. Moreover, the adjoint pair (ΠB : D(B) −→ H(B), qB : H(B) −→
D(B)) implies that the pair (qoB : H(B)op −→ D(B)op,Πo

B : D(B)op −→
H(B)op) is also an adjoint pair. It then follows that the composition

(RF )o : D(A)
ΠA−→ H(A)

(H0F )o

−→ H(B)op
qo

B−→ D(B)op (see Remark 7.10) is

left adjoint to the composition D(A)
qA←− H(A)

H0G
←− H(B)op

Πo
B←− D(B)op,

which is precisely RG.

Proposition 7.14. Let A, B and C be dg algebras with enough idem-
potents and denote by Π? : D(?) −→ H(?) and Υ? : D(?) −→ H(?) the
homotopically projective and homotopically injective resolution functors,
for ? = A,B,C. Suppose that all the dg functors appearing below preserve
contractible dg modules. The following assertions hold:

1) Let G : Dg − A −→ Dg − B and F : Dg − B −→ Dg − C be dg
functors. Then:
(a) There is a canonical natural transformation of triangulated

functors ρ : R(F ◦ G) −→ RF ◦ RG. When M is a right dg
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A-module such that G(ΥA(M)) is homotopically injective, then
ρM is an isomorphism.

(b) There is a canonical natural transformation of triangulated
functors σ : LF ◦ LG −→ L(F ◦G). When M is a right dg A-
module such that G(ΠA(M)) is homotopically projective, then
σM is an isomorphism.

2) If G : (Dg − A)op −→ Dg − B and F : (Dg − B)op −→ Dg − C
are dg functors, then there is a canonical natural transformation
τ : L(F ◦ Go) −→ RF ◦ (RG)o of triangulated functors D(A) −→
D(C). When M is a right dg A-module such that G(ΠA(M)) is
homotopically projective, then τM is an isomorphism.

3) If G : (Dg − A)op −→ Dg − B and F : Dg − B −→ Dg − C are
dg functors, then there is a canonical natural transformation of
triangulated functors ω : LF ◦RG −→ R(F ◦G). When M is a right
dg A-module such that G(ΠA(M)) is homotopically projective, ωM
is an isomorphism.

4) If G : Dg − A −→ Dg − B and F : (Dg − B)op −→ Dg − C are
dg functors, then there is a canonical natural transformation of
triangulated functors θ : R(F ◦Go) −→ RF ◦ (LG)o. When M is a
right dg A-module such that G(ΠA(M)) is homotopically projective,
θM is an isomorphism.

Proof. The arguments for the proofs are all very much alike and rely
on the explicit definition of right and left derived functors in each case.
We just provide the proof of assertions 1.a and 2, leaving the rest as an
exercise to the reader.

1.a) We consider the unit λ : 1H(B) −→ ΥB ◦ qB of the adjunction
(qB,ΥB). We then get a canonical natural transformation of triangulated
functors

ρ := (qC ◦ F )(λ(G◦Υ)(?)) : R(F ◦G) = qC ◦ F ◦G ◦ΥA =
qC ◦ F ◦ 1H(B) ◦G ◦ΥA −→ qC ◦ F ◦ΥB ◦ qB ◦G ◦ΥA = RF ◦ RG,

where F = H0F : H(B) −→ H(C) and G = H0G : H(A) −→ H(B).
If now G(ΥA)(M) is homotopically injective, then λ(G◦ΥA)(M) : (G ◦

ΥA)(M)
∼=
−→ (ΥB ◦ qB ◦ G ◦ ΥA)(M) is an isomorphism, which implies

that ρM = (qC ◦ F )(λ(G◦ΥA)(M)) is also an isomorphism.

2) The adjunction (qoB : H(B)op −→ D(B)op,Πo
B : D(B)op−→H(B)op)

yields a unit µ : 1H(B)op −→ Πo
B◦q

o
B . Then we get a natural transformation

of triangulated functors
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σ := (qC ◦ F )(µ(Go◦ΠA)(?)) : L(F ◦Go) = qC ◦ F ◦G
o ◦ΠA =

qC ◦ F ◦ 1H(B)op ◦Go ◦ΠA −→ qC ◦ F ◦Πo
B ◦ q

o
B ◦G

o ◦ΠA = RF ◦ (RG)o.

If now G(ΠA(M)) is homotopically projective, then µ(Go◦ΠA)(M) : (Go ◦
ΠA)(M) −→ (Πo

B ◦ q
o
B ◦G

o ◦ΠA)(M) is an isomorphism in H(B)op, which
implies that σM = (qC ◦ F )(µ(Go◦ΠA)(M)) is an isomorphism.

Suppose now that A,B,C are dg algebras with enough idempotents
and that F : (Dg −A)⊗ (Dg − C) −→ Dg −B is a dg functor. We then
have induced functors

Z0F : Z0((Dg −A)⊗ (Dg − C)) −→ Z0(Dg −B) = C(B)

and

H0F : H0((Dg −A)⊗ (Dg − C)) −→ H0(Dg −B) = H(B).

On the other hand, the objects of C(A) ⊗ C(B) are those of Z0((Dg −
A)⊗ (Dg−C)) (i.e. those of (Dg−A)⊗ (Dg−C)). But if f is morphism
in C(A) and g is a morphism in C(C), then, viewed as a morphism in
(Dg−A)⊗(Dg−C), we have that f⊗g is a 0-cycle and, hence, a morphism
of Z0((Dg −A)⊗ (Dg − C)). Indeed we have

d(f ⊗ g) = d(f)⊗ g + (−1)|f |f ⊗ d(g) = 0,

because f and g are morphisms in Z0(Dg−A) = C(A) and Z0(Dg−C) =
C(C), respectively. The assignments (M,X) (M,X) and f ⊗g  f ⊗g
give a functor j : C(A) ⊗ C(C) −→ Z0((Dg − A) ⊗ (Dg − C)) and a
composition

C(A)⊗ C(C)
j
−→ Z0((Dg −A)⊗ (Dg − C))

Z0F
−→ C(B).

Abusing the notation, we still denote by Z0F this composition functor.
Considering now f and g as above, suppose that either f or g is null-
homotopic. We claim that j(f ⊗ g) = f ⊗ g is a 0-boundary of (Dg−A)⊗
(Dg − C). Indeed if, say, g = d(g′) then

d(f ⊗ g′) = d(f)⊗ g′ + (−1)|f |f ⊗ d(g′) = f ⊗ g

since d(f) = 0 and |f | = 0. A similar argument applies if we assume
f = d(f ′). This means that we have an induced functor j : H(A) ⊗
H(C) −→ H0((Dg −A)⊗ (Dg − C)) and a corresponding composition

H(A)⊗H(C)
j
−→ H0((Dg −A)⊗ (Dg − C))

H0F
−→ H(B),
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which we shall still denote by H0F .
A procedure similar to the one depicted in the previous paragraph can

be undertaken with a dg functor F : (Dg−A)op ⊗ (Dg−C) −→ Dg−B,
getting then functors Z0F : C(A)op⊗C(C) −→ C(B) and H0F : H(A)op⊗
H(C) −→ H(B).

Proposition 7.15. Let A,B,C be dg algebras with enough idempotents
and let F : (Dg−A)⊗ (Dg−C) −→ Dg−B (resp. F : (Dg−A)op⊗ (Dg−
C) −→ Dg −B) be a dg functor. The following assertions hold:

1) The functor F = Z0F : C(A)⊗C(C) −→ C(B) (resp. Z0F : C(A)op⊗
C(C) −→ C(B)) preserves conflations on each variable.

2) If F (P,X) and F (M,Q) are contractible dg B-modules whenever
P and Q are a contractible dg A-module and a contractible dg C-
module, respectively, then the functor F = H0F : H(A)⊗H(C) −→
H(B) (resp. F = H0F : H(A)op ⊗H(C) −→ H(B)) is triangulated
on both variables.

Proof. Assertion 1 is a direct consequence of Lemma 7.8 bearing in
mind Lemma 1.1. Moreover, if M is fixed, then the dg functor FM =
F (M, ?) : (Dg − C) −→ (Dg −B) takes contractible dg modules to con-
tractible dg modules, which implies by Lemma 7.8 that H0FM : H(C) −→
H(B) is a triangulated functor. But we clearly have H0FM = H0F (M, ?),
which says that F = H0F is triangulated on the second variable. A sym-
metric argument proves that it is triangulated on the first variable.

Our next goal is to see that, when a dg functor is part of a dg ‘bifunctor’
and certain conditions are satisfied, also its derived functor is part of a
bifunctor which is triangulated on both variables.

Definition 7.16. Let A,B,C be dg algebras with enough idempotents.
1) If F : (Dg−A)⊗(Dg−C) −→ Dg−B is a dg functor which preserves

contractible dg modules in each variable, then we put

(a) LF : D(A)⊗D(C)
ΠA⊗ΠC−→ H(A)⊗H(C)

H0F
−→ H(B)

qB−→ D(B).

(b) RF : D(A)⊗D(C)
ΥA⊗ΥC−→ H(A)⊗H(C)

H0F
−→ H(B)

qB−→ D(B)
2) If F : (Dg − A)op ⊗ (Dg − C) −→ Dg − B be a dg functor which

preserves contractible dg modules on each variable, then we put

RF : D(A)op ⊗D(C)
Πo

A
⊗ΥC
−→ H(A)⊗H(C)

H0F
−→ H(B)

qB−→ D(B).
By their definition all these functors are triangulated in each variable.

For each dg functor F : (Dg − A)⊗ (Dg − C) −→ Dg − B as in last
definition, fixing an objectM in Dg−A andX in Dg−C, we get dg functors
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FM = F (M, ?) : Dg − C −→ Dg − B and FX = F (?, X) : Dg − A −→
Dg − B. It is natural to ask whether we have natural isomorphisms
LF (M, ?) ∼= LFM and LF (?, X) ∼= LFX , and similarly for the right
derived versions. For this, we have the following criterion:

Proposition 7.17. Let A,B,C be dg algebras with enough idempotents.
The following assertions hold:

1) Let F : (Dg −A)⊗ (Dg − C) −→ Dg −B be a dg functor. Then
(a) if F (?, Q) : Dg − A −→ Dg − B preserves acyclic dg mod-

ules whenever Q is homotopically projective (resp. homotopi-
cally injective), then there is a natural isomorphism of tri-
angulated functors LF (M, ?) ∼= LFM : D(C) −→ D(B) (resp.
RF (M, ?) ∼= RFM : D(C) −→ D(B)), for each right dg A-
module M ,

(b) if F (P, ?) : Dg − A −→ Dg −B preserves acyclic dg modules
whenever P is homotopically projective (resp. homotopically
injective), then there is a natural isomorphism of triangulated
functors LF (?, X) ∼= LFX : D(A) −→ D(B), for each right dg
C-module X.

2) Let F : (Dg −A)op ⊗ (Dg − C) −→ Dg −B be a dg functor. Then
(a) if F (?, Q) : (Dg − A)op −→ Dg − B preserves acyclic dg

modules whenever Q is homotopically injective, then there is
a natural isomorphism of triangulated functors RF (M, ?) ∼=
RFM : D(C) −→ D(B), for each right dg A-module M .

(b) if F (P, ?) : Dg − C −→ Dg − B preserves acyclic dg mod-
ules whenever P is homotopically projective, then there is
a natural isomorphism of triangulated functors RF (?, X) ∼=
RFX : D(A)op −→ D(B) for each right dg C-module X.

Proof. We will prove 1.b and 2.a, and leave to the reader the other ones
whose proof follows entirely similar patterns. For 1.b, note that the action
of LF (?, X) and LFX on objects is given by

LF (?, X)(M) = LF (M,X) = F (ΠA(M),ΠC(X))

and

LFX(M) = FX(ΠA(M)) = F (ΠA(M), X).

Moreover if f : M −→ N is a morphism in D(A), then

LF (?, X)(f) = LF (f, 1X) = F (ΠA(f),ΠC(1X)) = F (ΠA(f), 1ΠC(X)).
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It follows that we can identify LF (?, X) = LFΠC(X), where FΠC(X) =
F (?,ΠC(X)) : Dg−A −→ Dg−B is the ‘left part’ of F when the fixed sec-
ond variable is ΠC(X). We fix now the homotopically projective resolution
map π : ΠC(X) −→ X. Note that π is a morphism in H(C), and hence the
image of a morphism in C(C) by the canonical functor C(C) −→ H(C).
Fixing a lift, we can think of π as a morphism in C(C). We claim that
π∗ : FΠC(X) = F (?,ΠC(X)) −→ F (?, X) = FX is a homological natural
transformation of dg functors Dg − A −→ Dg − B. Indeed note that,
for a fixed M in Dg −A, we have (π∗)M : F (M,ΠC(X)) −→ F (M,X) is
the morphism (π∗)M = F (1M , π). If now f : M −→ N is a homogeneous
morphism in Dg −A, then

FΠC(X)(f) = F (f, 1ΠC(X)) = F (M,ΠC(X)) −→ F (N,ΠC(X))

while
FX(f) = F (f, 1X) : F (M,X) −→ F (N,X).

We then have an equality

FX(f) ◦ (π∗)M = F (f, 1X) ◦ F (1M , π)

= F (f, π)

= (−1)|f ||π|F (1N , s) ◦ F (f, 1ΠC(X))

= (π∗)N ◦ F
ΠC(X)(f),

using Lemma 1.1 and the fact that |π| = 0. It follows that π∗ is a
natural transformation of K-linear graded functors. In order to see
that it is homological it remains to check that (π∗)M = F (1M ⊗ π) ∈
Z0(HOMB(F (M,ΠC(X))), F (M,X)), for all M in Dg − A. But this is
clear since F (1M ⊗π) is the image of 1M ⊗π by the functor Z0F : C(A)⊗
C(C) −→ C(B) (see Proposition 7.15).

Once we know that π∗ : FΠC(X) −→ FX is a homological natural
transformation of dg functors, Proposition 7.12 says that we have an
induced natural transformation π∗ : LFΠC(X) −→ LFX of triangulated
functors D(A) −→ D(B). But, when evaluating at an object M of D(A),
we have that

(π∗)M : LFΠC(X)(M)

= F (ΠA(M),ΠC(X)) −→ F (ΠA(M), X) = LFX(M)

is an isomorphism in D(B). Indeed, by hypothesis F (ΠA(M), ?) : Dg −
C −→ Dg − B preserves acyclic dg modules, which implies that the
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induced triangulated functor F (ΠA(M), ?) : H0(Dg − C) = H(C) −→
H(B) = H0(Dg − B) preserves quasi-isomorphisms. It follows that
(π∗)M = F (1ΠA(M), π) : F (ΠA(M),ΠC(X)) −→ F (ΠA(M), X) is a quasi-
isomorphism in H(B), which implies that (after applying qB : H(B) −→
D(B)) it becomes an isomorphism in D(B). Then (π∗) : LFΠC(X) −→
LFX is a natural transformation of triangulated functor which is point-
wise an isomorphism. Therefore it is a natural isomorphism. In particular
LF (?, X) = LFΠC(X) is naturally isomorphic to LFX as triangulated
functors.

The proof of 2.a follows an entirely similar pattern. We outline the
argument, leaving the details to the reader. We have that RF (M, ?)(X) =
F (ΠA(M),ΥA(X)) and RFM (X) = FM (Υ(X)) = F (M,Υ(X)). We can
then identify RF (M, ?) = RFΠA(M), where FΠA(M) = F (ΠA(M), ?) : Dg−
C −→ Dg−B. If now π : Π(M) −→M is homotopically projective resolu-
tion, which we view as a morphism in C(A), then π∗ : FM = F (M, ?) −→
FΠA(M) = F (ΠA(M), ?) is a homological natural transformation of dg
functors Dg − C −→ Dg − B. The associated natural transformation
of triangulated functor π∗ : RFM −→ RFΠA(M), when evaluated at an
object X of D(C), is (π∗)X = F (π, 1Υ(X)) : RFM (X) = F (M,Υ(X)) −→
F (ΠA(M),Υ(X)). This is a quasi-isomorphism of dg B-modules, and
hence an isomorphism in D(B), for each X ∈ D(C). It follows that π∗ is

a natural isomorphism RFM
∼=
−→ RFΠA(M) = RF (M, ?).

8. The classical dg bifunctors

All throughout this section, we fix dg algebras with enough idempotents
A, B and C and fix a distinguished family of orthogonal idempotents
(ei)i∈I in B, (ǫj)j∈J in A and (νk)k∈K in C, all of which are homogeneous of
degree zero and killed by the differential. If M a dg C−A-bimodule and X
is a dg B−A-bimodule, the space of morphisms HOMA(M,X) in Dg−A
has a canonical structure of non-unitary graded B − C-bimodule, where
the multiplication map is identified by the rule (bfc)(m) = bf(cm), for
all homogeneous elements b ∈ B, f ∈ HOMA(M,X), c ∈ C and m ∈M .
To avoid the non-unitary problem, we consider the largest unitary graded
B − C−sub-bimodule

HOMA(M,X) = BHOMA(M,X)C

of HOMA(M,X). Note that, expressed in terms of the distinguished
families of orthogonal idempotents, HOMA(M,X) consists of those f ∈
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HOMA(M,X) such that Im(f) ⊆ ⊕i∈I′eiX, for some finite subset I ′ ⊆ I,
and f(νkM) = 0, for all but finitely many k ∈ K. We can say much more
about the just defined graded B − C-bimodule

Lemma 8.1. The differential d : HOMA(M,X) −→ HOMA(M,X) sat-
isfies Leibniz equality

d(bfc) = dB(b)fc+ (−1)|b|bd(f)c+ (−1)|b|+|f |bfdC(c),

for all homogeneous elements b ∈ B, f ∈ HOMA(M,X) and c ∈ C.
Moreover, it satisfies that d(HOMA(M,X)) ⊆ HOMA(M,X), so that, en-
dowed with the restricted differential, HOMA(M,X) becomes a (unitary!)
dg B − C-bimodule.

Proof. We let act both members of the desired Leiniz equality on a
homogeneous element m ∈M . We then have

d(bfc)(m) = [dX ◦ (bfc)− (−1)|bfc|(bfc) ◦ dM ](m)

= dX(bf(cm))− (−1)|b|+|f |+|c|bf(cdM (m))

= dB(b)f(cm) + (−1)|b|bdX(f(cm))− (−1)|b|+|f |+|c|bf(cdM (m))

= dB(b)f(cm) + (−1)|b|b(dX ◦ f − (−1)|f |f ◦ dM )(cm)

+ (−1)|b|+|f |bf(dM (cm)− (−1)|c|cdM (m))

= dB(b)f(cm) + (−1)|b|bd(f)(cm) + (−1)|b|+|f |bf(dC(c)m)

= [dB(b)fc+ (−1)|b|bd(f)c+ (−1)|b|+|f |bfdC(c)](m).

To prove the last statement, take a homogeneous element
f ∈ HOMA(M,X). We have d(f) = dX ◦ f − (−1)|f |f ◦dM , which implies
that Im(d(f)) ⊆ dX(Im(f)) + Im(f). But if I ′ ⊆ I is any finite subset
such that Im(f) ⊆ ⊕i∈I′eiX, then Im(d(f)) ⊆ ⊕i∈I′eiX. This is because
dX(eiX) ⊆ eiX since dB(ei) = 0 for all i ∈ I ′. By analogous reason,
we have that dM (νkM) ⊆ νkM . This implies that if K′ ⊆ K is any
finite subset such that f(νkM) = 0, for all k ∈ K \ K′, then we also
have d(f)(νkM) = 0, for all k ∈ K \ K′. As a consequence, we get that
d(f) ∈ HOMA(M,X).

We can now prove

Proposition 8.2. The assignment (M,X) HOMA(M,X) is the def-
inition on objects of a dg functor HOMA(?, ?) : (C −Dg − A)op ⊗ (B −
Dg −A) −→ B −Dg − C.
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Proof. We have obvious restriction of scalars functors ρ : C −Dg−A −→
Dg − A and ρ′ : B − Dg − A −→ Dg − A, both of which are clearly dg
functors since when M and N are dg C −A−bimodules, the differential
d : HOMR(M,N) −→ HOMR(M,N) is ‘the same’ when taking R = A⊗
Cop or when taking R = A. On the other hand, by Example 1.2, we have
a canonical dg functor HOMA(?, ?) : (Dg−A)op ⊗ (Dg−A) −→ Dg−K.
We then get an induced dg functor

HOMA(?, ?) : (C −Dg −A)op ⊗ (B −Dg −A)

ρo⊗ρ′

−→ (Dg −A)op ⊗ (Dg −A)
HomA(?,?)
−→ Dg −K.

Recall that if α : N −→ M and ϕ : X −→ Y are homogeneous mor-
phisms in C −Dg −A and B −Dg −A, respectively, then HOMA(αo ⊗
ϕ) : HOMA(M,X) −→ HOMA(N,Y ) is the map defined by HOMA(αo⊗
ϕ)(f) = (−1)(|ϕ|+|f |)|α|ϕ ◦ f ◦ α.

By definition, we have that HOMA(M,X) is a dg B−C−subbimodule
of HOMA(M,X) with the restricted differential. In order to have an
induced graded functor HOMA(?, ?) : (C−Dg−A)op⊗ (B−Dg−A) −→
B −Dg − C, using Lemma 1.1, it is enough to prove the following two
conditions:

a) For ϕ as above and each dg C − A-bimodule M , the map ϕ∗ :=
HOMA(1oM , ϕ) : HOMA(M,X) −→ HOMA(M,Y ) is a morphisms
of non-unitary B − C−bimodules such that ϕ∗(HOMA(M,X)) ⊆
HOMA(M,Y ).

b) For α as above and each dg B − A-bimodule X, the map
α∗ := HOMA(α0, 1X) : HOMA(M,X) −→ HOMA(N,X) is a
morphism of non-unitary graded B − C−bimodules such that
α∗(HOMA(M,X)) ⊆ HOMA(N,X).

For condition a), we first check that ϕ∗ is a morphism (of degree |ϕ|)
of nonunitary graded left B-modules. According to the comments after
Lemma 4.1, although applied to non-unitary graded left B-modules, we
need to check that ϕ∗(bf) = (−1)|ϕ||b|bϕ∗(f) or, equivalently, that ϕ ◦
(bf) = (−1)|ϕ||b|b(ϕ◦f), for any homogeneous element f ∈ HOMA(M,X).
By letting act both members of the desired equality on a homogeneous
element m ∈M , we get that

[ϕ ◦ (bf)](m) = ϕ(bf(m)) = (−1)|ϕ||b|bϕ(f(m)) = [(−1)|ϕ||b|b(ϕ ◦ f)](m),

bearing in mind that ϕ is a morphism of graded B −A−bimodules and,
hence, also a morphism of graded left B-modules. On the other hand, if
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c ∈ C is a homogeneous element, we have that ϕ∗(fc) = ϕ ◦ (fc) while
ϕ∗(f)c = (ϕ ◦ f)c. Both maps take m  (ϕ ◦ f)(cm), for each m ∈ M .
Then ϕ∗ is a morphism of nonunitary graded B−C−bimodules. Moreover,
if f ∈ HOMA(M,X) and we fix finite subsets I ′ ⊂ I and F ⊂ K such
that Im(f) ⊆ ⊕i∈I′eiX and f(νkM) = 0, for all k ∈ K \ F , then we have
that

Im(ϕ∗(f)) = Im(ϕ ◦ f) ⊆ ϕ(⊕i∈I′eiX) ⊆ ⊕i∈I′eiY,

because ϕ is in particular a morphism left B-modules, and that
ϕ∗(f)(νkM) = (ϕ ◦ f)(νkM) = 0, for all k ∈ K \ F . Therefore we have
ϕ∗(f) ∈ HOMA(M,Y ).

For condition b), we first prove that α∗ is morphism of non-unitary
graded left B-modules, which amounts to prove that α∗(bf) =
(−1)|a||α|bα∗(f), for any homogeneous element f ∈ HOMA(M,X). On one
hand, we have α∗(bf) = (−1)|α|(|b|+|f |)(bf) ◦ α while (−1)|α||b|bα∗(f) =
(−1)|α||b|(−1)|α||f |b(f ◦ α). Since (bf) ◦ α = b(f ◦ α) due to the definition
of the multiplication map B ⊗ HOMA(N,X) −→ HOMA(N,X), we
conclude that α∗ is a morphism of degree |α| of graded left B-modules.

If c ∈ C is a homogeneous element, then α∗(fc) = (−1)|α|(|c|+|f |)(fc)◦α
and α∗(f)c = (−1)|α||f |(f ◦ α)c. When we let these morphisms act on a
homogeneous element x ∈ N , we get

[α∗(fc)](x) = (−1)|α|(|c|+|f |)(fc)(α(x)) = (−1)|α|(|c|+|f |)f(cα(x))

while

[α∗(f)c](x) = (−1)|α||f |f(α(cx)) = (−1)|α||f |(−1)|α||c|f(cα(x)),

bearing in mind that α is a morphism of graded left modules (see the
comments after Lemma 4.1, applied to non-unitary leftB-modules). It then
follows that α∗ is a homogeneous morphism of graded B −C−bimodules.
On the other hand, if one considers finite subset I ′ ⊂ I and F ⊂ K as
for condition a), then Im(α∗(f)) = Im(f ◦ α) ⊆ Im(f) ⊆ ⊕i∈I′eiX while
α∗(f)(νkN) = f(α(νkN)) ⊆ f(νkM) = 0, for all k ∈ K \ F , bearing in
mind that α is in particular a morphism of left C-modules.

To finish the proof, we just need to check that the induced map

HOMA(?, ?) : Hom(C−Dg−A)op⊗(B−Dg−A)[(N,X), (M,Y )]

= HOMC−A(M,N)⊗HOMB−A(X,Y )

−→ HOMB−C(HOMA(M,X),HOMA(N,Y ))
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commutes with the differentials. But what we have done above shows
that the map HOMA(?, ?) is induced by the map

HOMA(?, ?) : Hom(C−Dg−A)op⊗(B−Dg−A)[(N,X), (M,Y )]

= HOMC−A(M,N)⊗HOMB−A(X,Y )

−→ HOMK(HOMA(M,X),HOMA(N,Y )) (∗)

given by the dg functor

HOMA(?, ?) : (C −Dg −A)op ⊗ (B −Dg −A)

ρo⊗ρ′

−→ (Dg −A)op ⊗ (Dg −A)
HomA(?,?)
−→ Dg −K.

The differential in HOMA(P,Z) is the restriction of that of HOMA(P,Z),
for each P ∈ C − Dg − A and Z ∈ B − Dg − A, and the differential
on HOMB−C(HOMA(M,X),HOMA(N,Y )) is the restriction of the dif-
ferential in HOMK(HOMA(M,X),HOMA(N,Y )). Therefore HOMA(?, ?)
commutes with the differentials due to the fact that the map (*) commutes
with the differentials.

We want to emphasize a sort of ‘dual’ situation. Suppose now that
X is again a dg B − A-bimodule and that W is a dg B − C-bimodule.
Then the graded K-module HOMBop(W,X) consisting of the morphisms
W −→ X in B − Dg should have a structure of non-unitary dg C − A-
bimodule. Indeed, we can think of W and X as a dg Cop⊗Bop-bimodule
and a dg Aop −Bop− bimodule, respectively. Then the first paragraph of
this section says that HOMBop(W,X) has a structure of non-unitary dg
Aop −Cop-bimodule, which is equivalent to saying that it has a structure
of non-unitary graded C −A-bimodule. Taking then HOMBop(W,X) =
C HOMBop(W,X)A, we get a (now unitary) dg C − A-bimodule. Our
following result makes explicit this structure.

Corollary 8.3. In the situation of last paragraph, the following assertions
hold:

1) The structure of graded C−A-bimodule on HOMBop(W,X) is given
by the rule (cfa)(w) = (−1)(|c|+|a|)|w|+|c||f |f(wc)a, for all homoge-
neous elements c ∈ C, f ∈ HOMBop(W,X), a ∈ A and w ∈W .

2) HOMBop(W,X) consists of the f ∈ HOMBop(W,X) such that
Im(f) ⊂ ⊕j∈J ′Xǫj, for some finite subset J ′ ⊆ J , and f(Wνk) = 0
for all but finitely many k ∈ K.

3) The assignment (W,X)  HOMBop(W,X) is the definition on
objects of a dg functor (B−Dg−C)op⊗(B−Dg−A) −→ C−Dg−A.
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Proof. 1) Interpreting HOMBop(W,X) as a non-unitary dg Aop − Cop-
bimodule, the first paragraph of this section tells us that this structure
is given by the rule (aofco)(w) = aof(cow). But, by the identification
of modules over a dg algebras as dg modules on the other side over the
opposite dg algebra, we get that

(aofco)(w) = aof(cow) = (−1)|c||w|aof(wc)

= (−1)|c||w|(−1)|f(wc)||a|f(wc)a = (−1)|c||w|+|a|(|f |+|w|+|c|)f(wc)a

But, by analogous reason, we have an equality

(aofco)(w) = (−1)(|a|+|f |)|c|[c(aof)](w)

= (−1)(|a|+|f |)|c|(−1)|a||f |(cfa)(w) = (−1)|a||c|+|f ||c|+|a||f |(cfa)(w).

Comparing these two expressions and cancelling signs appearing in both
expressions, we get that (−1)(|c|+|a|)|w|f(wc)a = (−1)|f ||c|(cfa)(w), which
gives the equality of assertion 1.

2) Considering the distinguished families of orthogonal idem-
potents (ǫoj)j∈J and (ν0

k)k∈K in Aop and Cop, respectively, we

know that HOMBop(W,X) = Aop HOMBop(W,X)Cop consists of those
f ∈ HOMBop(W,X) such that Im(f) ⊕j∈J ′ ǫojX, for some finite subset
J ′ ⊆ J , and f(νokW ) = 0, for all but finitely many k ∈ K. Bearing in
mind that ǫojX = Xǫj and νokW = Wνk, for all j ∈ J and k ∈ K, the
assertion follows.

3) is a direct consequence of Proposition 8.2.

LetX be again a dg B−A-bimodule and let U be a dg C−B-bimodule.
Then the dg K-module U ⊗X := U ⊗K X has a canonical structure of
dg C − A-bimodule by defining c(u ⊗ x)a = (cu) ⊗ (xa). Clearly, this
multiplication makes U ⊗X into a graded C −A-bimodule. Moreover if
u ∈ U , x ∈ X, c ∈ C and a ∈ A are homogeneous elements, then we have

d[c(u⊗ x)a] = d(cu⊗ xa)

= dU (cu)⊗ xa+ (−1)|cu|cu⊗ dX(xa)

= dU (cu)⊗ xa+ (−1)|c|+|u|cu⊗ (dX(x)a+ (−1)|x|xdA(a))

= dU (cu)⊗ xa+ (−1)|c|+|u|cu⊗ d(x)a+ (−1)|c|+|u|+|x|cu⊗ xdA(a)

= (dC(c)u+ (−1)|c|cdU (u))⊗ xa+ (−1)|c|+|u|cu⊗ dX(x)a

+ (−1)|c|+|u|+|x|cu⊗ xdA(a)
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= dC(c)u⊗ xa+ (−1)|c|cdU (u)⊗ xa+ (−1)|c|+|u|cu⊗ dX(x)a

+ (−1)|c|+|u|+|x|cu⊗ xdA(a)

= dC(c)u⊗ xa+ (−1)|c|c[dU (u)⊗ x+ (−1)|u|u⊗ dX(x)]a

+ (−1)|c|+|u|+|x|cu⊗ xdA(a)

= dC(c)(u⊗ x)a+ (−1)|c|cdU⊗X(u⊗ x)a

+ (−1)|c|+|u⊗x|c(u⊗ x)dA(a)

so that the differential of U⊗X satisfies Leibniz rule as a C−A-bimodule.

The K-submodule N of U ⊗X generated by all differences ub⊗ x−
u ⊗ bx, where u ∈ U , x ∈ X and b ∈ B are homogeneous elements, is
a graded C −A−subbimodule of U ⊗X. We will show that d(N) ⊆ N ,
which will imply that we get an induced graded map of degree +1,

d : U ⊗B X :=
U ⊗X

N
−→

U ⊗X

N
= U ⊗B X,

making U ⊗BX into a dg C−A-bimodule. Indeed, we leave to the reader
checking the following equality, for all homogeneous elements u ∈ U ,
x ∈ X and b ∈ B:

d(ub⊗ x− u⊗ bx)

= dU (u)b⊗ x− dU (u)⊗ bx+ (−1)|u|(udB(b)⊗ x− u⊗ dB(b)x)

+ (−1)|u|+|v|(ub⊗ dX(x)− u⊗ bdX(x)).

This shows that d(ub⊗ x− u⊗ bx) ∈ N and, hence, that d(N) ⊆ N as
desired.

Proposition 8.4. Let A, B and C be dg algebras with enough idempo-
tents. The assignment (U,X) U ⊗B X is the definition on objects of a
dg functor

?⊗B?: (C −Dg −B)⊗ (B −Dg −A) −→ C −Dg −A.

Proof. For simplicity, we denote by T the dg functor that we want to
define, so that T (U,X) = U ⊗A X. If now α : U −→ V and ϕ : X −→ Y
are homogeneous morphisms in C−Dg−B and B−Dg−A, respectively,
we define T (α⊗ ϕ) : U ⊗B X −→ V ⊗B Y by the rule T (α⊗ ϕ)(u⊗ x) =
(−1)|ϕ||u|α(u) ⊗ ϕ(x), for all homogeneous elements u ∈ U and x ∈ X.
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We first prove that T (α⊗ϕ) is well-defined. If b ∈ B is any homogeneous
element, then we have

T (α⊗ ϕ)(ub⊗ x) = (−1)|ϕ|(|u|+|b|)α(ub)⊗ ϕ(x)

= (−1)|ϕ|(|u|+|b|)α(u)b⊗ ϕ(x) = (−1)|ϕ||u|(−1)|ϕ||b|α(u)⊗ bϕ(x)

= (−1)|ϕ||u|α(u)⊗ ϕ(bx) = T (α⊗ ϕ)(u⊗ bx)

using the facts that α is a morphism of graded right B-modules and ϕ is a
morphism of graded left B-modules. Therefore T (α⊗ ϕ) is a well-defined
morphism in GR −K, and we clearly have |T (α⊗ ϕ)| = |α|+ |ϕ|. It is
very easy to see that T (α ⊗ ϕ) is morphism in GR − A. On the other
hand, if c ∈ C is a homogeneous element, then we have

T (α⊗ ϕ)[c(u⊗ x)] = T (α⊗ ϕ)(cu⊗ x)

= (−1)|ϕ|(|c|+|u|)α(cu)⊗ ϕ(x)

= (−1)|ϕ|(|c|+|u|)(−1)|α||c|cα(u)⊗ ϕ(x)

= (−1)(|α|+|ϕ|)|c|(−1)|ϕ||u|c(α(u)⊗ ϕ(x))

= (−1)|T (α⊗ϕ)||c|[cT (α⊗ ϕ)](u⊗ x),

bearing in mind that α is a morphism of graded left C-modules. It follows
that T (α⊗ϕ)[c(u⊗x)] = (−1)|T (α⊗ϕ)||c|[cT (α⊗ϕ)](u⊗x), so that T (α⊗ϕ)
is also a morphism in C − GR, and hence a morphism in C − GR − A
(see the comments after Lemma 4.1).

We now check Conditions 2(a)–2(c) of Lemma 1.1:

Condition 2(c). Note that we have T (α ⊗ 1Z) = α ⊗ 1Z , for each dg
B − A-bimodule Z, while T (1W ⊗ ϕ)(w ⊗ x) = (−1)|ϕ||w|w ⊗ ϕ(x), for
each dg C − B-module W and all homogeneous elements w ∈ W and
x ∈ X. We then have

[T (α⊗ 1Y ) ◦ T (1M ⊗ ϕ)](u⊗ x) = (−1)|ϕ||u|T (α⊗ 1Y )(u⊗ ϕ(x))

= (−1)|ϕ||u|α(u)⊗ ϕ(x) = T (α⊗ ϕ)(u⊗ x)

= (−1)|ϕ||u|α(u)⊗ ϕ(x) = (−1)|ϕ||α|T (1V ⊗ ϕ)(α(u)⊗ x)

= (−1)|ϕ||α|[T (1V ⊗ ϕ) ◦ T (α⊗ 1X)](u⊗ x)

for all homogeneous elements u ∈ U and x ∈ X. Therefore condition 2.c
of the mentioned lemma is satisfied.

Condition 2(a). If U is a fixed dg C −B-bimodule and we consider the
assignments TU : B−Dg−A −→ C−Dg−A given by TU (X) = U⊗BX on
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objects and TU (ϕ) = T (1U⊗ϕ) on morphisms, we need to check that TU is
a dg functor. We have TU (1X) = T (1U ⊗ 1X) : u⊗x (−1)|1X ||u|u⊗x =
u⊗x, so that TU (1X) = 1TU (X). Moreover, if ϕ : X −→ Y and ψ : Y −→ Z
are homogeneous morphisms in B −Dg −A, then we have

TU (ψ ◦ ϕ)(u⊗ x) = T (1U ⊗ (ψ ◦ ϕ))(u⊗ x)

= (−1)(|ϕ|+|ψ|)|u|u⊗ (ψ ◦ ϕ)(x) = (−1)|ϕ||u|(−1)|ψ||u|u⊗ (ψ ◦ ϕ)(x)

= (−1)|ϕ||u|T (1U ⊗ ψ)(u⊗ ϕ(x))=[T (1U ⊗ ψ) ◦ T (1U ⊗ ϕ)](u⊗ x)

= [TU (ψ) ◦ TU (ϕ)](u⊗ x)

It then follows that TU is a graded functor. We need to see that it
commutes with the differentials, which means that the diagram

HOMB−A(X,Y )
d //

TU

��

HOMB−A(X,Y )

TU

��
HOMC−A(U ⊗B X,U ⊗B Y )

δ // HOMC−A(U ⊗B X,U ⊗B Y )

commutes, where d and δ are the differentials on Hom spaces of B−Dg−A
and C − Dg − A, respectively. We fix any homogeneous element ϕ ∈
HOMB−A(X,Y ) and shall prove that (δ ◦ TU )(ϕ) = (TU ◦ d)(ϕ). Letting
act the two members of the desired equality on u⊗ x, where u ∈ U and
x ∈ X are homogeneous elements, we get:

[(δ ◦ TU )(ϕ)](u⊗ x) = [dU⊗BY ◦ TU (ϕ)− (−1)|ϕ|TU (ϕ) ◦ dU⊗BX ](u⊗ x)

= (−1)|ϕ||u|dU⊗BY (u⊗ ϕ(x))− (−1)|ϕ|TU (ϕ)(dU (u)⊗ x

+ (−1)|u|u⊗ dX(x))

= (−1)|ϕ||u|[dU (u)⊗ ϕ(x) + (−1)|u|u⊗ dY (ϕ(x))]

− (−1)|ϕ|[(−1)|ϕ|(|u|+1)dU (u)⊗ ϕ(x)

+ (−1)|u|(−1)|ϕ||u|u⊗ ϕ(dX(x))]

= (−1)(|ϕ|+1)|u|u⊗ dY (ϕ(x))− (−1)(|ϕ|+1)|u|(−1)|ϕ|u⊗ ϕ(dX(x))

= (−1)(|ϕ|+1)|u|u⊗ d(ϕ)(x) = T (1U ⊗ d(ϕ))(u⊗ x)

= [(TU ◦ d)(ϕ)](u⊗ x).

Condition 2.(b) Let us fix a dg B − A-bimodule X and consider the
assignments TX =? ⊗B X : (C − Dg − B) −→ C − Dg − A given on
objects by U  U ⊗B X and on morphisms by α  T (α ⊗ 1X) =
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α ⊗ 1X . It is straightforward to see that TX(β ◦ α) = TX(β) ◦ TX(α),
whenever α and β are composable morphisms in C −Dg −B, and that
TX(1U ) = 1TX(U), so that we have a graded functor C − Dg − B −→

C −Dg −A. It remains to see that TX commutes with the differentials.
For that, we fix arbitrary dg C −B-bimodules U and V and denote by
d : HomB(U, V ) −→ HomB(U, V ) and δ : HomA(U ⊗B X,V ⊗B X) −→
HomA(U ⊗B X,V ⊗B X) the respective differentials on Hom spaces. We
need to check that (?⊗B X)(d(α)) = δ[(?⊗B X)(α)]. That is, we need
to check that d(α) ⊗ 1X = δ(α ⊗ 1X), for any homogeneous element
α ∈ HomB(U, V ). But if u ∈ U and x ∈ X are homogeneous elements,
then we have an equality

δ(α⊗ 1X)(u⊗ x)

= [dV⊗BX ◦ (α⊗ 1X)− (−1)|α⊗1X |(α⊗ 1X) ◦ dU⊗BX ](u⊗ x)

= dV⊗BX(α(u)⊗ x)− (−1)|α|(α⊗ 1X)[dU (u)⊗ x

+ (−1)|u|u⊗ dX(x)]

= dV (α(u))⊗ x+ (−1)|α(u)|α(u)⊗ dX(x)− (−1)|α|α(dU (u))⊗ x

− (−1)|α|+|u|α(u)⊗ dX(x)

= dV (α(u))⊗ x− (−1)|α|α(dU (u))⊗ x

= (dV ◦ α− (−1)|α|α ◦ dU )(u)⊗ x = d(α)(u)⊗ x

= (d(α)⊗ 1X)(u⊗ x).

9. The classical dg adjunctions

In this section we show that the classical tensor-Hom adjunction and
the adjunction between contravariant Hom functors for module categories
over rings with unit can be extended to the dg setting.

Theorem 9.1. Let A, B and C be dg algebras with enough idempotents
and let X be a dg B −A−bimodules. The pair

(?⊗B X : C −Dg −B −→ C −Dg −A,

HOMA(X, ?) : C −Dg −A −→ C −Dg −B)

is a dg adjunction. As a consequence, we have an adjunction

(?⊗L
B X : D(B ⊗ Cop) −→ D(A⊗ Cop),

RHomA(X, ?) : D(A⊗ Cop) −→ D(B ⊗ Cop))
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of triangulated functors, where ?⊗L
B := L(?⊗B X) and RHomA(X, ?) :=

R(HOMA(X, ?)).

Proof. As usual, we fix distinguished families of orthogonal idempotents
(ǫj)j∈J , (ei)i∈I and (νk)k∈K in A, B and C, respectively. Whenever U and
M are objects in C −Dg −B and C −Dg −A, respectively, we define

ηU,M : HOMC−A(U ⊗B X,M) −→ HOMC−B(U,HOMA(X,M))

by the rule [ηU,M (f)(u)](x) = f(u ⊗ x), for all homogeneous elements
f ∈ HOMC−A(U ⊗B X,M), u ∈ U and x ∈ X. We need to check that
η is well-defined. We start by checking that η(f)(u) ∈ HOMA(X,M). If
a ∈ A is any homogeneous element, then we have

[η(f)(u)](xa) = f(u⊗ xa) = f(u⊗ x)a = [η(f)(u)](x)a,

so that η(f)(u) is a homogeneous element of HOMA(X,M). Moreover if
i ∈ I is such that uei = 0, then we have that η(f)(u)(eiX) = f(u⊗eiX) =
0, because f(u⊗eix) = f(uei⊗x) = 0. It then follows that η(f)(u) vanishes
on all but finitely many eiX. On the other hand, we know that there is a
finite subset F ⊂ K such that νku = 0, for all k ∈ K \ F . It then follows
that

[(νkη(f))(u)](x) = νkf(u⊗ x) = f(νku⊗ x) = 0,

for all k ∈ K \F . It follows that Im(η(f)(u)) ⊆
∑
k∈F νkM . Therefore we

get that η(f)(u) ∈ HOMA(X,M).
We next check that η(f) : U −→ HOMA(X,M) is a morphism of dg

C −B-bimodules. We need to check that

η(f)(cub) = (−1)|c||η(f)|c(η(f)(u))b = (−1)|c||f |c(η(f)(u))b,

for all homogeneous elements c ∈ C, u ∈ U and b ∈ B (see the comments
after Lemma 4.1). Indeed we have

[η(f)(cub)](x) = f(cub⊗ x) = (−1)|c||f |cf(u⊗ bx)

= (−1)|c||f |c[η(f)(u)](bx) = (−1)|c||f |[c(η(f)(u))b](x),

due to the definition of the structure of C−B-bimodule on HOMA(X,M).
It follows that η = ηU,M is well-defined.

For the naturality of η, recall that HOMA(?,M) : (C −Dg−A)op −→
Dg −K takes a homogeneous morphism α : N −→ N ′ in C −Dg −A to
the map

α∗ = HOMA(αo,M) : HOMA(N ′,M) −→ HOMA(N,M)
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given by α∗(β) = (−1)|α||β|β ◦ α (see the proof of Proposition 8.2). A
similar fact is true for HOMC−B(?,W ) : (C − Dg − B)op −→ Dg − K,
for any dg C − B-bimodule W . With this in mind, if ϕ : U −→ V is a
homogeneous morphism in C −Dg −B, then we have that

[ϕ∗ ◦ ηV,M ](g) = (−1)|η(g)||ϕ|ηV,M (g) ◦ ϕ = (−1)|g||ϕ|ηV,M (g) ◦ ϕ,

for each homogeneous element g ∈ HOMC−A(V ⊗B X,M). On the other
hand, we have

[ηU,M ◦ (ϕ⊗ 1X)∗](g) = (−1)|g||ϕ|ηU,M (g ◦ (ϕ⊗ 1X)).

Taking homogeneous elements u ∈ U and x ∈ X, we then have

[(ϕ∗ ◦ ηV,M )(g)](u)(x) = (−1)|g||ϕ|[ηV,M (g) ◦ ϕ](u)(x)

= (−1)|g||ϕ|g(ϕ(u)⊗ x) = (−1)|g||ϕ|[g ◦ (ϕ⊗ 1X)](u⊗ x)

= (−1)|g||ϕ|ηU,M (g ◦ (ϕ⊗ 1X))(u)(x)=[(ηU,M ◦ (ϕ⊗ 1X)∗)(g)](u)(x).

This shows that ϕ∗ ◦ηV,M = ηU,M ◦ (ϕ⊗1X)∗, which proves the naturality
of η on the variable U . The naturality on the variable M is shown as in
the classical (ungraded) context.

It remains to prove that η commutes with the differentials. For this,
we denote by d : HOMC−A(U ⊗B X,M) −→ HOMC−A(U ⊗B X,M) and
δ : HOMC−B(U,HOMA(X,M)) −→ HOMC−B(U,HOMA(X,M)) the re-
spective differentials on Hom spaces in the dg categories C − Dg − A
and C −Dg −B, respectively. We need to prove that δ(η(f)) = η(d(f)),
for each homogeneous element f ∈ HOMC−A(U ⊗B X,M). If u ∈ U and
x ∈ X are homogeneous elements, then we have:

[δ(η(f))](u)(x) = [dHOMA(X,M) ◦ η(f)− (−1)|η(f)|η(f) ◦ dU ](u)(x)

= [dHOMA(X,M)(η(f)(u))− (−1)|f |η(f)(dU (u))](x)

= [dM ◦ η(f)(u)− (−1)|u|+|f |η(f)(u) ◦ dX−(−1)|f |η(f)(dU (u))](x)

= dM (f(u⊗ x))− (−1)|u|+|f |f(u⊗ dX(x))− (−1)|f |f(dU (u)⊗ x)

= dM (f(u⊗ x))− (−1)|f |f(dU (u)⊗ x+ (−1)|u|u⊗ dX(x))

= dM (f(u⊗ x))− (−1)|f |f(dU⊗BX(u⊗ x))

= (dM ◦ f − f ◦ dU⊗BX)(u⊗ x) = d(f)(u⊗ x) = η(d(f))(u)(x).

Therefore we have δ(η(f)) = η(d(f)), as desired.
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We now consider a particular case of the last adjunction. Let ι : B −→
A be a homomorphism of dg algebras with enough idempotents. All
throughout the rest of the paper, we assume that such a homomor-
phism makes A into a (unitary!) B − B-bimodule (equivalently, that
A = ι(B)Aι(B)). This means that if (ei)i∈I is any distinguished family
of orthogonal idempotents of B then, after deleting those ι(ei) which
are zero, the family (ι(ei)i ∈ I) is a distinguished family of orthogonal
idempotents of A. Note that we have an obvious restriction of scalars
functor ι∗ : C − Dg − A −→ C − Dg − B, which is clearly a dg functor
that preserves acyclic and contractible dg modules. In particular, we have
Rι∗ = ι∗ (see Remark 7.11). We can apply the last proposition to the
bimodule X = BAA. But note the following:

Lemma 9.2. In the situation of preceding paragraph, consider the dg
functor

HOMA(A, ?) : C −Dg −A −→ C −Dg −B.

There is a natural isomorphism of dg functors ι∗ ∼= HOMA(A, ?). As a
consequence, there is a natural isomorphism of triangulated functors

Rι∗ = ι∗ ∼= RHomA(A, ?) : D(A⊗ Cop)
∼=
−→ D(B ⊗ Cop).

Proof. Recall that if M is a dg C − A-bimodule, then HOMA(A,M)
consists of the morphisms f : A −→M in Dg −A such that f(eiA) = 0,
for all but finitely many i ∈ I, and Im(f) ⊆

⊕
k∈F νkM , for some finite

subset F ⊂ K. If m ∈M is any homogeneous element and we consider the
homogeneous morphism λm : A −→M in GR −A given by λm(a) = ma,
then λm ∈ HOMA(A,M). Indeed since mei = 0, for all but finitely many
i ∈ I, we get that also λm(eiA) = meiA = 0, for all but finitely many
i ∈ I. On the other hand, since there is a finite subset F ⊂ K such that
νkm = 0, for all k ∈ K \ F , we get that Im(λm) = mA ⊆ ⊕k∈F νkM .

The induced map λM : M −→ HOMA(A,M) is clearly a morphism
in C − GR − B. Defining Ψ: HOMA(A,M) −→ M by the rule Ψ(f) =∑
i f(ei), we get an inverse for λ in C − GR − B. Then, for each M

in C − Dg − A, we have a morphism of degree zero λM : ι∗(M) −→
HOMA(A,M) in C − Dg − B. To check that, when M varies, we get a
bijective natural transformation of dg functors λ : ι∗ −→ HOMA(A, ?)
is easy and left to the reader. In order to see that we have a nat-
ural isomorphism of dg functors we just need to check that λ is a
homological natural transformation, which amounts to check that if
d : HOMC−B(M,HOMA(A,M)) −→ HOMC−B(M,HOMA(A,M)) is the
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differential on Hom spaces of the dg category C−Dg−B, then d(λM ) = 0.
To see this, for each homogeneous element m ∈M , we have:

[d(λM )](m) = [dHOMA(A,M) ◦ λM − (−1)|λM |λM ◦ dM ](m)

= dHOMA(A,M)(λM (m))− λM (dM (m))

= dM ◦ λM (m)− (−1)|m|λM (m) ◦ dA − λM (dM (m)).

When applying both members of this equality to a homogeneous element
a ∈ A, we get that

{[d(λM )](m)}(a) = dM (ma)− (−1)|m|mdA(a)− dM (m)a = 0.

The corresponding natural isomorphism of triangulated functors fol-
lows from Proposition 7.12.

This justifies the following terminology:

Definition 9.3. If ι : B −→ A is a homomorphism of dg algebras with
enough idempotents as above, then the dg functor ?⊗BA : C−Dg−B −→
C −Dg −A is called the extension of scalars functor associated to ι. It
is denoted by ι∗ : C −Dg −B −→ C −Dg −A.

As an immediate consequence of Theorem 9.1 and Lemma 9.2, we get:

Corollary 9.4. Let ι : B −→ A a homomorphism of dg algebras as above.
The pair (ι∗ : C−Dg−B −→ C−Dg−A, ι∗ : C−Dg−A −→ C−Dg−B) is
a dg adjunction. Therefore we have an adjoint pair of triangulated functors
(Lι∗ : D(B⊗Cop) −→ D(A⊗Cop),Rι∗ = ι∗ : D(A⊗Cop) −→ D(B⊗Cop)).

We move now to study a less known adjunction.

Theorem 9.5. Let A and B be dg algebras with enough idempotents and
let X be a dg B −A-bimodule. The pair

(HOMBop(?, X)o : B −Dg − C −→ (C −Dg −A)op,

HOMA(?, X) : (C −Dg −A)op −→ B −Dg − C)

is a dg adjunction. In particular, the pair

(RHomBop(?, X)o : D(C ⊗Bop) −→ D(A⊗ Cop)op,

RHomA(?, X) : D(A⊗ Cop)op −→ D(C ⊗Bop))

is an adjoint pair of triangulated functors, where RHom(?, X) :=
R(HOM(?, X)) in both cases.
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Proof. All throughout the proof, we fix distinguished families of orthogonal
idempotents (ei)i∈I , (ǫj)j∈J and (νk)k∈K in B, A and C, respectively. Let
U be a dg B−C-bimodule and M be a dg C−A-bimodule. By the initial
paragraph of Section 8 and by Corollary 8.3, we have:

a) HOMBop(U,X) consists of the f ∈ HOMBop(U,X) such that
Im(f) ⊆ ⊕j∈J ′Xǫj , for some finite subset J ′ ⊂ J , and f(Uνk) = 0
for all but finitely many k ∈ K.

b) HOMA(M,X) consists of the g ∈ HOMA(M,X) such that Im(g) ⊆
⊕i∈I′eiX, for some finite subset I ′ ⊂ I, and g(νkM) = 0 for all but
finitely many k ∈ K.

We define a K-linear map

Hom(C−Dg−A)op(HOMBop(U,X),M) HomB−Dg−C(U,HOMA(M,X))

HOMC−A(M,HOMBop(U,X))
ξ=ξU,M //HOMB−C(U,HOMA(M,X))

by the rule [ξ(f)(u)](m) = (−1)|u||m|f(m)(u), for all homogeneous ele-
ments u ∈ U , m ∈ M , and f ∈ HOMC−A(M,HOMBop(U,X)). We first
check that if f and u are fixed, then the assignment m [ξ(f)(u)](m) =
(−1)|u||m|f(m)(u) gives a homogeneous morphism M −→ X in GR −A.
Indeed we have

[ξ(f)(u)](ma) = (−1)|u|(|m|+|a|)f(ma)(u) = (−1)|u|(|m|+|a|)[f(m)a](u).

But, by the structure of right dg A-module on HOMBop(U,X)
(see Corollary 8.3), we see [f(m)a](u) = (−1)|a||u|f(m)(u)a, hence
[ξ(f)(u)](ma) = (−1)|u||m|f(m)(u)a. On the other hand, we get
[ξ(f)(u)](m)a = (−1)|u||m|f(m)(u)a. This shows that ξ(f)(u) is a
homogeneous morphism M −→ X in GR −A.

In order to check that ξ is well-defined, we also need to see that
the just defined morphism ξ(f)(u) is really in HOMA(M,X) (see point
b) above). We have u =

∑
i∈Fu

eiu, for some finite subset Fu ⊆ I, and
then [f(m)](u) =

∑
i∈Fu

eif(m)(u) ∈
⊕

i∈Fu
eiX, for all m ∈ M , using

the fact that f(m) is a morphism of graded left B-modules. That is, we
have that Im(ξ(f)(u)) ⊆ ⊕i∈FueiX. On the other hand, we have a finite
subset K′ ⊂ K such that uνk = 0, for all k ∈ K \ K′. Bearing in mind
the explicit definition of the C−A-bimodule structure on HOMBop(U,X)
(see Corollary 8.3) and the fact that f is a morphism of C−A−bimodules,
we get that

[ξ(f)(u)](νkm) = (−1)|u||νkm|f(νkm)(u)

= (−1)|u||m|(νkf(m))(u)=(−1)|u||m|(−1)|νk||u|+|νk||f(m)|f(m)(uνk),
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which implies that [ξ(f)(u)](νkm) = 0, for all k ∈ K \ K′, independently
of m. It follows that ξ(f)(u)](νkM) = 0 for almost all k ∈ K, so that
ξ(f)(u) ∈ HOMA(M,X).

As a final step to check that ξ is well-defined, we will see that ξ(f) is
really a morphism U −→ HOMA(M,X) in B−GR−C. That is, we need
to check the equalities ξ(f)(bu) = (−1)|f ||b|bξ(f)(u) (see the comments
after Lemma 4.1) and ξ(f)(uc) = ξ(f)(u)c, for all homogeneous elements
b ∈ B, u ∈ U and c ∈ C. We apply both members of the first desired
equality to a homogeneous element m ∈M and get:

[ξ(f)(bu)](m)

= (−1)(|b|+|u|)|m|f(m)(bu) = (−1)(|b|+|u|)|m|(−1)|f(m)||b|bf(m)(u)

= (−1)(|b|+|u|)|m|(−1)((||f |+m|)|b|bf(m)(u)=(−1)|u||m|+|f ||b|bf(m)(u)

= (−1)|f ||b|(−1)|u||m|bf(m)(u) = (−1)|f ||b|b[ξ(f)(u)(m)]

= (−1)|f ||b|[bξ(f)(u)](m),

using that f(m) is a morphism in B − GR of degree |f | + |m|. On the
other hand, we have

[ξ(f)(uc)](m) = (−1)|uc||m|f(m)(uc) = (−1)|u||m|+|c||m|f(m)(uc)

while, using Corollary 8.3 and the comments after Lemma 4.1, we also get

[ξ(f)(u)c](m) = ξ(f)(u)(cm)

= (−1)|u||cm|f(cm)(u) = (−1)|u||cm|(−1)|c||f |[cf(m)](u)

= (−1)|u||cm|+|c||f |(−1)|c||u|+|c||f(m)|f(m)(uc)

= (−1)|u||m|+|c||m|f(m)(uc).

We now prove the naturality of ξ on both variables. Let α : M −→ N
be a homogeneous morphism in C −Dg −A. With the obvious meaning
of the vertical arrows, we need to prove that the following diagram is
commutative:

HomC−A(M,HOMBop(U,X))
ξU,M // HomB−C(U,HOMA(M,X))

HomC−A(N,HOMBop(U,X))
ξU,N //

α∗

OO

HomB−C(U,HOMA(N,X))

HOMA(α,X)∗

OO
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For this, we take any homogeneous morphism g : N−→HOMBop(U,X)
in C −Dg −A. We then have that (ξU,M ◦ α

∗)(g) = (−1)|α||g|ξU,M (g ◦ α)
and therefore

[(HOMA(α,X)∗ ◦ ξU,N )(g)(u)](m)

= [(HOMA(α,X) ◦ ξ(g))(u)](m) = (−1)|α||ξ(g)(u)|[ξ(g)(u) ◦ α](m)

= (−1)|α|(|g|+|u|)ξ(g)(u)(α(m))=(−1)|α|(|g|+|u|)(−1)|u||α(m)|g(α(m))(u)

= (−1)|α|(|g|+|u|)(−1)|u|(|α|+|m|)(g ◦ α)(m)(u)

= (−1)|α||g|+|u||m|(g ◦ α)(m)(u) = (−1)|α||g|ξU,M (g ◦ α)(u)(m)

= [(ξU,M ◦ α
∗)(g)(u)](m),

which proves the naturality of ξ on the variable M .

Let now ϕ : U −→ V be a homogeneous morphism in B − Dg − C.
For the naturality of ξ on the ‘variable’ U , we need to check that the
following diagram is commutative:

HomC−A(M,HOMBop(U,X))
ξU,M // HomB−C(U,HOMA(M,X))

HomC−A(M,HOMBop(V,X))
ξV,M //

HOMBop (ϕ,X)∗

OO

HomB−C(V,HOMA(M,X))

ϕ∗

OO

Let f : M −→ HOMBop(V,X) be a homogeneous morphism in C−Dg−A.
Then we have that [ξU,M◦HOMBop(ϕ,X)∗](f) = ξU,M (HOMBop(ϕ,X)◦f),
while (ϕ∗ ◦ ξV,M )(f) = (−1)|f ||ϕ|ξV,M (f) ◦ ϕ. If now u ∈ U and m ∈ M
are homogeneous elements, then we have equalities:

[ξU,M (HOMBop(ϕ,X) ◦ f)(u)](m)

= (−1)|u||m|[(HOMBop(ϕ,X) ◦ f)(m)](u)

= (−1)|u||m|(−1)|ϕ||f(m)|[f(m) ◦ ϕ](u)

= (−1)|u||m|+|ϕ||f |+|ϕ||m|f(m)(ϕ(u))

= (−1)|f ||ϕ|(−1)|ϕ(u)||m|f(m)(ϕ(u))

= (−1)|f ||ϕ|[ξV,M (f)(ϕ(u))](m)

= (−1)|f ||ϕ|[(ξV,M (f) ◦ ϕ)(u)](m)

which proves the naturality of ξ on the ‘variable’ U .
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Next we check that ξ commutes with the differentials. That is, we
need to prove that, for each dg C −A-bimodule M and each dg B − C-
bimodule U , the following diagram is commutative.

HOMC−A(M,HOMBop(U,X))
d //

ξU,M

��

HOMC−A(M,HOMBop(U,X))

ξU,M

��
HOMB−C(U,HOMA(M,X))

δ // HOMB−C(U,HOMA(M,X)),

Here d and δ are the differentials on Hom spaces in C − Dg − A and
B − Dg − C, respectively. Put ξ = ξU,M for simplicity. Then, for all
homogeneous elements f ∈ HOMC−A(M,HOMBop(U,X)), u ∈ U and
m ∈M , we have

[(ξ ◦ d)(f)(u)](m) = [ξ(d(f))(u)][m] = (−1)|u||m|d(f)(m)(u)

= (−1)|u||m|[(dHOM(U,X) ◦ f − (−1)|f |f ◦ dM )(m)](u)

= (−1)|u||m|[dX ◦ f(m)− (−1)|f(m)|f(m) ◦ dU

− (−1)|f |f(dM (m))](u)

= (−1)|u||m|[dHOM(U,X)(f(m))− (−1)|f |f(dM (m))](u)

= (−1)|u||m|[dX(f(m)(u))− (−1)|f |f(dM (m))(u)

− (−1)|f |+|m|f(m)(dU (u))]

= (−1)|u||m|dX(f(m)(u))− (−1)|f |+|u|(−1)|u|(|m|+1)f(dM (m))(u)

− (−1)|f |(−1)(|u|+1)|m|f(m)(dU (u))

= [dX ◦ ξ(f)(u)− (−1)|ξ(f)(u)|ξ(f)(u) ◦ dM

− (−1)|f |ξ(f)(dU (u))](m)

= [dHOM(M,X)(ξ(f)(u))− (−1)|f |ξ(f)(dU (u))](m)

= [(δ ◦ ξ)(f)(u)][m].

where we used that (δ ◦ ξ)(f) = dHOM(M,X) ◦ ξ(f)− (−1)|ξ(f)|ξ(f) ◦ dU in
the last equality.

Finally, in order to prove the bijective condition of ξ, note that ex-
changing the roles of U and X and of A and Bop, one has a well-defined
K-linear map of degree zero ξ′ = ξ′

U,M : HOMB−C(U,HOMA(M,X)) −→

HOMC−A(M,HOMBop(U,X)), given by the rule

[ξ′(g)(m)](u) = (−1)|u||m|g(u)(m).
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Clearly ξ′
M,U is inverse to ξM,U .

We will now show that, under appropriate assumptions, the derived
functors of covariant and contravariant HOM are part of a bifunctor which
is triangulated on both variables. We need the following auxiliary result.

Lemma 9.6. Let A, B and C be dg algebras with enough idempotents
and let P and Q be dg C − A−bimodules such that P is homotopically
projective and Q is homotopically injective as right dg A-modules. Then
the following assertions hold:

1) The functor HOMA(P, ?) : B −Dg −A −→ B −Dg − C preserves
acyclic dg bimodules.

2) The functor HOMA(?, Q) : (B−Dg−A)op −→ C−Dg−B preserves
acyclic dg bimodules.

Proof. The proofs of the two assertions are rather similar. We only prove 1).
Let X be an acyclic dg B −A-bimodule. We know that the non-unitary
dg B − C-bimodule HOMA(P,X) is acyclic since PA is homotopically
projective. By definition, we have that HOMA(P,X) = BHOMA(P,X)C
and the differential on this (unitary) dg B−C-bimodule is the restriction
of the differential of HOMA(P,X). Let now f ∈ Zn(HOMA(P,X)) be any
n-cycle. By the acyclicity of HOMA(P,X), we have a g ∈ HOMA(P,X)n−1

such that f = d(g), where d is the differential of HOMA(P,X). If (ei)i∈I
and (νk)k∈K are distinguished families of orthogonal idempotents of B
and C, respectively, then there are finite subset I ′ ⊂ I and K′ ⊂ K
such that f =

∑
i∈I′,k∈K′ eifνk. Taking g′ =

∑
i∈I′,k∈K′ eigνk and using

Leibniz rule for the non-unitary dg B − C-bimodule HOMA(P,X) (see
Lemma 8.1), we get an element g′ ∈ HOMA(P,X)n−1 such that

d(g′) = d(
∑

i∈I′,k∈K′

eigνk) =
∑

i∈I′,k∈K′

eid(g)νk =
∑

i∈I′,k∈K′

eifνk = f.

We say that an algebra with enough idempotents A is K-projective
(resp. K-flat) when it is projective (resp. flat) as a K-module.

Corollary 9.7. Let A, B and C be dg algebras with enough idempotents.
The dg functor HOMA(?, ?) : (C − Dg − A)op ⊗ (B − Dg − A) −→ B −
Dg − C preserves contractibility on each variable. If RHOMA(?, ?) :=
R(HOM(?, ?)) : D(A ⊗ Cop)op ⊗ D(A ⊗ Bop) −→ D(C ⊗ Bop) is the
associated bi-triangulated functor (see Definition 7.16), then the following
assertions hold:
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1) If C is K-projective or X is a homotopically injective dg B −
A-bimodule, then there is a natural isomorphism of triangulated
functors

RHOMA(?, X) ∼= RHomA(?, X)

:= R(HOMA(?, X)) : D(A⊗ Cop)op −→ D(C ⊗Bop).

2) If either B is K-flat or M is a homotopically projective dg C −
A-bimodule, then there is a natural isomorphism of triangulated
functors

RHOMA(M, ?) ∼= RHomA(M, ?)

:= R(HOMA(M, ?)) : D(A⊗Bop) −→ D(C ⊗Bop).

In particular, if C is K-projective (e.g. if C = K) one has an isomorphism
RHomA(M, ?)(X) ∼= RHomA(?, X)(M) in D(C ⊗Bop), for all dg B −
A−bimodules X and all homotopically projective dg C −A-bimodules M .

Proof. By Theorems 9.1 and 9.5, we know that, for fixed M and X in
C−Dg−A and B−Dg−A, the dg functors HOMA(M, ?) : B−Dg−A −→
B−Dg−C and HOMA(?, X) : (C −Dg−A)op −→ B−Dg−C are part
of a dg adjunction. By Lemma 7.8, both of them preserve contractible dg
modules, which shows the first statement of the corollary.

The last statement is a direct consequence of assertions 1 and 2. Note
that when C is K-projective (resp. B is K-flat), the restriction of scalars
functor C−Dg−A −→ Dg−A (resp. B−Dg−A −→ Dg−A) preserves
homotopically projective (resp. homotopically injective) dg modules (this
is well-known in the context of dg modules over small dg categories, but
the reader can easily adapt the proof of [17, Lemma 3.6] to get a direct
proof by her/himself). Then assertion 1, when C is K-projective, is a
direct consequence of Proposition 7.17(2.b) and Lemma 9.6. Similarly,
assertion 2 for K-flat B follows from Proposition 7.17(2.a) and Lemma 9.6.

To check what remains of assertions 1 and 2, we just prove what
remains of assertion 2 since the argument for assertion 1 is entirely
dual. Recall from the proof of Proposition 7.17 that we have a natural
isomorphism of triangulated functors D(A⊗Bop) −→ D(C ⊗Bop)

RHOMA(M, ?) ∼= R(HOMA(ΠC−A(M), ?)) = RHomA(ΠC−A(M), ?).

Then RHOMA(M, ?) is the composition

D(A⊗Bop)
ΥB−A
−→ H(A⊗Bop)

HOMA(ΠC−A(M),?)
−→ H(C ⊗Bop)

qC⊗Bop

−→ D(C ⊗Bop),
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where ΥB−A (resp. ΠC−A) is the homotopically injective (resp. homotopi-
cally projective) resolution functor for dg B − A−bimodules (resp. dg
C −A−bimodules). But, when M is homotopically projective, the homo-
topically projective resolution π : ΠC−A(M) −→M is an isomorphism in
H(A⊗ Cop). Considering the bi-triangulated functor

HOMA(?, ?) : H(A⊗ Cop)op ⊗H(A⊗Bop) −→ H(C ⊗Bop)

(see Proposition 7.15), we deduce that π induces a natural isomorphism
of triangulated functors

π∗ : HOMA(M, ?)
∼=
−→HOMA(ΠC−A(M), ?) : H(A⊗Bop)−→H(C⊗Bop).

Then RHOMA(M, ?) is naturally isomorphic to the composition

D(A⊗Bop)
ΥB−A
−→ H(A⊗Bop)

HOMA(M,?)
−→ H(C⊗Bop)

qC⊗Bop

−→ D(C⊗Bop),

which is precisely RHomA(M, ?) : D(A⊗Bop) −→ D(C ⊗Bop).

10. Dualities for perfect complexes

In this final section, we shall consider the adjunction of Theorem 9.5
when C = K. That is, we consider the adjunction

(RHomBop(?, X)o : D(Bop) −→ D(A)op,

RHomA(?, X) : D(A)op −→ D(Bop)).

Remark 10.1. We denote the unit of this adjunction by

λ : 1D(Bop) −→ RHomA(?, X) ◦ RHomBop(?, X)o.

Note that the counit ρo : RHomBop(?, X)o ◦ RHomA(?, X) −→ 1D(A)op ,
when evaluated at any right dg A-module, is a morphisms in D(A)op.
We then change this perspective, and see it as natural transformation
ρ : 1D(A) −→ RHomBop(?, X) ◦ RHomA(?, X)o.

Recall that if (F : C −→ D, G : D −→ C) is an adjoint pair of arbitrary
categories C and D, an object C ∈ Ob(C) (resp. D ∈ Ob(D)) is called
reflexive (resp coreflexive) with respect to the given adjunction when the
evaluation of the unit at C (resp. the evaluation of the counit at D) is an
isomorphism. The following fact is well-known:
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Lemma 10.2. In the situation of the previous paragraph, the functors
F and G define by restriction mutually quasi-inverse equivalences of
categories between the full subcategories of reflexive and coreflexive objects.

Coming back to the situation of Theorem 9.5, with C = K, the
following definition comes then naturally.

Definition 10.3. A left dg B-module U will be called homologically
X-reflexive when the unit map

λU : U −→ RHomA(RHomBop(U,X), X)

is an isomorphism. A right dg A-module M is called homologically X-
coreflexive when the counit map

ρM : M −→ RHomBop(RHomA(M,X), X)

is an isomorphism. Fixing again distinguished families of orthogonal idem-
potents (ei)i∈I and (ǫj)j∈J in B and A, respectively, we shall say that the
dg B−A-bimodule X is left (resp. right) homologically faithfully balanced
(see [18]) when each Bei (resp. ǫjA) is homologically X-reflexive (resp. ho-
mologically X-coreflexive). We will say that X is homologically faithfully
balanced when it is left and right homologically faithfully balanced.

In the sequel we denote by per(A) (resp. per(Aop)) the (thick) sub-
category of D(A) (resp. D(Aop)) formed by the compact objects. It will
be called the perfect right (resp. left) derived category of A.

Recall that if C and D are triangulated categories, then a triangulated

duality or a duality of triangulated categories C
∼=o

−→ D is an equivalence of

triangulated categories categories Cop
∼=
−→ D. As the following proposition

shows, the definitions 10.3 are independent of the considered distinguished
families of idempotents.

Proposition 10.4. Let A and B be dg algebras with enough idempotents,
on which we fix distinguished families of orthogonal idempotents (ǫj)j∈J
and (ei)i∈I , respectively, and let X be a dg B−A-bimodule. The following
assertions hold:

1) X is left homologically faithfully balanced if, and only if, all objects
of per(Bop) are homologically X-reflexive. Then RHomBop(?, X)
and RHomA(?, X) define quasi-inverse dualities of triangulated

categories per(Bop)
∼=o

←→ thickD(A)(eiX : i ∈ I).
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2) X is right homologically faithfully balanced if, and only if, all ob-
jects of per(A) are homologically X-coreflexive. Then RHomA(?, X)
and RHomBop(?, X) define quasi-inverse dualities of triangulated

categories per(A)
∼=o

←→ thickD(Bop)(Xǫj : i ∈ I).
3) If A = B then the regular dg bimodule X = A is homologically

faithfully balanced. In particular RHomA(?, A) and RHomAop(?, A)

define quasi-inverse dualities per(A)
∼=o

−→ per(Aop).

Proof. The classes Ref(X) = {U ∈ D(Bop) : λU is an isomorphism}
and Coref(X) = {M ∈ D(A) : ρM is an isomorphism} of X-reflexive
and X-coreflexive objects are thick subcategories of D(Bop) and D(A),
respectively (see the last three lines of the introduction). On the other
hand, note that per(Bop) = thickD(Bop)(Bei : i ∈ I) and that per(A) =
thickD(A)(ǫjA : j ∈ J) (see Theorem 3.1, Remark 3.2 and [10, Section 5])

1) When X is left faithfully balanced, we then have that
per(Bop) ⊆ Ref(X). Using now Lemma 10.2, we conclude that
RHomBop(?, X) and RHomA(?, X) define quasi-inverse dualities between
per(Bop) and the image of per(Bop) by RHomBop(?, X). This image
is precisely thickD(A)(RHomBop(Bei, X) : i ∈ I). In order to prove
assertion 1, it remains to check that there is an isomorphism
RHomBop(Bei, X) ∼= eiX in D(A), for each i ∈ I. To see that,
note that, due to the homotopically projective condition of Bei
(see Example 7.6), if Π: D(Bop) −→ H(Bop) is the homotopically
projective resolution functor, then Π(Bei) ∼= Bei in H(Bop). We
then have that RHomBop(Bei, X) = HOMBop(Bei, X). But the map
Ψ: HOMBop(Bei, X) −→ eiX, given by Ψ(f) = f(ei) is an isomorphism
of right dg A-modules. Indeed, by Corollary 8.3, we have that
Ψ(fa) = (fa)(ei) = (−1)|a||ei|f(ei)a = f(ei)a = Ψ(f)a since |ei| = 0,
which immediately implies that Ψ is an isomorphism in GR − A and
Gr− A. On the other hand, if δ is the differential of HOMBop(Bei, X)
and deiX = (dX)|eiX is the differential of eiX, then we have
(deiX ◦Ψ)(f) = deiX(f(ei)) = dX(f(ei)) while we have

(Ψ ◦ δ)(f) = Ψ(δ(f)) = Ψ(dX ◦ f − (−1)|f |f ◦ dBei
)

= [dX ◦ f − (−1)|f |f ◦ dBei
](ei) = dX(f(ei))

since dBei
(ei) = 0 because the differential of B vanishes on ei. Therefore

Ψ is an isomorphism of right dg A-modules, thus ending the proof of
assertion 1.

2) Assertion 2 is proved as assertion 1 by exchanging the roles of A
and Bop. Due to the fact that ǫjA is a homotopically projective right dg
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A-module, in a way analogous to that of the previous paragraph, one
checks that the map Φ: RHomA(ǫjA,X) = HOMA(ǫjA,X) −→ Xǫj ,
given by Φ(g) = g(ǫj) is an isomorphism of left dg B-modules.

3) For simplicity, put

F = HOMAop(?, A) : (A−Dg)op −→ Dg −A

and
G = HOMA(?, A) : (Dg −A)op −→ A−Dg.

We then have G ◦ F o : A−Dg −→ A−Dg and want to get information
about the unit λ : 1D(Aop) −→ RG◦L(F o) = RG◦(RF )o (see Remark 7.10).

For this, we consider the unit λ̃ : 1A−Dg −→ G ◦ F o of the adjunction
(F o, G). By Proposition 7.12, we have an induced natural transformation of
triangulated functors λ̃ : 1D(Aop) −→ L(G◦F o) and, by Proposition 7.14(2),
we get another natural transformation of triangulated functors δ : L(G ◦
F o) −→ RG ◦ (RF )o. It is not hard to see that λ is the composition

1D(Aop)
λ̃
−→ L(G ◦ F o)

δ
−→ RG ◦ (RF )o. If j ∈ J is arbitrary, then

ΠA(Aǫj) ∼= Aǫj inH(Aop) since Aǫj is homotopically projective. Moreover,
by the proof of assertion 1 (with A and ǫj instead of B and ei), we know
that Go(Aǫj) = HOMAop(Aǫj , A) ∼= ǫjA in Dg − A. It then follows
from Proposition 7.14(2) that δAǫj is an isomorphism. Moreover, by
Proposition 7.12, we know that if

λ̃Aǫj : Aǫj −→ (G ◦ F o)(Aǫj) = HOMA(HOMAop(Aǫj , A), A)

is a quasi-isomorphism (e.g. an isomorphism in A−Dg), then also

λ̃Aǫj : Aǫj −→ L(G ◦ F o)

is an isomorphism, and this will imply that

λAǫj = δAǫj ◦ λ̃Aǫj : Aǫj −→ [RG ◦ (RF )o](Aǫj)

is an isomorphism in D(Aop) and, hence, that X = AAA is left homologi-
cally faithfully balanced.

We are led to give an explicit definition of

λ̃U : U −→ HOMA(HOMAop(U,A), A),

for any left dg A-module. If we consider the natural isomorphism

Hom(Dg−A)op(HOMAop(U,A),M) HomA−Dg(U,HOMA(M,A))

HOMA(M,HOMAop(U,A))
ξ=ξU,M //HOMAop(U,HOMA(M,A))
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(see the proof of Theorem 9.5), the standard theory of adjunction gives
that
λ̃U = ξ

U,HOMAop (U,A)(1HOMAop (U,A)). We then get that

λ̃U (u)(α) = ξ(1HOMAop (U,A))(u)(α) = (−1)|α||u|α(u),

for all homogeneous elements u ∈ U and α ∈ HOMAop(U,A). Abus-
ing the notation and denoting by (?)∗ both functors HOMA(?, A) and
HOMAop(?, A), we get a natural transformation λ̃ : 1A−Dg −→ (?)∗∗, where

λ̃U : U −→ U∗∗ is given by the rule λ̃U (α)(u) = (−1)|α||u|α(u).
Consider the case U = Aǫj and let us consider now the isomorphisms

Ψ: (Aǫj)
∗ =HOMAop(Aǫj , A)−→ǫjA and Φ: (ǫjA)∗ =HOMA(ǫjA,A)−→

Aǫj given in the proofs of Assertions 1 and 2, when X = A. The compo-
sition

Aǫj
Φ−1

−→ (ǫjA)∗ Ψ∗

−→ (Aǫj)
∗∗

is then an isomorphism of left dg A-modules. Note that Φ−1(u) = fu,
where fu(a) = ua for all a ∈ ǫjA. We then have that

(Ψ∗ ◦ Φ−1)(u) = Ψ∗(fu) = (−1)|Ψ||fu|fu ◦Ψ = fu ◦Ψ,

using the action of the functor (?)∗ = HOMAop(?, A) on homogeneous
morphisms (see the proof of Proposition 8.2) and the fact that |Ψ| = 0.
Taking into account the comments after Lemma 4.1, we then have that

[(Ψ∗ ◦ Φ−1)(u)](α) = (fu ◦Ψ)(α) = fu(α(ǫj)) = uα(ǫj)

= (−1)|u||α|α(uǫj) = (−1)|u||α|α(u),

for each α ∈ (Aǫj)
∗ = HOMA(Aǫj , A). It follows that λ̃Aǫj = Ψ∗ ◦ Φ−1,

and hence that λAǫj is an isomorphism, for all j ∈ J .
By a left-right symmetric argument, one checks that AAA is also right

homologically faithfully balanced. The part of assertion 3 concerning
duality follows from assertions 1 and 2 and from the first paragraph of
this proof.

We end with a result that has proved very useful in [20]:

Proposition 10.5. Let ι : A −→ B be a homomorphism of dg algebras
with enough idempotents such that B = ι(A)Bι(A), and let us consider
the dg functors:

F : (Dg −A)op HOMA(?,A)
−→ A−Dg

ι∗
−→ B −Dg
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and

G : (Dg −A)op ι∗o

−→ (Dg −B)op HOMB(?,B)
−→ B −Dg,

where we denote by ι∗ both extension of scalars functors B⊗A? : A−Dg −→
B − Dg and ? ⊗ B : Dg − A −→ Dg − B. There is homological natural
transformation of dg functors η : F −→ G whose triangulated version,
when evaluated at compact objects, gives a natural isomorphism

η : [(B⊗L
A?)◦RHomA(?, A)]|per(A)op

∼=
−→ [RHomB(?, B)◦(?⊗L

AB)]per(A)op

of triangulated functors per(A)op −→ D(B).

Proof. All throughout the proof we fix a distinguished family of orthogonal
idempotents (ei)i∈ in A. Note that, after deleting the terms which are
zero, (ι(ei))i∈I is also a distinguished family of orthogonal idempotents
in B. For each right dg A-module M , we define

ηM : F (M) = B ⊗A HOMA(M,A) −→ HOMB(M ⊗A B,B) = G(M)

by the rule ηM (b⊗ f)(m⊗ b′) = bι(f(m))b′, for all homogeneous elements
b, b′ ∈ B, f ∈ HOMA(M,A) and m ∈M . We first check that η := ηM is
well-defined. Note that if a ∈ A is a homogeneous element and b, b′, f,m
are homogeneous elements above, then we have

η(bι(a)⊗ f)(m⊗ b′) = bι(a)ι(f(m))b′

while

η(b⊗ af)(m⊗ b′) = bι((af)(m))b′ = bι(af(m))b′ = bι(a)ι(f(m))b′,

bearing in mind that the structure of right and left A-module on B is
given by a · b · a′ = ι(a)bι(a′). Moreover, if b1, b2 ∈ B are homogeneous
elements, then we have that

η(b⊗ f)((m⊗ b1)b2) = η(b⊗ f)(m⊗ (b1b2)) = bι(f(m))(b1b2)

and
η(b⊗ f)(m⊗ b1)b2 = (bι(f(m))b1)b2,

so that η(b⊗f) is a homogeneous morphism M⊗AB −→ B in Dg−B. On
the other hand, if b =

∑
i∈F eib, for a finite subset F ⊂ I, we clearly have

that Im(η(b⊗ f)) ⊆ ⊕i∈F eiB, thus showing that η(b⊗ f) ∈ HOMB(M ⊗
B,B) (see the initial paragraph of Section 8). Therefore η = ηM is
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a morphism F (M) = B ⊗A HOMA(M,A) −→ HOMB(M ⊗A B,B) in
Gr−K. In order to check that it is actually a morphism in B −Gr, we
need to check that η(b1(b⊗ f)) = (−1)|b1||η|b1η(b⊗ f) = b1η(b⊗ f). But
this is clear since

η(b1(b⊗ f))(m⊗ b′) = η((b1b)⊗ f)(m⊗ b′) = (b1b)ι(f(m))b′

while

[b1η(b⊗ f)](m⊗ b′) = b1η(b⊗ f)(m⊗ b′) = b1(bι(f(m))b′),

for each homogeneous element b1 ∈ B.
We now prove the naturality of η. Recall from the proof of Proposi-

tion 8.4 that the action of B⊗A?: A−Dg −→ B −Dg on homogeneous
morphisms is given by the rule (B⊗?)(α) : b⊗ x (−1)|α||b|b⊗ α(x), for
all homogeneous elements α ∈ HOMBop(X,Y ), x ∈ X and b ∈ B. Let
ϕ : M −→ N be a homogeneous morphism in Dg −A. Then

F (ϕ) = [(B⊗A?) ◦HOMA(?, A)](ϕ) = (B⊗A?)(ϕ∗).

This is a morphism

F (N) = B ⊗A HOMA(N,A) −→ B ⊗A HOMA(M,A) = F (M)

which takes b ⊗ g  (−1)|ϕ∗||b|b ⊗ ϕ∗(g) = (−1)|ϕ||b|b ⊗ ϕ∗(g), for all
homogeneous elements b ∈ B and g ∈ HOMA(M,A). By the definition
of ϕ∗ (see the proof of Proposition 8.2), we then get that

F (ϕ)(b⊗ g) = (−1)|ϕ||b|(−1)|ϕ||g|b⊗ (g ◦ ϕ) = (−1)|ϕ|(|g|+|b|)b⊗ (g ◦ ϕ)

On the other hand, we have that

G(ϕ) = [HOMB(?, B) ◦ (?⊗A B)](ϕ) = (ϕ⊗ 1B)∗.

This is a morphism

G(N) = HOMB(N ⊗A B,B) −→ HOMB(M ⊗A B,B) = G(M)

which takes u  (ϕ ⊗ 1B)∗(u) = (−1)|ϕ||u|u ◦ (ϕ ⊗ 1B), for each homo-
geneous element u ∈ HOMB(N ⊗A B,B). We then have the following
equalities, for all homogeneous elements b ∈ B and g ∈ HOMA(N,A):

[G(ϕ)◦ηN ](b⊗g) = G(ϕ)(ηN (b⊗g)) = (−1)|ϕ|(|b|+|g|)ηN (b⊗g)◦ (ϕ⊗1B)
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and
[ηM ◦ F (ϕ)](b⊗ g) = (−1)|ϕ|(|b|+|g|)ηM (b⊗ (g ◦ ϕ)).

But, for all homogeneous elements m ∈M and b′ ∈ B, we also have

[ηN (b⊗ g) ◦ (ϕ⊗ 1B)](m⊗ b′) = ηN (b⊗ g)(ϕ(m)⊗ b′)

= bι((g ◦ ϕ)(m)))b′ = ηM (b⊗ (g ◦ ϕ))(m⊗ b′).

It follows that G(ϕ)◦ηN = ηM ◦F (ϕ), so that η is a natural transformation
of dg functors.

We next prove that hat η is homological, i.e., that dG(M) ◦ ηM − ηM ◦

dF (M) = 0. We denote by d = dF (M)) : B ⊗A HOMA(M,A) −→ B ⊗A
HOMA(M,A) and δ = dG(M) : HOMB(M ⊗A B,B) −→ HOMB(M ⊗A
B,B) the respective differentials. We need to check that δ(η(b⊗ f)) =
η(d(b⊗ f)), for all homogeneous elements b ∈ B and f ∈ HOMA(M,A).
For this, we shall apply both members of this desired equality to a tensor
m ⊗ b′, where m ∈ M and b′ ∈ B are homogeneous elements. We then
have:

[δ(η(b⊗ f))](m⊗ b′)

= [dB ◦ η(b⊗ f))− (−1)|b|+|f |η(b⊗ f)) ◦ dM⊗AB](m⊗ b′)

= dB(bι(f(m))b′)− (−1)|b|+|f |η(b⊗ f))(dM (m)⊗ b′

+ (−1)|m|m⊗ dB(b′))

= dB(b)ι(f(m))b′+(−1)|b|bdB(ι(f(m))b′)−(−1)|b|+|f |[bι(f(dM (m)))b′

+ (−1)|m|bι(f(m))dB(b′)]

= dB(b)ι(f(m))b′+(−1)|b|b[dB(ι(f(m)))b′+(−1)|f |+|m|ι(f(m))dB(b′)]

− (−1)|b|+|f |bι(f(dM (m)))b′ − (−1)|b|+|f |+|m|bι(f(m))dB(b′)

= dB(b)ι(f(m))b′ + (−1)|b|bdB(ι(f(m)))b′

− (−1)|b|+|f |bι(f(dM (m)))b′ (∗)

while we also have

η(d(b⊗ f))(m⊗ b′) = [η(dB(b)⊗ f) + (−1)|b|η(b⊗ dH(f)))](m⊗ b′)

= dB(b)ι(f(m))b′ + (−1)|b|bι(dH(f)(m))b′ = dB(b)ι(f(m))b′

+ (−1)|b|bι((dA ◦ f)(m)− (−1)|f |(f ◦ dM )(m))b′ (∗∗)

The expression (∗) and (∗∗) are equal because ι : A −→ B is a morphism of
dg algebras with enough idempotents and, hence, one has that ι(dA(a)) =
dB(ι(a)), for all a ∈ A.
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For the final assertion, we start by pointing out that ι∗ : Dg −A −→
Dg − B (resp. ι∗ : A − Dg −→ B − Dg) preserves homotopically pro-
jective dg modules. Indeed if P ∈ Dg − A is homotopically projective
and Y ∈ Dg − B is acyclic, then dg adjunction gives an isomorphism
HOMB(ι∗(P ), Y ) ∼= HOMA(P, ι∗(Y )) in Dg−K. Since ι∗ preserves acyclic
dg modules, we conclude that the last dg K-module is acyclic and, hence,
ι∗(P ) is homotopically projective.

By Proposition 7.12, we have an induced natural transformation of
triangulated functors η : R(ι∗ ◦ HOMA(?, A)) −→ R(HOMB(?, B) ◦ ι∗o).
On the other hand, by Proposition 7.14, we have natural transformations
of triangulated functors u : Lι∗ ◦ RHomA(?, A) −→ R(ι∗ ◦HOMA(?, A))
and v : R(HOMB(?, B)◦ ι∗o) −→ RHomB(?, B)◦ (Lι∗)o. The composition

Lι∗ ◦ RHomA(?, A)
u
→ R(ι∗ ◦HOMA(?, A))

η
→ R(HOMB(?, B) ◦ ι∗o)

v
→ RHomB(?, B) ◦ (Lι∗)o

is then the desired natural transformation, which we want to prove that
is an isomorphism when evaluated at any M ∈ per(A). Since per(A) =
thickD(A)(eiA : i ∈ I) it is enough to prove that (v ◦ η ◦ u)eiA = veiA ◦
ηeiA ◦ ueiA is an isomorphism, for all i ∈ I.

Proposition 7.14(4) together with the previous to the last para-
graph tell us that v is a natural isomorphism. On the other hand,
ΠA(eiA) ∼= eiA in H(A) since eiA is homotopically projective, for all
i ∈ I. But HOMA(eiA,A) ∼= Aei and, by the previous to the last para-
graph again, also [ι∗ ◦ HOMA(?, A)](eiA) is homotopically projective.
Proposition 7.14(3) then gives that ueiA is an isomoprhism and Proposi-
tion 7.12 implies that, in order to check that ηeiA is an isomorphism in
D(Bop) and hence end the proof, it is enough to prove that

ηeiA : F (eiA) = B ⊗A HOMA(eiA,A) −→ HOMB(eiA⊗B,B) = G(eiA)

is an isomorphism of left dg B-modules.
We proceed to prove this fact. Recall from the proof of

Proposition 10.4 that we have isomorphisms ΦA : HOMA(eiA,A)
∼=
−→ Aei

and ΦB : HOMB(eiB,B)
∼=
−→ Bei, in A− Dg and B − Dg, respectively,

mapping f  f(ei) in both cases. Note that Φ−1
B : Bei −→ HOMB(eiB,B)

is given by the rule Φ−1
B (b)(ei) = b or, equivalently, by the rule

Φ−1
B (b)(b′) = bb′, for all homogeneous elements b ∈ Bei and b′ ∈ eiB.

Note also that since ΦA has degree zero, the induced isomorphism

(B⊗?)(ΦA) : B ⊗A HOMA(ei, A)
∼=
−→ B ⊗A Aei takes b⊗ f  b⊗ f(ei),
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so that (B⊗A?)(ΦA) = 1B ⊗ ΦA. We now claim that

ηeiA : B ⊗A HOMA(eiA,A)−→HOMB(eiA⊗A B,B)

can be decomposed as the composition of morphisms in B −Dg

B ⊗A HOMA(eiA,A)
1B⊗ΦA−→ B ⊗A Aei

µ′

−→ Bei

Φ−1
B−→ HOMB(eiB,B)

µ∗

−→ HOMB(eiA⊗A B,B),

where µ′ : B⊗AAei −→ Bei and µ : eiA⊗B −→ B are the multiplication
maps, b⊗ a bι(a) and a⊗ b ι(a)b. Indeed we have:

(µ∗ ◦ Φ−1
B ◦ µ

′ ◦ (1B ⊗ Φ))(b⊗ f) = (µ∗ ◦ Φ−1
B ◦ µ

′)(b⊗ f(ei))

= (µ∗ ◦ Φ−1
B )(bι(f(ei))) = Φ−1

B (bι(f(ei))) ◦ µ

since µ has zero degree. When we take homogeneous elements x ∈ eiA
and b′ ∈ B and make act the last morphism on x⊗ b′, we get

(µ∗ ◦ Φ−1
B ◦ µ

′ ◦ (1B ⊗ Φ))(b⊗ f)(x⊗ b′) = Φ−1
B (bι(f(ei)))(ι(x)b′)

= bι(f(ei))ι(x)b′ = bι(f(eix))b′ = bι(f(x))b′ = ηeiA(b⊗ f)(x⊗ b′),

using the fact that ι : A −→ B is an algebra homomorphism and
f : eiA −→ A is a morphism of right A-modules.

The proof is hence reduced to check that µ′ : B ⊗A Aei −→ Bei
and µ : eiA ⊗ B −→ eiB are isomorphisms in B − Dg and Dg − B,
respectively. But this is clear. Their inverses map b b⊗ei and b ei⊗b,
respectively.
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