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Abstract. In this paper, we introduce Gram matrices for

the signed partition algebras, the algebra of Z2-relations and the par-

tition algebras. The nondegeneracy and symmetic nature of these

Gram matrices are establised. Also, (s1, s2, r1, r2, p1, p2)-Stirling

numbers of the second kind for the signed partition algebras, the

algebra of Z2-relations are introduced and their identities are estab-

lished. Stirling numbers of the second kind for the partition algebras

are introduced and their identities are established.

1. Introduction

An extensive study of partition algebras is made by Martin [7–12] and
these algebras arose naturally as Potts models in statistical mechanics
and in the work of V. Jones [3].

A new class of algebras, called the signed partition algebras, are intro-
duced in [6] which are a generalization of partition algebras and signed
Brauer algebras [13]. The study of the structure of such finite-dimensional
algebras is important for it may be possible to find presumably new
examples of subfactors of a hyper finite Π1-factor along the lines of [16].

In this paper, we introduce a new class of matrices Gk
2s1+s2

,
−→
Gk

2s1+s2

and Gk
s of AZ2

k (x) (the algebra of Z2-relations),
−→
AZ2

k (signed partition
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algebras) and Ak(x) (partition algebras) respectively which will be called

as Gram matrices since by Theorem 3.8 in [1] the Gram matrices Gλ,µ
2s1+s2

associated to the cell modules of W [(s, (s1, s2)), ((λ1, λ2), µ)] (for λ =
([s1],Φ), µ = [s2] if s1, s2 6= 0;λ = (Φ,Φ), µ = [s2] if s1 = 0, s2 6= 0;λ =
([s1],Φ), µ = Φ if s1 6= 0, s2 = 0; λ = (Φ,Φ), µ = Φ if s1 = s2 = 0,

0 6 s1 6 k, 0 6 s2 6 k and 0 6 s1 + s2 6 k) and
−→
Gλ,µ

2s1+s2
associated to

the cell modules of
−→
W [(s, (s1, s2)), ((λ1, λ2), µ)] (for λ = ([s1],Φ), µ = [s2]

if s1, s2 6= 0;λ = (Φ,Φ), µ = [s2] if s1 = 0, s2 6= 0;λ = ([s1],Φ), µ = Φ if
s1 6= 0, s2 = 0; λ = (Φ,Φ), µ = Φ if s1 = s2 = 0, 0 6 s1 6 k, 0 6 s2 6 k−1
and 0 6 s1+s2 6 k−1) defined in [5] coincides with the matrices Gk

2s1+s2

and
−→
Gk

2s1+s2
respectively.

In this paper, (s1, s2, r1, r2, p1, p2)-Stirling numbers of the second kind
for the algebra of Z2-relations and signed partition algebras are introduced
and their identities are established. Stirling numbers of second kind corre-
sponding to the partition algebras are also introduced and their identities
are established.

2. Preliminaries

2.1. Partition algebras

We recall the definitions in [2] required in this paper. For k ∈ N, let
k = {1, 2, · · · , k}, k′ = {1′, 2′, · · · , k′}. Let Rk∪k′ be the set of all partitions
of k∪ k′ or equivalence relation on k∪ k′. Every equivalence class of k∪ k′

is called as connected component.

Any d ∈ Rk∪k′ can be represented as a simple graph on two rows
of k-vertices, one above the other with k vertices in the top row, la-
beled 1, 2, · · · , k left to right and k vertices in the bottom row labeled
1′, 2′, · · · , k′ left to right with vertex i and vertex j connected by a path if
i and j are in the same block of the set partition d. The graph representing
d is called k-partition diagram and it is not unique. Two k-partition dia-
grams are said to be equivalent if they give rise to the same set partition
of 2k-vertices.

Any connected component C of d, d ∈ Rk∪k′ containing an element of
{1, 2, · · · , k} and an element of {1′, 2′, · · · , k′} is called a through class. Any
connected component containing elements only, either from {1, 2, · · · , k}
or {1′, 2′, · · · , k′} is called a horizontal edge.
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The number of through classes in d is called a propagating number and
it is denoted by ♯p(d). We shall define multiplication of two k-partition
diagrams d′ and d′′ as follows:

• Place d′ above d′′

• Identify the bottom dots of d′ with the top dots of d′′

• d′ ◦d′′ is the resultant diagram obtained by using only the top row of
d′ and bottom row of d′′, replace each connected component which
lives entirely in the middle row by the variable x. i.e., d′ ◦ d′′ = xld′′′

where l is the number of connected components that lie entirely in
the middle row.

This product is associative and is independent of the graph we choose
to represent the k-partition diagram. Let K(x) be the field and x be an
indeterminate. The partition algebra Ak(x) is defined to be the K(x)-span
of the k-partition diagrams, which is an associative algebra with identity
1 where

· · ·1 =

By convention A0(x) = K(x). For 1 6 i 6 k − 1 and 1 6 j 6 k, the
following are the generators of the partition algebras.

· · · · · ·Pj =

j

i i+ 1

· · · · · ·si =

i i+ 1

· · · · · ·βi =

The above generators satisfy the relations given in Theorem 1.11 of [2].

2.2. The algebra of Z2-relations

Definition 2.1 ([15]). Let the group Z2 act on the set X. Then the action
of Z2 on X can be extended to an action of Z2 on RX , where RX denote
the set of all equivalence relations on X, given by

g.d = {(gp, gq) | (p, q) ∈ d}
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where d ∈ RX and g ∈ Z2. (It is easy to see that the relation g.d is again
an equivalence relation).

An equivalence relation d on X is said to be a Z2-stable equivalence
relation if p ∼ q in d implies that gp ∼ gq in d for all g in Z2. We denote
k for the set {1, 2, · · · , k}. We shall only consider the case when Z2 acts
freely on X; let X = k × Z2 and the action is defined by g.(i, x) = (i, gx)
for all 1 6 i 6 k. Let RZ2

k be the set of all Z2-stable equivalence relations
on k × Z2.

Notation 2.2 ([15]). (i) RZ2
k denotes the set of all Z2-stable equivalence

relation on k × Z2. Each d ∈ RZ2
k can be represented as a simple graph

on row of 2k vertices.

• The vertices (1, e), (1, g), · · · , (k, e), (k, g) is arranged from left to
right in a single row.

• If (i, g) ∼ (j, g′) ∈ RZ2
k then ((i, g), (j, g′)) is an edge which is ob-

tained by joining the vertices (i, g) and (j, g′) by a line for g, g′ ∈ Z2.

We say that the two graphs are equivalent if they give rise to the same
set partition of the 2k vertices {(1, e), (1, g), · · · , (k, e), (k, g)}.

We may regard each element d in RZ2

k∪k′
as a 2k-partition diagram by

arranging the 4k vertices (i, g), i ∈ k ∪ k′, g ∈ Z2 of d in two rows in such
a way that (i, g) ((i′, g)) is in the top(bottom) row of d if 1 6 i 6 k(1′ 6
i′ 6 k′) for all g ∈ Z2 and if (i, g) ∼ (j, g′) then ((i, g), (j, g′)) is an edge
which is obtained by joining the vertices (i, g) and (j, g′) by a line where
g, g′ ∈ Z2.

(ii) RZ2
k can be identified as a subset of R2k by identifying (r, e) with

2r − 1, ∀ 1 6 r 6 k and (r, g), g 6= e with 2r ∀ 1 6 r 6 k.

(iii) The diagrams d+ and d− are obtained from the diagram d by
restricting the vertex set to

{(1, e), (1, g), · · · , (k, e), (k, g)} and {(1′, e), (1′, g), · · · (k′, e), (k′, g)}

respectively. The diagrams d+ and d− are also Z2-stable equivalence
relation with d+ ∈ RZ2

k and d− ∈ RZ2

k′
.

Definition 2.3. ([15]) Let d ∈ RZ2

k∪k′
. Then the equation

Rd = {(i, j) | there exists g, h ∈ Z2 such that ((i, g), (j, h)) ∈ d}

defines an equivalence relation on k ∪ k′.
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Remark 2.4 ([15]). For every connected component C of RZ2

k∪k′
, Cd will

be a connected component in Rd as in Definition 2.3.
For d ∈ RZ2

k∪k′
and for every Z2-stable equivalence class or a connected

component C in d there exists a unique subgroup denoted by Hd
C for

Cd ∈ Rd where
(i) Hd

C = {e} if (i, e) 6∼ (i, g) ∀ i ∈ Cd, C is called an {e}-class or
{e}-component and the {e}-component C will always occur as a
pair in d which is denoted by Ce, Cg.

(ii) Hd
C = Z2 if (i, e) ∼ (i, g) ∀ i ∈ Cd, C is called a Z2-class or Z2-

component which is denoted by CZ2 and the number of vertices in
the Z2-component CZ2 will always be even.

Proposition 2.5 ([15]). The linear span of RZ2

k∪k′
is a subalgebra of A2k(x).

We denote this subalgebra by AZ2
k (x), called the algebra of Z2-relations.

Definition 2.6 ([15]). For 0 6 2s1 + s2 6 2k, define I2k2s1+s2
as follows:

I2k2s1+s2
=

{
d ∈ RZ2

k∪k′
| ♯p(d) = 2s1 + s2

}

i.e., d has s1 number of pairs of {e}-through classes and s2 number of
Z2-through classes.

For 0 6 s 6 2k define, I2ks =
⋃

2s1+s26s I
2k
2s1+s2

then it is clear that

RZ2

k∪k′
=

⋃

06s62k

I2ks =
⋃

062s1+s262k

I2k2s1+s2
.

2.3. Signed partition algebras

Definition 2.7 ([6], Definition 3.1.1). Let the signed partition algebra
−→
AZ2

k (x) be the subalgebra of A2k(x) generated by H1, F
′

i , F
′′

i , Gi, Fj for
1 6 i 6 k − 1 and 1 6 j 6 k where

H1 =

F ′

i =

(i, g)

· · ·

· · · · · ·

Gi = · · · · · ·

F ′′

i = · · · · · ·

· · · · · ·Fj =

(i, g)

(i, g)

(j, g)

RF ′

i = · · · · · ·

· · · · · ·

· · · · · ·

· · · · · ·

i

i

i

j

RGi =

RF ′′

i =

RFj =

, 1 ≤ i ≤ n− 1

, 1 ≤ i ≤ n− 1

, 1 ≤ i ≤ n− 1

, 1 ≤ j ≤ n



“adm-n1” — 2018/4/2 — 12:46 — page 78 — #80

78 Gram matrices and Stirling numbers

The subalgebra of the signed partition algebra generated by F ′

i , Gi,
F ′′

i , Fj , 1 6 i 6 k− 1, 1 6 j 6 k is isomorphic on to the partition algebra
A2k(x

2). Also, RGi = si, R
F ′′
i = βi, R

Fj = pj , R
F ′
i = pipi+1βipi+1pi where

si, βi, pj are as in § 2.1.

We will obtain a basis for the signed partition algebra defined in
Definition 2.7.

Definition 2.8 ([6], Definition 3.1.2). Let d ∈ RZ2

k∪k′
. For 0 6 2s1 + s2 6

2k − 1 and 0 6 s1, s2 6 k − 1, define

−→
I 2k

2s1+s2

=





d ∈ I2k2s1+s2

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

(i) s1 + s2 + r1 + r2 6 k − 1 and
s1 + s2 + r′1 + r′2 6 k − 1, or

(ii) s1 + s2 + r1 + r2 6 k and
s1 + s2 + r′1 + r′2 6 k − 1 then r1 6= 0, or

(iii) s1 + s2 + r1 + r2 6 k − 1 and
s1 + s2 + r′1 + r′2 6 k then r′1 6= 0, or

(iv) s1 + s2 + r1 + r2 6 k and
s1 + s2 + r′1 + r′2 6 k then r1 6= 0 and r′1 6= 0.





,

where
(a) s1 = ♮{(Ce, Cg) : Cd is a through class of Rd and Hd

C = {e}},
(b) s2 = ♮{CZ2 : Cd is a through class of Rd and Hd

C = Z2},
(c) r1 (r

′

1) is the number of horizontal edges Cd in the top(bottom) row
of Rd such that Hd

C = {e}
(d) r2 (r

′

2) is the number of horizontal edges Cd in the top(bottom) row
of Rd such that Hd

C = Z2

(e) ♯p
(
Rd

)
= s1 + s2.

Also,
−→
I 2k

2k = I2k2k .

For 0 6 s 6 2k, put
−→
I 2k

s =
⋃

2s1+s26s

−→
I 2k

2s1+s2
.

Proposition 2.9. 1) The linear span of
−→
I 2k

s , 0 6 s 6 2k is the signed

partition algebra
−→
AZ2

k .

2) The linear span of I2ks is an ideal of
−→
AZ2

k .

Remark 2.10. The algebra generated by {RF ′
i , RGi , RF ′′

i , RFj}16i6k−1
16j6k

is isomorphic to the partition algebra Ak(x).
Also, let Iks be the set of all k-partition diagrams Rd in Ak(x) such

that ♯p(Rd) 6 s where d ∈ I2k2s1+0 ⊆ A2k(x
2).
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Definition 2.11 ([5], Definition 4.2). Define,

(i) Mk[(s, (s1, s2))] =
{
(d, P ) | d ∈ RZ2

k , P ∈ RZ2
s1+s2

and d \ P ∈

RZ2
k−s1−s2

, |d| > 2s1 + s2, P is a Z2-stable subset of d with |P | = s

where s = 2s1 + s2, P =
⋃s1

i=1(P
e
i ∪ P g

i )
⋃s2

j=1 P
Z2
j such that

Hd

P
{e}
i

= {e}, 1 6 i 6 s1, H
d

P
Z2
j

= Z2, 1 6 j 6 s2

}
.

(ii)
−→
Mk[(s, (s1, s2))] =

{
(d, P ) ∈ Mk[(s, (s1, s2))]

∣∣∣ s1 + s2 + r1 + r2 6

k − 1 and if s1 + s2 + r1 + r2 = k then s1 = k or r1 6= 0 where 2r1
is the number of {e}-connected components in d \ P and r2 is the

number of Z2 − connected components in d \ P
}

.

We shall now introduce an ordering for the connected components
in P . Suppose that

P =
⋃

16i6s1

(P e
i ∪ P g

i ) ∪
⋃

16j6s2

PZ2
j

then RP =
⋃

16i6s1
RP

{e}
i ∪

⋃
16j6s2

RP
Z2
j .

Let a11, · · · , a1s1 be the minimal vertices of the connected components

RP
{e}
1 , · · · , RP

{e}
s1 in RP and b11, · · · , b1s2 be the minimal vertices of the

connected components RP
Z2
1 , · · · , RP

Z2
s2 in RP then

P e
i < P e

j and P g
i < P g

j ⇐⇒ RP
{e}
i < RP

{e}
j ⇐⇒ a1i < a1j ∈ RP

and

PZ2
l < PZ2

f ⇐⇒ RP
Z2
l < RP

Z2
f ⇐⇒ b1l < b1f ∈ RP .

Since
−→
Mk[(s, (s1, s2))] ⊆ Mk[(s, (s1, s2))], the above ordering can be used

for the connected components P when (d, P ) ∈
−→
Mk[(s, (s1, s2))].

Lemma 2.12 ([5], Lemma 4.3). Let Mk[(s, (s1, s2))] and
−→
Mk[(s, (s1, s2))]

be as in Definition 2.11.
(i) Each d ∈ I2k2s1+s2

can be associated with a pair of elements
(d+, P ), (d−, Q) ∈ Mk[(s, (s1, s2))] and an element ((f, σ1), σ2) ∈
(Z2 ≀Ss1) × Ss2 where (d+, P ), (d−, Q) ∈ Mk[(s, (s1, s2))] and
((f, σ1), σ2) ∈ (Z2 ≀Ss1)×Ss2 .

(ii) Each d ∈
−→
I 2k

2s1+s2
can be associated with a pair of elements

(d+, P ), (d−, Q) ∈
−→
Mk[(s, (s1, s2))] and an element ((f, σ1), σ2) ∈

(Z2 ≀Ss1) × Ss2 where (d+, P ), (d−, Q) ∈
−→
Mk[(s, (s1, s2))] and

((f, σ1), σ2) ∈ (Z2 ≀Ss1)×Ss2 .
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Definition 2.13 ([5], Definition 4.6). (i) Define a map

φs
s1,s2

: Mk[(s, (s1, s2))]×Mk[(s, (s1, s2))] → R[(Z2 ≀Ss1)×Ss2 ]

as follows:

φs
s1,s2

(
(d′, P ), (d′′, Q)

)
= xl(P∨Q)((f, σ1), σ2);

(ii) define a map

−→
φ s

s1,s2
:
−→
Mk[(s, (s1, s2))]×

−→
Mk[(s, (s1, s2))] → R[(Z2 ≀Ss1)×Ss2 ]

as follows:

−→
φ s

s1,s2

(
(d′, P ), (d′′, Q)

)
= xl(P∨Q)((f, σ1), σ2)

Case (i): if

(a) no two connected components of Q in d′′ have non-empty intersection
with a common connected component of d′ in d′.d′′, or vice versa;

(b) no connected component of Q has non-empty intersection only with
the connected components excluding the connected components
of P in d′.d′′. Similarly, no connected component in P has non-
empty intersection only with a connected component excluding the
connected components of Q in d′.d′′.

Here l(P ∨ Q) denotes the number of connected components in d′.d′′

excluding the union of all the connected components of P andQ and d′.d′′ ∈
RZ2

k∪k′
is the smallest d in RZ2

k∪k′
such that d′ ∪ d′′ ⊂ d. The permutation

((f, σ1), σ2) is obtained as follows. If there is a unique connected component

in d′.d′′ containing P e
i and Qg′

j then, define σ1(i) = j and

f(i) =

{
1, if g′ = g;
0, if g′ = e.

Also, if there is a unique connected component in d′.d′′ containing PZ2
l

and QZ2
f then, define σ2(l) = f).

Case (ii): Otherwise,

φs
s1,s2

(
(d′, P ), (d′′, Q)

)
= 0 and

−→
φ s

s1,s2

(
(d′, P ), (d′′, Q)

)
= 0.

Definition 2.14. Let (d, P ) ∈ Mk[(s, (s1, s2))] such that |d\P | = 2r1+r2
where Mk[(s, (s1, s2))] be as in Definition 2.11.
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Let {P g
1i, g ∈ Z2}16i6s1 ∪ {PZ2

2j }16j6s2 be the connected components

in P and {P g′

3l , g
′ ∈ Z2}16l6r1∪{P

Z2
4m}16m6r2 be the connected components

in d \ P . Define a map φ : Mk[(s, (s1, s2))] → P (k) as φ((d, P )) =
(α1, α2, α3, α4) where α1 ⊢ k1, α2 ⊢ k2, α3 ⊢ k3, α4 ⊢ k4 with k1 + k2 +
k3 + k4 = k, α1 = (α11, α12, · · · , α1s1), α2 = (α21, α22, · · · , α2s2), α3 =
(α31, α32, · · · , α3r1) and α4 = (α41, α42, · · · , α4r2) such that |P1i| = α1i,
|P2j | = α2j , |P3l| = α3l, |P4m| = α4m respectively for all 1 6 i 6 s1,
1 6 j 6 s2, 1 6 l 6 r1 and 1 6 m 6 r2.

Example 2.15. The following example illustrates the use of 2s1 + s2
instead of s = 2s1 + s2 to denote the number of through classes for the
diagrams in algebra of Z2-relations and signed partition algebras.

For s1 = 0 and s2 = 2,

(Φ, (2, 1),Φ,Φ) (2, 1) (Φ, (2, 1),Φ,Φ) (2, 1)

(12, 1)

(12, 1)(2, 1)

(12, 1)

(Φ, (1, 1), 1,Φ)

(Φ, (1, 1), 1,Φ)(Φ, (1, 1), 1,Φ)

(Φ, (2, 1),Φ,Φ)

(d, P ) ∈
−→
M3[(2, (0, 2))]

partition
of (d, P )

R(d,P ) partition

of R(d,P ) (d,P ) ∈

−→
M3[(2, (0, 2))] partition

of (d,P )
R(d,P ) partition

of R(d,P )

For s1 = 1 and s2 = 0,

,

,

(3,Φ,Φ,Φ) (3,Φ)

, (2,Φ,Φ, 1) (2, 1)

,

,

(2,Φ,Φ, 1)
(2,Φ,Φ, 1)

(2, 1)
(2, 1)

(1,Φ,Φ, 2) (1, 2)

(1,Φ,Φ, 2) (1,Φ,Φ, 2) (1, 2)

(2,Φ, 1,Φ) (2, 1)

(2, 1)

, , (2,Φ, 1,Φ) (2, 1)

, (2,Φ, 1,Φ) (2, 1) , (1,Φ, 2,Φ) (1, 2)

, (1,Φ, 2,Φ) (1, 2) , (1,Φ, 2,Φ) (1, 2)

, (1,Φ, 1, 1) (1, 12)
,

(1,Φ, 1, 1) (1, 12)

,

(1,Φ, 1, 1) (1, 12)
,

(d, P ) ∈
−→
M3[(2, (1, 0))]

partition
of (d,P ) R(d,P )

partition

of R(d,P ) (d, P ) ∈
−→
M3[(2, (1, 0))]

partition
of (d,P ) R(d,P )

partition

of R(d,P )

In the above diagrams, connected components with thick dots (hollow
dots) belongs to P (d \ P ). In partition algebra, for any d whose top row
is (d, P ) and the bottom row is (d′, P ′) with |P | = s then the number
of possible ways to permute the through classes in d will be s! ways.In
case of signed partition algebras, for (d, P ), (d′, P ′) ∈ Mk[(s, (s1, s2))]
with |P | = |P ′| = 2s1 + s2 = s, then the number of diagram d’s whose
top row is (d, P ) and bottom row is (d′, P ′) will be 2s1 s1! s2!. Since
{e}-connected components(Z2-connected components) in P can be joined
only to {e}-connected components(Z2-connected components) in P ′.



“adm-n1” — 2018/4/2 — 12:46 — page 82 — #84

82 Gram matrices and Stirling numbers

Moreover, By Definition 2.8 we know that

−→
I 2k

s =
⋃

2s1+s26s

−→
I 2k

2s1+s2
.

Let
−→
L 2k

s be the linear span of
−→
I 2k

s for every 0 6 s 6 2k then
−→
L 2k

s is an

ideal of
−→
I 2k

s and the quotient
−→
L 2k

s /
−→
L 2k

s−1 = linear span of {d | ♯p(d) = s}.

For example,
−→
I 6

2 =
−→
I 6

2×1+0 ∪
−→
I 6

2×0+2 ∪
−→
I 6

2×0+1 ∪
−→
I 6

2×0+0 and
−→
I 6

1 =
−→
I 6

2×0+1 ∪
−→
I 6

2×0+0 then the quotient ring
−→
L 6

2/
−→
L 6

1 splits into a direct sum
of four ideals A1, A2, A3, A4 where

A1 is the linear span of

{
d

(
((0, id), id) + ((0, id), σ2)

2

) ∣∣∣ d = Ũ
(d,P )
(d,P )

}

Ũ
(d,P )
(d,P )

∈J6
2×0+2

,

A2 is the linear span of

{
d

(
((0, id), id)− ((0, id), σ2)

2

) ∣∣∣ d = Ũ
(d,P )
(d,P )

}

Ũ
(d,P )
(d,P )

∈J6
2×0+2

,

B1 is the linear span of

{
d

(
((0, id), id) + ((0, σ1), id)

2

) ∣∣∣ d = Ũ
(d,P )
(d,P )

}

Ũ
(d,P )
(d,P )

∈J6
2×1+0

,

B2 is the linear span of

{
d

(
((0, id), id)− ((0, σ1), id)

2

) ∣∣∣ d = Ũ
(d,P )
(d,P )

}

Ũ
(d,P )
(d,P )

∈J6
2×1+0

.

Here σ2
1 = Id, σ2

2 = Id and 0(i) = 0 for every i.

3. Gram matrices and (s1, s2, r1, r2, p1, p2)-Stirling

numbers

In this section, we introduce a new class of matrices Gk
2s1+s2

,
−→
Gk

2s1+s2

and Gk
s of the algebra of Z2-relations, signed partition algebras and par-

tition algebras respectively which will be called as Gram matrices since
by Theorem 3.8 in [1] the Gram matrices Gλ,µ

2s1+s2
associated to the cell

modules of
W [(s, (s1, s2)), ((λ1, λ2), µ)]
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(for λ = ([s1],Φ), µ = [s2] if s1, s2 6= 0; λ = (Φ,Φ), µ = [s2] if s1 = 0,
s2 6= 0; λ = ([s1],Φ), µ = Φ if s1 6= 0, s2 = 0; λ = (Φ,Φ), µ = Φ if
s1 = s2 = 0, 0 6 s1 6 k, 0 6 s2 6 k and 0 6 s1 + s2 6 k)

and

−→
Gλ,µ

2s1+s2

−→
W [(s, (s1, s2)), ((λ1, λ2), µ)]

(for λ = ([s1],Φ), µ = [s2] if s1, s2 6= 0;λ = (Φ,Φ), µ = [s2] if s1 =
0, s2 6= 0;λ = ([s1],Φ), µ = Φ if s1 6= 0, s2 = 0; λ = (Φ,Φ), µ = Φ if
s1 = s2 = 0, 0 6 s1 6 k, 0 6 s2 6 k − 1 and 0 6 s1 + s2 6 k − 1) defined

in Definition 6.3 of [5] coincides with the matrices Gk
2s1+s2

and
−→
Gk

2s1+s2

respectively.

In this paper, (s1, s2, r1, r2, p1, p2)-Stirling numbers of the second kind
for the algebra of Z2-relations and signed partition algebras are introduced
and their identities are established. Stirling numbers of second kind corre-
sponding to the partition algebras are also introduced and their identities
are established.

We begin by calculating the size of the Gram matrices before explaining
the entries of the Gram matrices.

Definition 3.1. Put

(a) Ωr1,r2
s1,s2 =

{
[α1]

1 [α2]
2 [α3]

3 [α4]
4
∣∣∣α1 ⊢ k1, α2 ⊢ k2, α3 ⊢ k3, α4 ⊢ k4

with α1 ∈ P(k1, s1), α2 ∈ P(k2, s2), α3 ∈ P(k3, r1), α4 ∈ P(k4, r2)

such that k1 + k2 + k3 + k4 = k
}

where α1 = (α11, α12, · · · , α1s1),

α2 = (α21, α22, · · · , α2s2), α3 = (α31, α32, · · · , α3r1) and α4 =
(α41, α42, · · · , α4r2).

(b)
−→
Ω r1,r2

s1,s2 =
{
[α1]

1 [α2]
2 [α3]

3 [α4]
4 ∈ Ωr1,r2

s1,s2

∣∣∣ s1 + s2 + r1 + r2 6

k − 1 and if s1 + s2 + r1 + r2 = k then r1 6= 0 or s1 = k
}

.

(c) Ωr
s = {[α1]

1[α2]
2 | α1∈P(k1, s), α2∈P(k2, r) such that k1+k2=k}.

Definition 3.2. Let α = [α1]
1[α2]

2[α3]
3[α4]

4 ∈ Ωr1,r2
s1,s2 . We shall draw

a graph corresponding to the partition α = [α1]
1[α2]

2[α3]
3[α4]

4 on the
vertices (i, e), (i, g) for all 1 6 i 6 k and 1′ 6 i 6 k′ arranged in two rows
of each having k-vertices labeled from left to right. The edges are drawn
as follows:
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(a) Draw an edge connecting the vertices

(( i−1∑

n=1

|α1n|

)
+ 1, e

)
,

(( i−1∑

n=1

|α1n|

)
+ 2, e

)
, · · · ,

(( i∑

n=1

|α1n|

)
, e

)
,

((( i−1∑

n=1

|α1n|

)
+ 1

)
′

, e

)
,

((( i−1∑

n=1

|α1n|

)
+ 2

)
′

, e

)
,

(( i∑

n=1

|α1n|

)
′

, e

)

and denote it by P e
1i for 1 6 i 6 s1. Since the diagram has to be a

Z2-stable diagram there should be a copy of the connected component
which is obtained by connecting the vertices

(( i−1∑

n=1

|α1n|

)
+ 1, g

)
,

(( i−1∑

n=1

|α1n|

)
+ 2, g

)
, · · · ,

(( i∑

n=1

|α1n|

)
, g

)
,

((( i−1∑

n=1

|α1n|

)
+ 1

)
′

, g

)
,

((( i−1∑

n=1

|α1n|

)
+ 2

)
′

, g

)
,

(( i∑

n=1

|α1n|

)
′

, e

)

and denote it by P g
1i for 1 6 i 6 s1. The connected components P e

1i and
P g
1i for 1 6 i 6 s1 are called {e}-through classes.

(b) Draw an edge connecting the vertices

(( s1∑

i=1

|α1i|+

j−1∑

m=1

|α2m|

)
+ 1, e

)
,

(( s1∑

i=1

|α1i|+

j−1∑

m=1

|α2m|

)
+ 1, g

)
,

· · · ,

(( s1∑

i=1

|α1i|+

j∑

m=1

|α2m|

)
, e

)
,

(( s1∑

i=1

|α1i|+

j∑

m=1

|α2m|

)
, g

)
,

((( s1∑

i=1

|α1i|+

j−1∑

m=1

|α2m|

)
+ 1

)
′

, e

)
,

((( s1∑

i=1

|α1i|+

j−1∑

m=1

|α2m|

)
+ 1

)
′

, g

)
, · · · ,

(( s1∑

i=1

|α1i|+

j∑

m=1

|α2m|

)
′

, e

)
,

(( s1∑

i=1

|α1i|+

j∑

m=1

|α2m|

)
′

, g

)

and denote it by PZ2
2j for 1 6 j 6 s2.

The connected components PZ2
2j for 1 6 j 6 s2 are called Z2-through

classes.
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(c) Draw edges connecting the vertices

(( s1∑

i=1

|α1i|+

s2∑

j=1

|α2j |+
l−1∑

f=1

|α3f |

)
+ 1, e

)
,

· · · ,

(( s1∑

i=1

|α1i|+

s2∑

j=1

|α2j |+

l∑

f=1

|α3f |

)
, e

)

in the top row and

((( s1∑

i=1

|α1i|+

s2∑

j=1

|α2j |+
l−1∑

f=1

|α3f |

)
+ 1

)
′

, e

)
,

· · · ,

(( s1∑

i=1

|α1i|+

s2∑

j=1

|α2j |+

l∑

f=1

|α3f |

)
′

, e

)

in the bottom row and denote it by P e
l and P

′e
l respectively. Since the

diagram has to be Z2-stable diagram there will be copy of the above
connected components obtained by connecting the vertices

(( s1∑

i=1

|α1i|+

s2∑

j=1

|α2j |+

l−1∑

f=1

|α3f |

)
+ 1, g

)
,

· · · ,

(( s1∑

i=1

|α1i|+

s2∑

j=1

|α2j |+
l∑

f=1

|α3f |

)
, g

)

in the top row

((( s1∑

i=1

|α1i|+

s2∑

j=1

|α2j |+
l−1∑

f=1

|α3f |

)
+ 1

)
′

, g

)
,

· · · ,

(( s1∑

i=1

|α1i|+

s2∑

j=1

|α2j |+
l∑

f=1

|α3f |

)
′

, g

)

and denote it by P g
l and P

′g
l respectively.

The connected components P e
l , P

′e
l , P g

l and P
′g
l for 1 6 l 6 r1 are

called {e}-horizontal edges.
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(d) Draw edges connecting the vertices

(( s1∑

i=1

|α1i|+

s2∑

j=1

|α2j |+

r1∑

l=1

|α3l|+
m−1∑

t=1

|α4t|

)
+ 1, e

)
,

(( s1∑

i=1

|α1i|+

s2∑

j=1

|α2j |+

r1∑

l=1

|α3l|+

m−1∑

t=1

|α4t|

)
+ 1, g

)
,

· · · ,

(( s1∑

i=1

|α1i|+

s2∑

j=1

|α2j |+

r1∑

l=1

|α3l|+

m∑

t=1

|α4t|

)
, e

)
,

(( s1∑

i=1

|α1i|+

s2∑

j=1

|α2j |+

r1∑

l=1

|α3l|+

m∑

t=1

|α4t|

)
, g

)

in the top row and

((( s1∑

i=1

|α1i|+

s2∑

j=1

|α2j |+

r1∑

l=1

|α3l|+

m−1∑

t=1

|α4t|

)
+ 1

)
′

, e

)
,

((( s1∑

i=1

|α1i|+

s2∑

j=1

|α2j |+

r1∑

l=1

|α3l|+

m−1∑

t=1

|α4t|

)
+ 1

)
′

, g

)
,

· · · ,

(( s1∑

i=1

|α1i|+

s2∑

j=1

|α2j |+

r1∑

l=1

|α3l|+
m∑

t=1

|α4t|

)
′

, e

)
,

(( s1∑

i=1

|α1i|+

s2∑

j=1

|α2j |+

r1∑

l=1

|α3l|+
m∑

t=1

|α4t|

)
′

, g

)

in the bottom row and it is denoted by PZ2
m and P

′Z2
m for 1 6 m 6 r2.

The connected components PZ2
m , P

′Z2
m for 1 6 m 6 r2 are called Z2-

horizontal edges.

The diagram obtained above is called standard diagram and it is
denoted by Uα where α = [α1]

1[α2]
2[α3]

3[α4]
4 ∈ Ωr1,r2

s1,s2 .

Example 3.3. The following are some examples of standard diagrams

of Uα type in signed partition algebras
−→
AZ2

5 with their corresponding
partitions.



“adm-n1” — 2018/4/2 — 12:46 — page 87 — #89

N. Karimilla Bi, M. Parvathi 87

corresponding
partition

α1 α2 α3 α4

d1 (α1) (4, 1) Φ Φ Φ

d2 (α2, α3) Φ (3, 1) (1) Φ

(α1, α2, α3)d3 (2) (1) (2) Φ

d4 (α1, α2, α3, α4) (1) (1) (2) (1)

Remark 3.4. Let d ∈ I2k2s1+s2
. By Lemma 2.12, for any d ∈ I2k2s1+s2

we can associate a pair (d+, P ), (d−, Q) ∈ Mk[(s, (s1, s2))] and an ele-
ment ((f, σ1), σ2) ∈ (Z2 ≀Ss1)×Ss2 and vice versa and it is denoted by

U
(d+,P )
(d−,Q)

((f, σ1), σ2). If d+ = d−, P = Q and ((f, σ1), σ2) = ((0, id), id) ∈

(Z2 ≀Ss1) × Ss2 then without loss of generality we can write such d

as Ũ
(d,P )
(d,P ) .

Definition 3.5. Let α = [α1]
1 [α2]

2 [α3]
3 [α4]

4 ∈ Ωr1,r2
s1,s2 . Define,

Stc (Uα) =
{
σ ∈ Z2 ≀Sk

∣∣∣ σUασ−1 = Uα
}

where Uα is the standard diagram corresponding to the partition α as in
Definition 3.2.

Note 1. (i) Let U
−→α denote the standard diagram in signed partition

algebra corresponding to the partition −→α ∈
−→
Ω r1,r2

s1,s2 and RUα
denote the

standard diagram in partition algebra corresponding to the partition Rα ∈

Ωr
s which can be defined as in Definition 3.2, Stc

(
U

−→α
)

and Stc
(
RUα)

can also be defined as in Definition 3.5 for the signed partition algebras
−→
AZ2

k (x) and the partition algebras Ak(x).

(ii) All other diagrams U
(d,P )
(d,P ) ,

−→
U

(d,P )
(d,P ), and R

U
(d,P )
(d,P ) whose underlying

partition is same as the underlying partition of Uα, U
−→α and RUα

respec-
tively can be obtained as follows:

U
(d,P )
(d,P ) = τUατ−1,

−→
U

(d,P )
(d,P ) =

−→τ U
−→α−→τ −1 and R

U
(d,P )
(d,P ) = ρRUα

ρ
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where τ,∈ Z2 ≀Sk and ρ ∈ Sk are the coset representatives of Stc(Uα),
Stc(U

−→α ) and Stc(RUα
) respectively. Also, Uα, U

−→α and RUα
are the stan-

dard diagrams as in Definition 3.2.

Notation 3.6. (a) For 0 6 r1, r2 6 k − s1 − s2 and 0 6 s1, s2 6 k, put

J2k
2s1+s2

=
⋃

06r1+r26k−s1−s2

J2r1+r2
2s1+s2

and

J2r1+r2
2s1+s2

=
⋃

α=[α1]1[α2]2[α3]3[α4]4∈Ω
r1,r2
s1,s2

J2r1+r2,α
2s1+s2

where

J2r1+r2,α
2s1+s2

=
{
d ∈ I2k2s1+s2

∣∣∣ d = Ũ
(d,P )
(d,P ) with d+ = (d, P ),

d− = (d, P ), ηe

(
Ũ

(d,P )
(d,P )

)
= s1, ηZ2

(
Ũ

(d,P )
(d,P )

)
= s2,

Ũ
(d,P )
(d,P ) has r1 number of pairs of {e}-horizontal edges,

r2 number of Z2-horizontal edges,

(d, P ) ∈ Mk[(s, (s1, s2))] as in Definition 2.10,

‖P‖ = 2s1 + s2 and α is the underlying partition of (d, P )

as in Definition 2.13
}
.

Also,

∣∣∣J2r1+r2,α
2s1+s2

∣∣∣ = index of Stc(Uα) = f2r1+r2,α
2s1+s2

,
∣∣∣J2r1+r2

2s1+s2

∣∣∣ =
∑

α=[α1]
1[α2]

2[α3]
3[α4]

4
∈Ω

r1,r2
s1,s2

index of Stc (Uα) = f2r1+r2
2s1+s2

,

∣∣∣J2k
2s1+s2

∣∣∣ =
∑

06r1+r26k−s1−s2

∣∣∣J2r1+r2
2s1+s2

∣∣∣ .

∣∣J2k
2s1+s2

∣∣ will define the size of the Gram matrix in the algebra of
Z2-relation and it is denoted by f2s1+s2 .

(b) For 0 6 r1 6 k − s1 − s2, 0 6 r2 6 k − s1 − s2 − 1, 0 6 s1 6 k,
0 6 s2 6 k − 1, and 0 6 s1 + s2 + r1 + r2 6 k − 1,

(i) if r1 6= 0 then
−→
J 2r1+r2,α

2s1+s2
= J2r1+r2,α

2s1+s2
;
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(ii) if r1 = 0 then

−→
J 2r1+r2,α

2s1+s2
= {d ∈ J2r1+r2,α

2s1+s2
| either s1 = k or s1+s2+r2 6 k−1},

−→
J 2r1+r2

2s1+s2
=

⋃

α=[α1]1[α2]2[α3]3[α4]4∈
−→
Ω

r1,r2
s1,s2

−→
J 2r1+r2,α

2s1+s2
,

and

−→
J 2k

2s1+s2
=

⋃

06r16k−s1−s2
06r26k−s1−s2−1
06r1+r26k−s1−s2

−→
J 2r1+r2

2s1+s2
;

∣∣∣
−→
J 2r1+r2,α

2s1+s2

∣∣∣ = index of Stc(Uα) =
−→
f 2r1+r2,α

2s1+s2
,

∣∣∣
−→
J 2r1+r2

2s1+s2

∣∣∣ =
∑

α=[α1]
1[α2]

2[α3]
3[α4]

4
∈
−→
Ω

r1,r2
s1,s2

index of Stc(U
−→α ) =

−→
f 2r1+r2

2s1+s2
,

∣∣∣
−→
J 2k

2s1+s2

∣∣∣ =
∑

06r16k−s1−s2
06r26k−s1−s2−1
06r1+r26k−s1−s2

∣∣∣
−→
J 2r1+r2

2s1+s2

∣∣∣ .

∣∣∣
−→
J 2k

2s1+s2

∣∣∣ will define the size of the Gram matrix in signed partition

algebras and it is denoted by
−→
f 2s1+s2 .

(c) For 0 6 r 6 k − s, 0 6 s 6 k put

Jk
s =

⋃

06r6k−s

Jrs and Jrs =
⋃

α=[α1]1[α2]2∈Ωr
s

Jr,αs ,

where Jr,αs =
{
Rd ∈ Iks

∣∣∣ Rd = U
(Rd)+

(Rd)−
,
(
Rd

)+
and

(
Rd

)−
are the same,

♯p(U
(Rd)+

(Rd)−
) = s, U

(Rd)+

(Rd)−
has r number of horizontal edges and α is the

underlying partition of Rd
}

.

For the sake of simplicity we write, U
(Rd)+

(Rd)−
= URd

Rd . Also, |Jr,αs | =

index of Stc
(
URα)

= f r,α
s , |Jrs| =

∑

Rα=[α1]
1[α2]

2
∈Ωr

s

index of Stc
(
URα)

= f r
s

and
∣∣∣Jk

s

∣∣∣ =
∑

06r6k−s

|Jrs| .

∣∣Jk
s

∣∣ will define the size of the Gram matrix in the partition algebra
and it is denoted by fs.
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Definition 3.7. (a) The diagrams in J2k
2s1+s2

are indexed as follows:

{(
Ũ

(d,P )
(d,P )

)r1,r2

i,α

∣∣∣ 1 6 i 6 f2r1+r2,α
2s1+s2

, α ∈ Ωr1,r2
s1,s2

}

06r1,r26k−s1−s2
06r1+r26k−s1−s2

.

(i, α, r1, r2) < (j, β, r′1, r
′

2),
(i) if 2r1 + r2 < 2r′1 + r′2
(ii) if 2r1 + r2 = 2r′1 + r′2 and r1 + r2 < r′1 + r′2
(iii) if 2r1 + r2 = 2r′1 + r′2, r1 + r2 = r′1 + r′2 and α < β (lexicographical

ordering)
(iv) if 2r1 + r2 = 2r′1 + r′2, r1 + r2 = r′1 + r′2 and α = β then it can be

indexed arbitrarily.
where

r1 is the number of pairs of {e}-horizontal edges in
(
Ũ

(d,P )
(d,P )

)r1,r2

i,α
,

r′1 is the number of pairs of {e}-horizontal edges in
(
Ũ

(d,P )
(d,P )

)r′1,r
′
2

j,β
,

r2 is the number of Z2-horizontal edges in
(
Ũ

(d,P )
(d,P )

)r1,r2

i,α
,

r′2 is the number of Z2-horizontal edges in
(
Ũ

(d,P )
(d,P )

)r′1,r
′
2

j,β
,

α[β] is the partition corresponding to the diagram

(
Ũ

(d,P )
(d,P )

)r1,r2

i,α

((
Ũ

(d,P )
(d,P )

)r′1,r
′
2

j,β

)

and α, β ∈ Ωr1,r2
s1,s2 .

(b) Since
−→
J 2k

2s1+s2
⊂ J2k

2s1+s2
, we shall use the index defined above

in (i) to index the diagrams of
−→
J 2k

2s1+s2
.

(c) The diagrams in Jk
s are indexed as follows:

{(
URd

Rd

)r

i,α

∣∣∣ 1 6 i 6 f r,α
s and α ∈ Ωr

s

}

06r6k−s

(i, r, α) < (j, r′, β),
(1) if r < r′,
(2) if r = r′ and α < β (lexicographic ordering)
(3) if r = r′, α = β, then it can be indexed arbitrarily

where
r(r′) is the number of horizontal edges in

(
URd

Rd

)r
i,α

((
URd

Rd

)r′
j,β

)
,

α(β) is the partition corresponding to the diagram
(
URd

Rd

)r
i,α

((
URd

Rd

)r′
j,β

)
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and α, β ∈ Ωr
s.

Now, (d, P ) 7→ U
(d,P )
(d,P ) gives a bijection of Mk[(s, (s1, s2))] and J2k

2s1+s2
.

Note 2. For the sake of simplicity, we shall write
(
Ũ

(d,P )
(d,P )

)r1,r2

i,α
as dr1,r2i,α

and
(
URd

Rd

)r

i,α
as Rdri,α .

We shall now explain the entries of the Gram matrices.

Definition 3.8. (a) For 0 6 s1 + s2 6 k, define Gk
2s1+s2

(Gram matrices
of the algebra of Z2-relations) as follows:

Gk
2s1+s2

=
(
A2r1+r2,2r′1+r′2

)
06r1+r26k−s1−s2
06r′1+r′26k−s1−s2

where A2r1+r2,2r′1+r′2
denotes the block matrix whose entries are

a(i,α,r1,r2),(j,β,r′1,r′2) =




xl(Pi∨Pj) if ♯p

(
dr1,r2i,α .d

r′1,r
′
2

j,β

)
= 2s1 + s2,

0 if ♯p
(
dr1,r2i,α .d

r′1,r
′
2

j,β

)
< 2s1 + s2,

where 1 6 i 6
∣∣∣J2r1+r2,α

2s1+s2

∣∣∣, 1 6 j 6
∣∣∣J2r

′
1+r′2,β

2s1+s2

∣∣∣, l(Pi∨Pj) = l
(
dr1,r2i,α .d

r′1,r
′
2

j,β

)
,

l(Pi ∨ Pj) denotes the number of connected components in dr1,r2i,α .d
r′1,r

′
2

j,β

excluding the union of all the connected components of Pi and Pj or

equivalently, l
(
dr1,r2i,α .d

r′1,r
′
2

j,β

)
is the number of loops which lie in the middle

row when dr1,r2i,α is multiplied with d
r′1,r

′
2

j,β , dr1,r2i,α ∈ J2r1+r2,α
2s1+s2

and d
r′1,r

′
2

j,β ∈

J
2r′1+r′2,β

2s1+s2
respectively.

For example,

d
0,0

1,α1
= d

0,0

2,α1
= d

1,0

3,α2
= d

1,0

4,α2
=

d
0,0

1,α1
=

d
0,0

2,α1
=

d
0,0

3,α2
=

d
0,0

4,α2
=

d
0,0

5,α3
=

d
0,0

6,α3
=

1

G2
2×1+0 =

0 0 0

0 1

x

0 1

0 0 x 0

0 0 0

x

d
1,0

5,α3
= d

1,0

6,α3
=

1 1

0 1

0

0 x

x 0 x2 0

0 x 0 x2

1

1

1

1

where α1 = (2,Φ,Φ,Φ), α2 = (1,Φ,Φ, 1) and α3 = (1,Φ, 1,Φ).
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(b) For 0 6 s1 6 k, 0 6 s2 6 k−1, 0 6 s1+s2 6 k−1, define
−→
Gk

2s1+s2

(Gram matrices of signed partition algebra) as follows:

−→
Gk

2s1+s2
=

(−→
A 2r1+r2,2r′1+r′2

)
06r1+r2,r

′
1+r′26k−1−s1−s2

06r1,r
′
16k−s1−s2, 0 6 r2, r

′

2 6 k − s1 − s2 − 1

where
−→
A 2r1+r2,2r′1+r′2

denotes the block matrix whose entries are

a(i,α,r1,r2),(j,β,r′1,r′2) =




xl(Pi∨Pj) if ♯p

(
dr1,r2i,α .d

r′1,r
′
2

j,β

)
= 2s1 + s2,

0 if ♯p
(
dr1,r2i,α .d

r′1,r
′
2

j,β

)
< 2s1 + s2,

where 1 6 i 6
∣∣∣
−→
J 2r1+r2,α

2s1+s2

∣∣∣, 1 6 j 6
∣∣∣
−→
J

2r′1+r′2,β

2s1+s2

∣∣∣, l(Pi∨Pj) = l
(
dr1,r2i,α .d

r′1,r
′
2

j,β

)
,

l(Pi ∨ Pj) denotes the number of connected components in dr1,r2i,α .d
r′1,r

′
2

j,β

excluding the union of all the connected components of Pi and Pj or

equivalently, l
(
dr1,r2i,α .d

r′1,r
′
2

j,β

)
is the number of loops which lie in the mid-

dle row when dr1,r2i,α is multiplied with d
r′1,r

′
2

j,β , dr1,r2i,α ∈
−→
J 2r1+r2,α

2s1+s2
and

d
r′1,r

′
2

j,β ∈
−→
J

2r′1+r′2,β

2s1+s2
respectively.

For example,

d
0,0

1,α1
= d

0,0

2,α1
= d

1,0

5,α3
= d

1,0

6,α3
=

d
0,0

1,α1
=

d
0,0

2,α1
=

d
0,0

5,α3
=

d
0,0

6,α3
=

1

−→

G2
2×1+0 =

0 1 1

0 1 1 1

1 1 x2 0

1 1 0 x2

where α1 = (2,Φ,Φ,Φ), α2 = (1,Φ,Φ, 1) and α3 = (1,Φ, 1,Φ).

(c) For 0 6 s 6 k, define Gk
s (Gram matrices of partition algebra) as

follows:

Gk
s =

(
Ar,r′

)
06r,r′6k−s

where Ar,r′ denotes the block matrix whose entries are a(i,α,r),(j,β,r′) with

a(i,α,r),(j,β,r′) =





x
l
(
RdiR

dj
)

if ♯p
(
Rdri,α .Rdr

′

j,β

)
= s,

0 otherwise i.e., ♯p
(
Rdri,α .Rdr

′

j,β

)
< s,
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where 16 i6
∣∣Jr,αs

∣∣, 16j6
∣∣Jr

′,β
s

∣∣, l(RdiRdj ) = l(Rdri,α .Rdr
′

j,β ), l(Rdri,αRdr
′

j,β )
denotes the number of connected components which lie in the middle

row while multiplying Rdri,α with Rdr
′

j,β , Rdri,α ∈ Jr,αs and Rdr
′

j,β ∈ Jr
′,β

s

respectively. For example,

1

1

1

1 1

x 0

0 x

R
d
0

1,α = R
d
1

5,β = R
d
1

6,β =

R
d
0

1,α =

R
d1
5,β =

R
d
1

6,β =

G2

1
=

We establish the non-singularity of the Gram matrices over the field
K(x) where x is an indeterminate.

Lemma 3.9. (i) The following statements hold:

(a) For the algebra of Z2-relations, l
(
dr1,r2i,α .d

r′1,r
′
2

j,β

)
< l

(
dr1,r2i,α .dr1,r2i,α

)
for

all (j, β, r′1, r
′

2) < (i, α, r1, r2), where l
(
dr1,r2i,α .d

r′1,r
′
2

j,β

)
is the number of

loops which lie in the middle row when dr1,r2i,α is multiplied with d
r′1,r

′
2

j,β

where dr1,r2i,α , d
r′1,r

′
2

j,β ∈ J2k
2s1+s2

and J2k
2s1+s2

is as in Notation 3.6(a).

(b) For the signed partition algebras, l
(
dr1,r2i,α .d

r′1,r
′
2

j,β

)
< l

(
dr1,r2i,α .dr1,r2i,α

)
for

all (j, β, r′1, r
′

2) < (i, α, r1, r2), where l
(
dr1,r2i,α .d

r′1,r
′
2

j,β

)
is the number of

loops which lie in the middle row when dr1,r2i,α is multiplied with d
r′1,r

′
2

j,β

where dr1,r2i,α , d
r′1,r

′
2

j,β ∈
−→
J 2k

2s1+s2
and

−→
J 2k

2s1+s2
is as in Notation 3.6(b).

(c) For the partition algebras, l(Rdri,α .Rdr
′

j,β ) < l(Rdri,α .Rdri,α) for all

(j, β, r′) < (i, α, r), where l
(
Rdri,α .Rdr

′

j,β
)

is the number of loops which

lie in the middle row when Rdri,α is multiplied with Rdr
′

j,β where

Rdri,α , Rdr
′

j,β ∈ Jk
s and Jk

s is as in Notation 3.6(c).

(ii) detGk
2s1+s2

, det
−→
Gk

2s1+s2
and detGk

s are non-zero polynomials with
leading coefficient 1.

Proof. (i)(a) A loop consists of at least one horizontal edge from the

bottom row of dr1,r2i,α and one from the top row of d
r′1,r

′
2

j,β , hence the number

of loops in the middle component of the product dr1,r2i,α .d
r′1,r

′
2

j,β is always less

than the minimum of number of loops in
(
dr1,r2i,α .dr1,r2i,α

)
and

(
d
r′1,r

′
2

j,β .d
r′1,r

′
2

j,β

)
.
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Thus, l(dr1,r2i,α .d
r′1,r

′
2

j,β ) 6 l(dr1,r2i,α .dr1,r2i,α ) and l(dr1,r2i,α .d
r′1,r

′
2

j,β ) 6 l(d
r′1,r

′
2

j,β .d
r′1,r

′
2

j,β ),
∀ i, j. If (j, β, r′1, r

′

2) < (i, α, r1, r2)

Case 1: 2r′1 + r′2 < 2r1 + r2 where r1(r
′

1) is the number of pairs of
{e} horizontal edges and r2(r

′

2) is the number of Z2-horizontal edges in

dr1,r2i,α

(
d
r′1,r

′
2

j,β

)
respectively, then

l(dr1,r2i,α .d
r′1,r

′
2

j,β ) 6 l(d
r′1,r

′
2

j,β .d
r′1,r

′
2

j,β ) < l(dr1,r2i,α .dr1,r2i,α ).

Case 2: 2r′1+r′2 = 2r1+r2 and r′1+r′2 < r1+r2 where r1(r
′

1) is the number
of pairs of {e} horizontal edges and r2(r

′

2) is the number of Z2-horizontal

edges in dr1,r2i,α

(
d
r′1,r

′
2

j,β

)
respectively, which implies that

Subcase 2.1: suppose that r′2 < r2, i.e., at least two Z2-horizontal edges of

d
r′1,r

′
2

j,β is connected to a Z2-horizontal edge of dr1,r2i,α to make a loop or one

Z2-horizontal edge of dr1,r2i,α is connected to a Z2-through class of d
r′1,r

′
2

j,β in

the product dr1,r2i,α .d
r′1,r

′
2

j,β .

Subcase 2.2: suppose that r′1 < r1, i.e., at least two {e} horizontal edges of

d
r′1,r

′
2

j,β is connected to a {e} or Z2-horizontal edge of dr1,r2i,α to make a loop

or one {e}-horizontal edge of dr1,r2i,α is connected to a {e} or Z2-through

class of d
r′1,r

′
2

j,β in the product dr1,r2i,α .d
r′1,r

′
2

j,β .
Therefore the number of loops is strictly less than 2r′1 + r′2, and thus

l
(
dr1,r2i,α .d

r′1,r
′
2

j,β

)
� l

(
d
r′1,r

′
2

j,β d
r′1,r

′
2

j,β

)
= l

(
dr1,r2i,α .dr1,r2i,α

)

Case 3: 2r′1+r′2 = 2r1+r2, r
′

1+r′2 = r1+r2 and α < β where r1(r
′

1) is the
number of pairs of {e} horizontal edges and r2(r

′

2) is the number of Z2-

horizontal edges in dr1,r2i,α

(
d
r′1,r

′
2

j,β

)
respectively and α(β) is the underlying

partition of dr1,r2i,α

(
d
r′1,r

′
2

j,β

)
, which implies that

l
(
dr1,r2i,α .dr1,r2i,α

)
= l

(
d
r′1,r

′
2

j,β .d
r′1,r

′
2

j,β

)
= 2r1 + r2 = 2r′1 + r′2

and r1 + r2 = r′1 + r′2.

Every {e}-through class of U
(di,Pi)
(di,Pi)

is uniquely connected to a

{e}-through class of d
r′1,r

′
2

j,β and vice versa and if l
(
dr1,r2i,α .d

r′1,r
′
2

j,β

)
=

l
(
dr1,r2i,α .dr1,r2i,α

)
= l

(
d
r′1,r

′
2

j,β .d
r′1,r

′
2

j,β

)
then every {e}(Z2)-horizontal edge of

dr1,r2i,α is connected uniquely to a {e}(Z2)-horizontal edge of d
r′1,r

′
2

j,β and

vice versa which implies that dr1,r2i,α = d
r′1,r

′
2

j,β .
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Thus, if dr1,r2i,α 6= d
r′1,r

′
2

j,β and 2r1 + r2 = 2r′1 + r′2 and r1 + r2 = r′1 + r′2

then l
(
dr1,r2i,α .d

r′1,r
′
2

j,β

)
< l

(
dr1,r2i,α .dr1,r2i,α

)
= l

(
d
r′1,r

′
2

j,β .d
r′1,r

′
2

j,β

)
.

(i)(b) and (i)(c) can be proved similarly to (i)(a).

(ii) It follows from (i) of Lemma 3.9, that the degree of the monomial{∏
aiσ(i)

}
σ∈Sf2s1+s2

, is strictly less than the degree of the monomial

∏f2s1+s2
i=1 aii.

Thus, the determinant of the Gram matrix Gk
2s1+s2

of the algebra of
Z2-relations is a non-zero monic polynomial with integer coefficients and
the roots are all algebraic integers.

Similarly, we can prove for the determinant of the Gram matrices
−→
Gk

2s1+s2
and Gk

s of signed partition algebras and partition algebras re-
spectively.

Lemma 3.10. The Gram matrices Gk
2s1+s2

,
−→
Gk

2s1+s2
and Gk

s are symmet-
ric.

Proof. The proof follows from the Definition 3.8, since the top and bottom

rows of the diagrams in J2k
2s1+s2

,
−→
J 2k

2s1+s2
, Jk

s have the same number of
horizontal edges.

Remark 3.11. Every partition diagram can be represented as a set
partition and in set partition we can talk about subsets.

Thus a connected component of the diagram d
r′1,r

′
2

j,β is contained in a

connected component of dr1,r2i,α if the corresponding set partition of d
r′1,r

′
2

j,β

is contained in the set partition of dr1,r2i,α .

We shall introduce a finer version of coarser diagrams.

Definition 3.12. (a) Let dr1,r2i,α , d
r′1,r

′
2

j,β ∈ J2k
2s1+s2

. Define a relation on

J2k
2s1+s2

as follows: dr1,r2i,α < d
r′1,r

′
2

j,β ,

(i) if each {e}-through class of dr1,r2i,α is contained in a {e}-through class

of d
r′1,r

′
2

j,β ,

(ii) every Z2-through class of dr1,r2i,α is contained in a Z2-through class

of d
r′1,r

′
2

j,β ,

(iii) every {e}-horizontal edge of dr1,r2i,α is contained in a ({e} or Z2)

horizontal edge or ({e} or Z2)-through class of d
r′1,r

′
2

j,β and
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(iv) every Z2-horizontal edge of dr1,r2i,α is contained in a Z2-horizontal

edge or Z2-through class of d
r′1,r

′
2

j,β .

We say that d
r′1,r

′
2

j,β is a coarser diagram of dr1,r2i,α and (j, β, r′1, r
′

2) <
(i, α, r1, r2).

(b) Since
−→
J 2k

2s1+s2
⊂ J2k

2s1+s2
the relation defined on J2k

2s1+s2
in (a)

holds for the diagrams in
−→
J 2k

2s1+s2
.

(c) Define a relation on Jk
s as follows: Rdri,α < Rdr

′

j,β ,

(i)′ if each through class of Rdri,α is contained in a through class of Rdr
′

j,β ,
(ii)′ if each horizontal edge of Rdri,α is contained in a horizontal edge or

through class of Rdr
′

j,β .

We say that Rdr
′

j,β is a coarser diagram of Rdri,α then (j, β, r′) < (i, α, r).
The relation < holds for the diagrams in J̃k

s .

In our subsequent paper we establish the semisimplicity of our algebras.
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