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ABSTRACT. In this paper, we introduce Gram matrices for
the signed partition algebras, the algebra of Zs-relations and the par-
tition algebras. The nondegeneracy and symmetic nature of these
Gram matrices are establised. Also, (s1, $2,71,72, p1, p2)-Stirling
numbers of the second kind for the signed partition algebras, the
algebra of Zs-relations are introduced and their identities are estab-
lished. Stirling numbers of the second kind for the partition algebras
are introduced and their identities are established.

1. Introduction

An extensive study of partition algebras is made by Martin [7-12| and
these algebras arose naturally as Potts models in statistical mechanics
and in the work of V. Jones [3].

A new class of algebras, called the signed partition algebras, are intro-
duced in [6] which are a generalization of partition algebras and signed
Brauer algebras [13]. The study of the structure of such finite-dimensional
algebras is important for it may be possible to find presumably new

examples of subfactors of a hyper finite II;-factor along the lines of [16].

In this paper, we introduce a new class of matrices G, |, G5, 1,

and G* of A?(a:) (the algebra of Zs-relations), Z%Q (signed partition
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algebras) and A (z) (partition algebras) respectively which will be called

as Gram matrices since by Theorem 3.8 in 1] the Gram matrices Gg‘;’f +ss

associated to the cell modules of W{(s, (s1,$2)), (A1, A2), p)] (for A =
([s1], @), p = [s2] if 51,82 # 0; A = (P, D), pu = [s2] if 51 = 0,50 # 0; A =
([s1], @), p = @ if 51 # 0,50 = 0; A = (P,P), p = P if 51 = 59 = 0,

0<s1 <k 0<sy<kand0<s;+s2<k)and 3;‘1‘+52

the cell modules of W/[(s, (s1,52)), (A1, A2), )] (for A = ([s1], ®), p = [s2]
if s1,80 #0; A = (D, D), = [s2] if 51 =0,82 #0; A= ([s1],P), p =D if
$51#£0,80 =0 A=(9,P), u=Pifs; =50=0,0< 81 <k,0<s9< k-1
and 0 < s1+ s2 < k—1) defined in |5] coincides with the matrices G531+32

associated to

and 15:5 L+, Tespectively.

In this paper, (s1, s2,71, 72, P1, p2)-Stirling numbers of the second kind
for the algebra of Zs-relations and signed partition algebras are introduced
and their identities are established. Stirling numbers of second kind corre-
sponding to the partition algebras are also introduced and their identities
are established.

2. Preliminaries

2.1. Partition algebras

We recall the definitions in [2]| required in this paper. For k € N, let
k={1,2,--- k},K' ={1,2/,-- |K'}. Let Ry s be the set of all partitions
of kUK’ or equivalence relation on kUK’ Evé& equivalence class of kU K’
is called as connected component.

Any d € Ry ;s can be represented as a simple graph on two rows
of k-vertices, one above the other with k vertices in the top row, la-
beled 1,2, -+, k left to right and k vertices in the bottom row labeled
1,2', -+ k' left to right with vertex ¢ and vertex j connected by a path if
7 and j are in the same block of the set partition d. The graph representing
d is called k-partition diagram and it is not unique. Two k-partition dia-
grams are said to be equivalent if they give rise to the same set partition
of 2k-vertices.

Any connected component C of d,d € Ry, ;s containing an element of
{1,2,--- ,k} and an element of {1/,2',--- , k'} is called a through class. Any
connected component containing elements only, either from {1,2,---  k}
or {1/,2/,--- [ k'} is called a horizontal edge.
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The number of through classes in d is called a propagating number and
it is denoted by #7(d). We shall define multiplication of two k-partition
diagrams d’ and d” as follows:
e Place d’ above d”
e Identify the bottom dots of d’ with the top dots of d”
e d'od" is the resultant diagram obtained by using only the top row of
d’" and bottom row of d”, replace each connected component which
lives entirely in the middle row by the variable z. i.e., d’ od” = 2!d"”
where [ is the number of connected components that lie entirely in
the middle row.
This product is associative and is independent of the graph we choose
to represent the k-partition diagram. Let K(z) be the field and = be an
indeterminate. The partition algebra Ay (z) is defined to be the K(x)-span
of the k-partition diagrams, which is an associative algebra with identity

e T

By convention Ag(z) = K(z). For 1 < i < k—1and 1 < j < k, the
following are the generators of the partition algebras.

el ] [ ]
we ] ] ><+ | ]
e ] ] 1 | ]

The above generators satisfy the relations given in Theorem 1.11 of [2].

2.2. The algebra of Z,-relations

Definition 2.1 ([15]). Let the group Zs act on the set X. Then the action
of Zo on X can be extended to an action of Zs on Ry, where Ry denote
the set of all equivalence relations on X, given by

g-d={(9p,99) | (p,q) € d}
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where d € Ry and g € Zs. (It is easy to see that the relation g.d is again
an equivalence relation).

An equivalence relation d on X is said to be a Zs-stable equivalence
relation if p ~ ¢ in d implies that gp ~ gq in d for all g in Z,. We denote
k for the set {1,2,--- ,k}. We shall only consider the case when Zy acts
freely on X; let X = k x Zg and the action is defined by ¢.(i,x) = (i, gx)
for all 1 <17 < k. Let R%Q be the set of all Zs-stable equivalence relations
on E X ZQ.

Notation 2.2 ([15]). (i) R%Q denotes the set of all Zy-stable equivalence

relation on k X Zs. Each d € R%Z can be represented as a simple graph
on row of 2k vertices.
e The vertices (1,€),(1,9),--, (k,e), (k,g) is arranged from left to
right in a single row.
o If (i,9) ~ (j,¢') € R then ((4,9),(j,¢)) is an edge which is ob-
tained by joining the vertices (i, g) and (j,¢’) by a line for g, ¢’ € Zs.
We say that the two graphs are equivalent if they give rise to the same
set partition of the 2k vertices {(1,e),(1,9), -, (k,e),(k,9)}.
We may regard each element d in Rfak, as a 2k-partition diagram by

arranging the 4k vertices (i,9),i € k Uk', g € Zs of d in two rows in such
a way that (i,9) ((¢,¢)) is in the top(bottom) row of d if 1 < < k(1 <
i' < k') for all g € Zg and if (i,9) ~ (j,¢') then ((4,9),(j,9')) is an edge
which is obtained by joining the vertices (i, g) and (j,¢’) by a line where
9,9 € Za.

(ii) R%2 can be identified as a subset of Ry by identifying (7, e) with
2r —1, V1<r<kand (r,g),g#ewith2rvV1<r<k.

(iii) The diagrams d* and d~ are obtained from the diagram d by
restricting the vertex set to

{(176)7(179)7”'7(k7e)7(k7g)} and {(1/76)7(1/79)7'”(k,ve)v(k/7g)}

respectively. The diagrams d* and d~ are also Zs-stable equivalence
relation with d* € R%2 and d~ € R%?.

Definition 2.3. ([15]) Let d € R%2

UK Then the equation

R% = {(i,7) | there exists g, h € Zy such that ((4,9), (j,h)) € d}

defines an equivalence relation on kU &'.
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Remark 2.4 ([15]). For every connected component C' of Rk & C? will

be a connected component in R® as in Definition 2.3.

For d € R%ék, and for every Zso-stable equivalence class or a connected
component C' in d there exists a unique subgroup denoted by Hg for
C? ¢ R? where

(i) HE = {e} if (i,e) # (i,g) Vi € C4 C is called an {e}-class or
{e}-component and the {e}-component C will always occur as a
pair in d which is denoted by C¢, C9.

(i) HE = Zs if (i,e) ~ (i,9) Vi € C%,C is called a Zy-class or Zo-
component which is denoted by C%2 and the number of vertices in
the Zo-component C72 will always be even.

Proposition 2.5 ([15]). The linear span OfR%ka:’ is a subalgebra of Asg ().
We denote this subalgebra by AZ2 (x), called the algebra of Zo-relations.

Definition 2.6 ([15]). For 0 < 2s; + s2 < 2k, define I22§ s, as follows:

I281+52 - {d S R%LQJk’ ‘ ﬁp(d) =251 + 32}

i.e., d has s; number of pairs of {e}-through classes and sy number of
Zo-through classes.
For 0 < s < 2k define, I2F = = Uz +s0<s 122§1+32 then it is clear that

Zo 2k __
szuk’ - U Is - U 12514-52
0<s<2k 0<2s1+s2<2k

2.3. Signed partition algebras

Definition 2.7 (|6], Definition 3.1.1). Let the signed partition algebra
%2 (x) be the subalgebra of Agy(x) generated by Hy, F, F/', G;, F; for
1<i<k—1and 1< <k where

w3 1] |

Rl 1l el I ] i
D EE S E B B P S B T
el ew=] T ] asisn
Bl 11 TS S B B Qe
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The subalgebra of the signed partition algebra generated by F!, Gj,
F!' F;,1<i<k—1,1<j <k isisomorphic on to the partition algebra
Agi(2?). Also, RY = s;, RV = B;, R"i = p;, RT = pipiy1Bipis1pi where
si, Bi,pj are as in §2.1.

We will obtain a basis for the signed partition algebra defined in
Definition 2.7.

Definition 2.8 (6], Definition 3.1.2). Let d € R%2

kUK For 0 < 2s1 + 59 <
2k — 1 and 0 < 51,89 < k — 1, define

2%
281482
(i) s1+s2+7r1+7r2<k—1and
s1+sa+ri+rh<k-—1, or
(i) s1+s2+r;+7re2 <kand
—daez s1+ s2+ 1] + 75 <k—1then r; #0, or
- 29142 | (ii) s+ s9+71 + 7y <k — 1 and
$1+ sg+ 14 + 1y <k then v #0, or
(iv) s1+sa2+7r;+712 <kand
s1+ s+ 717+ 75 <k then r # 0 and r] # 0.
where

(a) s1=15{(C% C9):C?is a through class of R? and H& = {e}},
(b) s2 = {C?% : C?is a through class of R? and H& = Zs},
(c) 71 (r}) is the number of horizontal edges C? in the top(bottom) row
of R% such that HZ = {e}
(d) 7o (rh) is the number of horizontal edges C? in the top(bottom) row
of R% such that Hg =79
(e) #” (R?) = 51+ so.
Also, ?Zk = I%
For 0 < s < 2k, put ?2"“‘ U231+32<s ?§§1+52~

Proposition 2.9. 1) The linear span of ?gk, 0 < s < 2k is the signed

partition algebra Z%Q .

2) The linear span of I?* is an ideal of Z?.

Remark 2.10. The algebra generated by {RFi, R% RV, REi Y cich1
1<i<k
is isomorphic to the partition algebra Ag(z).
Also, let I¥ be the set of all k-partition diagrams R? in Ay(z) such

that #P(R?) < s where d € 122514—0 C Agy(z?).
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Definition 2.11 ([5], Definition 4.2). Define,
() MM(s, (s1,52)] = {(d.P) | d € R*,P € R, andd\ P ¢
R%Q 15y |l = 281 + 82, P is a Zy-stable subset of d with |P| = s
where s = 2s1 + 52, P = UL, (P U PY) U2, PAZ2 such that

e}—{e} 1< Sl,HPZ =Z2,1< <82}

.. —>

(i) M¥((s, (51, 52))] = {(d, P) € M*[(s, (s1,52))] | s1+ 2+ 71472 <
k—1and if s;1 4+ s9 + 11 + 19 = k then sy = k or 1 # 0 where 21
is the number of {e}-connected components in d \ P and 72 is the

number of Zy — connected components in d \ P}.

We shall now introduce an ordering for the connected components
in P. Suppose that

p=J (prupPhHu |J P*

1<i<s1 1<5<s2

h P _ pled P2
t enR _U1§Z<81R ? UU1<]<52R J

Let aq1,--- ,a1s, be the minimal vertices of the connected components
{e} {e} . .. .
RPY ... ,RPSI in R and byq,--- ,b1s, be the minimal vertices of the
) .
connected components R, .-+, RPs in RY then

(e} {}
Pf < P{and PY < P! < R" <RY — ay<a€RP
and , )
2 2
Pl* < PP? < RPN <R« by <byeRl

Since ]\7’“[(3, (s1,52))] € M*[(s, (s1,52))], the above ordering can be used
for the connected components P when (d, P) € MF*[(s, (s1, s2))].

Lemma 2.12 ([5], Lemma 4.3). Let M*[(s, (s1,52))] and ]\7]‘3[(5, (s1,52))]
be as in Definition 2.11.

(i) Each d € I3 . can be associated with a pair of elements
(d*,P),(d=,Q) € M¥[(s,(s1,52))] and an element ((f,01),02) €
(Z316,,) x &, where (dT,P),(d™,Q) € MF*[(s,(s1,s2))] and
((f,01),02) € (ZQ 16;,) X G, .

(ii) Each d € 251+52 can be associated with a pair of elements
(dt,P),(d,Q) € M’“[( (s1,82))] and an element ((f,01),02) €
(Z2165,) x &g, where (dF,P),(d™,Q) € ]\_/[>k[(s, (s1,82))] and
((fv 01)a02> € (Z2 ! 6“)’1) X G, .
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Definition 2.13 ([5], Definition 4.6). (i) Define a map

S i MP[(s, (51,82))] x M¥[(s, (s1,82))] = R[(Z2164,) x &)

51,52

as follows:

¢§1752 ((dl? P)’ (d/,a Q)) = xl(PVQ)((fa 01)7 02);

(ii) define a map

gzl,SQ  DIM((s, (51, 52))] x M¥((s, (51, 52))] = Rl(Z216y,) x Gy

as follows:

%

51,32 ((d/ ) (d//7 Q)) PVQ ((f7 01) )

Case (i): if
(a) no two connected components of @ in d” have non-empty intersection
with a common connected component of d’ in d'.d”, or vice versa;
(b) no connected component of () has non-empty intersection only with
the connected components excluding the connected components
of P in d'.d”. Similarly, no connected component in P has non-
empty intersection only with a connected component excluding the
connected components of Q in d'.d".
Here I(P V Q) denotes the number of connected components in d'.d”
excluding the union of all the connected components of P and Q and d’.d" €
RZ2 %y is the smallest d in RZ oy Such that d' Ud" C d. The permutation
(( f ,01),09) is obtained as follows. If there is a unique connected component

in d'.d" containing Pf and Q? then, define o1 (i) = j and

L1 ifg =g
f(z)_{O, if ¢ =e.

Also, if there is a unique connected component in d’.d” containing PlZZ
and Q?Q then, define o9(l) = f).
Case (ii): Otherwise,

31 S9 ((d/ P)? (d//7 Q)) =0 and ¢81 $9 (( P)? (d//7Q)) =0.

Definition 2.14. Let (d, P) € MF¥[(s, (s1, s2))] such that |d\ P| = 2r{+ro
where M¥[(s, (s1,52))] be as in Definition 2.11.
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Let {P}., g € Zo}rcics, U {PE 7 H<j<s, be the connected components

in P and {P5; ,g € Zot1<i<nm U{P4m}1<m<,,2 be the connected components
in d\ P. Define a map ¢ : M¥[(s, (s1,52))] — P(k) as ¢((d, P)) =
(a1, a9, a3, q4) where g F ki, ag b ko, as b ks, ay - kg with ky + ko +

ks + ks =k, a1 = (oq1, 12, ,005,), a2 = (021,022, -, Q25,), O3 =
(31,32, , a3, ) and ay = (041, 42, -, 0up,) such that [Pyl = oy,
|Paj| = agj, |Py| = a3y, |Pam| = oum respectively for all 1 < i < sy,

1<j<so, 1 <I<rpand 1 <m < ro.

Example 2.15. The following example illustrates the use of 2s; + so
instead of s = 2s1 + s3 to denote the number of through classes for the
diagrams in algebra of Zg-relations and signed partition algebras.

For s1 =0 and sg = 2,

e I T R e I T e
e o (@,(2,1),®, @) e o | (2,1) | e (@, (2,1),2,@) | « o> (2,1)
[, (@, (2,1), ®, ) oo | (2,1) ] o e 00 (®,(1,1),1,®) | o o o (12’1)
e e o0 e (®,(1,1),1,) coe | (12)1)] o 0 o o (@,(1,1),1,8) | o« +|(12,1)

For s; =1 and s9 =0,

(@, P) € T2, (1.0y)] oty | ram [P (@ p) € W%z, (L, 0)] Dy | me P
IS ) TS (3,8, 8,8) | voe | (3,0) = | (2,0, $.1) | o | (2,1)
e 5 e oo T 5 0o wrae| (2,0, D,1) | 0 e | (2,1)
T e e oe | (2,0,8,1) | oo | (2,1) | 00 oo (1,2,8,2) |« |(1,2)
S (1,®,8,2) | «o | (2,1) | emooms (1,2,2,2) | —-|(1,2)
T oo oo | (2,0,1,8) | e o | (2,1) | T e s wwm o] (2,0,1,8) | o [ (2,1)

e T oo e | (2,8,1,D) | 0w | (2,1) | o0 T 5 00 o] (1,0,2,8) | 0 o | (1,2)
e s e e | (1,9,2,0) | e | (1,2) | e e e e e e (1,8,2,0) | — o [ (1,2)
H,H (1,®,1,1) |, .. 1,12) H7H (1,®,1,1) | oo [(1,1%)
H °°°° |(1,90,1,1) | oo |(1,12)

In the above diagrams, connected components with thick dots (hollow
dots) belongs to P(d\ P). In partition algebra, for any d whose top row
is (d, P) and the bottom row is (d’, P") with |P| = s then the number
of possible ways to permute the through classes in d will be s! ways.In
case of signed partition algebras, for (d, P),(d', P') € MF[(s, (s1,52))]
with |P| = |P'| = 2s1 + s2 = s, then the number of diagram d’s whose
top row is (d, P) and bottom row is (d’, P’) will be 251 51! s3!. Since
{e}-connected components(Zs-connected components) in P can be joined
only to {e}-connected components(Zz-connected components) in P’
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Moreover, By Definition 2.8 we know that

?gk - U ?%§1+82'

281+82<s

Let f?k be the linear spangf ?gifor every 0 < s < 2k then fgk is an
ideal of 7?’“ and the quotient L 2¥/ L2* | = linear span of {d | #7(d) = s}.
For example, ?g = ?ngo U 15002 U 801U 1800 and 1§ =

7SX0+1 U ?gx0+0 then the quotient ring fg/ ¢ splits into a direct sum
of four ideals Ay, Ao, A3, A4 where
Aq is the linear span of

{d <((0,z‘d),id) ; ((O,z‘d),m)) ’ d= ﬁé‘jﬁ)}ﬁw |

(d,P;Engow
Ay is the linear span of

fa((CDi0 -t |y _gun) |
2 (d,P) TP ¢ g6

(d,P) SJ2x0+2

B is the linear span of

{d(((O,id),z'd)+((0,01),id)> ‘d:ﬁ(( P)

d:
2 d,P)

)

}~ 4P
U((d,P))e‘]26><1+0

B> is the linear span of

{d(((()’id),id) - ((0701)7@'(1)) ‘d: ;(@P)

2 (d,P) }~ d,P
U((d,p))ejzﬁxuo

Here 0% = 1d, 03 = Id and 0(i) = 0 for every i.

3. Gram matrices and (s1, S2, 71, T2, P1, P2)-Stirling
numbers

. . . . k k
In this section, we introduce a new class of matrices G, | o, G5, 4,

and G of the algebra of Zs-relations, signed partition algebras and par-
tition algebras respectively which will be called as Gram matrices since
by Theorem 3.8 in [1] the Gram matrices G;‘;TJFSQ associated to the cell
modules of

W[(S’ (517 52))7 ((>‘17 )‘2)’ :u)]
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(for A = ([s1], @), p = [s2] if 51,82 # 0; A = (&, D), u = [s9] if 51 = 0,
so £ 0; A= ([51],®), p =P if 51 #0,80 =0; A = (®,®), u = P if
s51=82=0,0<s1<k,0<s2<kand0<s;+ s <k)

and

Gl (s, (s1,2)), (A1, M), )]

(for A = ([s1], D), u = [s2] if 51,52 # O3\ = (D,D), p = [s2] if 517 =
0,327&0;)\:([]<I>)/L—<I>1f517é032—0)\—(,@),u:@if
$51=850=0,0<s51 <k 0<s9<k—1and 0<s1+s9 < k—l)deﬁned
in Definition 6.3 of [5] coincides with the matrices GQS +s, and
respectively.

251 +s2

In this paper, (s1, s2,71, 72, P1, p2)-Stirling numbers of the second kind
for the algebra of Zs-relations and signed partition algebras are introduced
and their identities are established. Stirling numbers of second kind corre-
sponding to the partition algebras are also introduced and their identities
are established.

We begin by calculating the size of the Gram matrices before explaining
the entries of the Gram matrices.

Definition 3.1. Put
() Q5% = { 0] ool o] fou]* o+ Kavan b+ Koy - Ky,
with a1 € P(ky,s1),a0 € P(kg, s2), a3 € P(ks,r1), a4 € P(ky,rs)
such that ki + ko + k3 + k4 = k} where a1 = (11,012, -, 15, ),
ap = (@o1,022, -+ ,Q25,), @3 = (a31,032,--- ,a3,) and oy =
(a1, a2, -, Q).

%
(b) D02 = {fn)' oo [asl lau]* € QU2 | 51+ 50+ 71 4+ 72 <

k—1 and if s1 + s + 71 + 79 = k then r; # 0 or s1 :k}.
(c) 2 = {[ea]'[e2)? | 1 €P(k1, 5), an €P(ka, 7) such that ky+ky=Fk}.

Definition 3.2. Let a = [a1]![ae)?[as]3[as]* € Q5ls2. We shall draw
a graph corresponding to the partition o = [a1]![a2])?[as]®[a4]* on the
vertices (i,e), (i,9) for all 1 <i < k and 1’ <1 < k' arranged in two rows
of each having k-vertices labeled from left to right. The edges are drawn
as follows:
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(a) Draw an edge connecting the vertices

() (E ) ) (S ),
(o)) ) ((E ) ) ()

and denote it by Pf; for 1 < ¢ < s1. Since the diagram has to be a
Zo-stable diagram there should be a copy of the connected component
which is obtained by connecting the vertices

(&) #10) (o) 120) (o))

() ) ) () ) ()

and denote it by P}, for 1 <i < s1. The connected components Pf; and
Plgi for 1 < < s; are called {e}-through classes.
(b) Draw an edge connecting the vertices

((rent+ ;g‘fl,%\) e (Sl ;g‘fl‘agmg ‘1),
- ((Zm +§|azm|>,e),

(St 3 et} (St 3 o) 1) )

(Brots St #1) o) (vt + o) ).

and denote it by P2Zj? for 1 < j < s9.

The connected components PQZJ.2 for 1 < j < s9 are called Zs-through
classes.



N. KARIMILLA B1, M. PARVATHI 85

(c) Draw edges connecting the vertices
s1 S92 -1
(ol + Y lowl+ X laast) + 1),
i=1 j=1 f=1
S1 52 l
(St + ol + Y laasl ).
i=1 j=1 F=1

in the top row and

S1

S92 -1 /
(((Zw +3 o +Z|a3f|) ; 1) )
i=1 j=1 f=1
S1 S92 ! /
o ((Stanl+ Y lanl+ 3 laagl) e
i=1 j=1 =1

in the bottom row and denote it by P and Pl/6 respectively. Since the
diagram has to be Zs-stable diagram there will be copy of the above
connected components obtained by connecting the vertices

S1 S92 -1
(S tond+ S tosst + X ol ) 1.3 ).
i=1 j=1 f=1
S1 S92 l
RN IOIED SIENES St} )
i=1 j=1 f=1
in the top row
S1 S92 -1 /
(((Xlont+ X tanl+ Ylaast) +1) a).
i=1 j=1 f=1
S1 S2 l /
- ((Z\aur +3 oyl +Z|a3f|) ,g)
i=1 j=1 f=1

and denote it by Plg and Pl,g respectively.

The connected components Ple,Pl/e,Plg and Pllg for 1 <1 < r are
called {e}-horizontal edges.
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(d) Draw edges connecting the vertices

S1 52 1 m—1
(RS SED SEFES S EHS]
i=1 j=1 =1 t=1
1 52 1 m—1
(St + S losst + ol + X foad ) + s,
i=1 j=1 =1 t=1
S1 S2 71 m
- ((Z ol + 3 g [+ 3 Jag] + 3 |a4t|>,e>,
i=1 j=1 I=1 t=1

S1 S92 1 m
((zmm S a3 Ja +z\a4t|>,g)
i=1 j=1 =1 t=1

in the top row and

St 52 r1 m—1 ,
<(<Z o] + Z lova] + Z || + Z |Oé4t|> + 1> ,6)
i=1 j=1 =1 t=1
St S2 T1 m—1 ’
<<<Z || + Z lovaj| + Z lagi| + Z |Oé4t|> + 1> ,g)
i=1 j=1 =1 t=1
S1 S92 71 m ’
i=1 J=1 =1 t=1

S1

S92 1 m /
((zw +3 Jasl + Y e +zra4t|) ,g)
i=1 j=1 =1 t=1

)
)

in the bottom row and it is denoted by PZ2 and P;nZ2 for 1 <m < ro.
The connected components P,jZf,P,/nZ2 for 1 < m < ry are called Zo-
horizontal edges.
The diagram obtained above is called standard diagram and it is

denoted by U® where a = [a1] [an)?[as]3[a4]* € Q752

Example 3.3. The following are some examples of standard diagrams
of U% type in signed partition algebras 2%2 with their corresponding
partitions.
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corresponding
partition

73 ) IR O 5 S S B B N CH U R

ds @ ] T ) | @ | ) | @ | e
s

1ol =

631 a2 [€%:] Qy

dy (o1, 2,3, 0)| (1) (1) (2) (1)

Remark 3.4. Let d € I22§1+52 By Lemma 2.12, for any d € 122514-52
we can associate a pair (d*, P), (d~,Q) € M¥|[(s,(s1,52))] and an ele-
ment ((f,01),02) € (Z2165,) X G4, and vice versa and it is denoted by

U (fr00),00). TEd* = d~, P = Q and ((f,01),02) = ((0,7d),id) &

(ZQ 18;,) X G, then without loss of generality we can write such d

Definition 3.5. Let a = [aq]" [a]? [as]® [ag]* € Q51752 Define,
Ste (U) = {a € 7516y, ) oU% ! = U"“}

where U® is the standard diagram corresponding to the partition « as in
Definition 3.2.

Note 1. (i) Let U9 denote the standard diagram in signed partition

=g a
algebra corresponding to the partition o € Qb2 and RY® denote the
standard diagram in partition algebra corresponding to the partition R® €

Q7 which can be defined as in Definition 3.2, St° <U5>> and St¢ (RUQ)

can also be defined as in Definition 3.5 for the signed partition algebras
Z%Q (z) and the partition algebras Ag(x).
yP)
(ii) All other diagrams U (d. P) ﬁggi and RV P)ﬁwhose underlying
partition is same as the underlymg partition of U%, U and RY" respec-

tively can be obtained as follows:

(5,1]33)) = 7U% 1, ﬁ(gg — 720971 and R <d P> = pRY"p
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Where T,€ Z3 16y, and p € G, are the coset representatlves of St¢(U®),
Stc(Ua) and St¢(RY") respectively. Also, U, U? and RU" are the stan-
dard diagrams as in Definition 3.2.

Notation 3.6. (a) For 0 < ry,ra <k —s; — s2 and 0 < s1,s9 < k, put

_ 2r1+72
J281+S2 - U J281+82
0<r1+ro<k—s1—s2

and
J2T1+T2 . J2T1+T2701
251+s2 T 25152
a=[a1] [az]?[as]3[aq]t €] 2

where

14712, d,P
pritree {d eI, | d=U47) with d* = (d, P),

_ d,P d,P
d- = (d,P), ne(U((d,p))> = 51, Ny <U((d p))) = 52,
U ((5 P)) has r1 number of pairs of {e}-horizontal edges,
ro number of Zs-horizontal edges,

(d, P) € M¥[(s, (s1,52))] as in Definition 2.10,
I|IP|| = 2s1 + s2 and « is the underlying partition of (d, P)

as in Definition 2.13}.

Also,
2ritro,a| s c(TTOH 2r1+re,a
)J231+32 = index of St9(U%) = f281+82 ,
2ri+re | . c o 2r1+19
‘J281+52 = E index of St°(U?%) = fy,! 1.2,

a=[a1]![az][as][oa]*€QEL12

‘ 281+s2| — Z

0<r1+ro<k—s1—s2

2r1+12
"]]281 +s2| "

‘J2s +52| will define the size of the Gram matrix in the algebra of
Za-relation and it is denoted by fas,+s,-
(b) For0<rm <k—8 —52,0<ra<k—s1—50—1,0< s <k,
0<so<k—1,and0<s1+s94+r1+r<k—1
(i) if r; # 0 then f%ﬁm’a = Jantra.e;
1 2s1+s2 T Y2s1+s2 )
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(i) if r1 = 0 then

2r1+ro,a 2r1+ro,a .
b ter = Ad € Ty 1127 | either s1 =k or s1+s24+r2 < k—1},

2ri+re 2r1+r2,a
251482 251482
%
a=la1]![az]?[as]3[aa]te D] 2
and
2k _ 2r1+re,
2s1+s2 — 2s1+s2?

0<r1<k—s1—52
0<ro<k—s1—s2—1
0<r1+re<k—s1—s2

‘j%ﬁm’a = index of St(U®) = 2r1+r2’a,

2s81+s2 251+s2
2ri4ro | . crrraly 2r1+ro
‘T%H_SQ = E index of St°(U?) = f3.74,
a=0n] o) 3] [ova) € T 112
72k _ 2r1+4re
2s1+s2| — 281+s2| °

0<ri1<k—s1—s2
0<ro<k—s1—s2—1
0<r1+ro<k—s1—s2

will define the size of the Gram matrix in signed partition

2k
2s51+s2

algebras and it is denoted by 7251+52.
(c) For0<r<k—s0<s<kput

= U ¥ ad = U
0<r<k—s a=[o1] [a2]?€Q]
where J3© = {Rd cIF| R = U((gj))j, (Rd)Jr and (Rd)_ are the same,

(U ((gj))j ) =5, U ((gj))j has 7 number of horizontal edges and « is the

underlying partition of Rd}.
. .. . (RHYT ;. pd rap
For the sake of simplicity we write, U(Rd), = Upy. Also, [J7] =
index of St®(UR") = f°, |I5| = Z index of St (U"™") = f

Re=[oa] [02]? €
= >
o<r<k—s
|Jf| will define the size of the Gram matrix in the partition algebra
and it is denoted by fs.

and |J*
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Definition 3.7. (a) The diagrams in J3% , _ are indexed as follows:

2ri+re,a 71,72
Z = f2s1+52 , & € Q51,82

0<ry,ro<k—s1—s2
0<r1+ro<k—s1—s2

(d,P)\ 12
{(me) -
(i, 0,71, 72) < (4, B,71,75),
(1) if 27y + 7o < 21 47
(i) if 2ry +ro =2r] + 75 and 71 + 72 < 7 47

(iii) if 2r 4+ 7o = 2r) + 14,71 + 12 = ] + rh and o < B (lexicographical

ordering)

(iv) if 2ry +ro = 20y + 7,71 + ro = 7} + 7 and o =  then it can be

indexed arbitrarily.
where

12
71 is the number of pairs of {e}-horizontal edges in P))

( (d,P)

' - . . . (d,P) i
) is the number of pairs of {e}-horizontal edges in (U ’ P))
ro is the number of Zs-horizontal edges in (U((d )))TM ,

r} ,T
1% is the number of Zy-horizontal edges in (U ((311)3))) o

a[B] is the partition corresponding to the diagram

(o) (Eem) )

T1,T
and o, f € Q) lsa.

)
)

(b) Since J3% . C J3* . . we shall use the index defined above

in (i) to index the diagrams of 2]§1+s2
(c) The diagrams in J¥ are indexed as follows:

{8,

(i,r,a) < (4,7, 8),
(1) if r <7/,
)
)

1<i<f£’aanda€§2;}

0<r<k—s

r(r') is the number of horizontal edges in (Ugj) ((URd )] ﬂ)

a([3) is the partition corresponding to the diagram (URd )Z N ((U )] ,8)
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and o, f € Q.
Now, (d, P) — U((jg)) gives a bijection of M*|(s, (s1,s2))] and J3F .

F7(d,P)\ 2 s
as di,a

Note 2. For the sake of simplicity, we shall write ( ( d,,P)

i,
T r
and (Ugj)l as R%.a.
1,0
We shall now explain the entries of the Gram matrices.
Definition 3.8. (a) For 0 < s1 + s < k, define G5, . (Gram matrices

of the algebra of Za-relations) as follows:

k _
G281 +s2 T <A27'1 +7’272T/1 +7'/2) 0<r1+rs <k—51 —89
Oéri—i—Téék—Sl—Sg

where AQH_‘_TQQT/I +, denotes the block matrix whose entries are

NI AN T
L PP if P d;lcérz.djvlﬁ 2) =251 + s9,
A(i,r,r1,m2),(3, 8,1 mh) = 17
s OGT, S\ ysT o . 7Y 71,72 71,72
0 if f di,a .djﬁ < 281 + $s9,
2r +rh,8

251452

. 2
where 1 <17 < ’J ritre,a o -dils

1<j< }JQSIW AR R) = (),

[(P; V Pj) denotes the number of connected components in d;lozm.d;lé”

excluding the union of all the connected components of P; and P; or

equivalently, z(d;jg” .d?[;’"é) is the number of loops which lie in the middle

! / / /
1,72 s R T . T1,"o 71,72 2r1+ra,a UERY
row when d; * is multiplied with dj7ﬁ ydio” € Jog 1, and djﬁ €
J2r’1+r’2,6
251+3s2
For example,

respectively.

0,0 0,0 1.0 10 .. 1.0 T 10 . .
Vo LT |y S0 il 3 1 5 (il =5 1 1 |dan 1 11 0|6 = 1 1]
o, =L 1 0 0 0 1 1
00 _
G2 _ 2 7@ 0 1 0 0 1 1
2x14+0 = |70, —
fron =11 0 0 T 0 T 0
e, =11 0 0 0 z 0 z
v, =110 1 1 P 0 22 0
oo, =111 1 1 0 z 0 22

where a1 = (2,9, P, P), agp = (1,P,P,1) and ag = (1,P,1, D).
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(b) For 0 < s1 < k,0<s2<k—1,0<s1+s2 < k—1,define 8'2“81+52
(Gram matrices of signed partition algebra) as follows:

k _
251489 — (227’1—&-7’2,2%4—7’/2) 0<r1+ro, i +rh<k—1—s1—s2
0<r1,ry<h—s1—s2, 0 < 12,7 <k — 51 — 59 — 1

where Zgrl trg,20 414, denotes the block matrix whose entries are

! !
I(P;VP; : T2 Tt
2 (PiVE) - if P di,a .djﬂ = 281 + s9,
Ai,o,r1,m2),(5,8,m7.75) = . vl r!
e 0 if P dzlozm.djl/; 2) < 2s1 + s9,

. 2
where 1 < ¢ < ‘ Zgiigzﬂ

. 2/+ /7 , /,/
1<j< ‘ 2§1+g;ﬁ‘,1(avpj) = i(ddy),

[(P; vV Pj) denotes the number of connected components in d;lo’[”.d;lg?

excluding the union of all the connected components of P; and P; or
equivalently, [ (d;;rQ.d;lérQ) is the number of loops which lie in the mid-

2r1+4r,a

25159 and

dle row when d;"* is multiplied with d}, dj',”* €

rhor! 27 +rh 7 .
dl;? € 3251%3 7 respectively.

For example,

o <L LT 1| oo LI i = 10 0 (il = 0 1 ]

dro, = (O] 1 0 1 1

L o] : : :
2x140 =

a0 =111 1 1 22 0
0,0 . o
Aoz = . . 11 1 1 0 22

where a; = (2,9, P, P), ag = (1,P,P,1) and ag = (1, P, 1, D).
(c) For 0 < s < k, define G¥ (Gram matrices of partition algebra) as
follows:

Glg = (ATJ’/ ) 0<r,r’'<k—s

where A,.,» denotes the block matrix whose entries are a(; o), 8,,) With
d; pdj T v/
A (FRY) e (Rdw.Rdm> = s,

a(; : A — ,
(4,0,m),(4,8,1") 0 o I
otherwise i.e., P [ R .R%:8 | < s,
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where 1<i<|J5%|, 1< <|I% 7|, R RY) = I(R%.2 . R%5), 1(R%.0 R%.5)
denotes the number of connected components which lie in the middle
row while multiplying RY.e with Rdgvﬁ, R¥« € J5% and R%»s € ng’ﬁ
respectively. For example,

R = R%.s = 1 :R%.s = * 1
RU«= 11 1 1 1
2 _
Gy = Rdé,ﬁ = 1 1 T 0
Rés — 11 1 0 T

We establish the non-singularity of the Gram matrices over the field
K(z) where x is an indeterminate.

Lemma 3.9. (i) The following statements hold:
(a) For the algebra of Zo-relations, (" .d}13™*) < 1(d"*. ;") for
all (3, B,m,1h) < (i,a,r1,re), where l(d;}o’lm.d;}ér"’) is the number of

loops which lie in the middle row when d:}ozm s multiplied with ;1;2

rh ! . . .
where d;lo’fz, 5. € J22§1+52 and J22§1+32 is as in Notation 3.6(a).

(b) For the signed partition algebras, l(d:’lo’ém.d;}g?) < l(d;gm.dzlo’ém) for

all (j, 8,1y, 15) < (4,71, 72), where l(dglazm.d;lﬁ’%) is the number of

71,72
1,0

where d; ", d;:léré € 7%§1+52 and 7%§1+52 is as in Notation 3.6(0).
(c) For the partition algebras, [(R%o R%6) < I(R%a R%a) for all
(7,8,1") < (i,c,7), where Z(Rdza.Rd;»B) s the number of loops which

loops which lie in the middle row when d 18 multiplied with d;:léré

lie in the middle row when R%a is multiplied with R%.5 where
R%o R%s € JF and J¥ is as in Notation 3.6(c).
(i) det G5, .,,, det G5, |, and det G are non-zero polynomials with
leading coefficient 1.

Proof. (i)(a) A loop consists of at least one horizontal edge from the

bottom row of d:}o;” and one from the top row of d;léTQ, hence the number

of loops in the middle component of the product d;la’m.dg}é% is always less
than the minimum of number of loops in (d;lo’lm.d;zm) and (d;};?.d;}éw)
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Thus, 1(d5".d75) < U™ and U(d]>.d5) < (2 d0),
Vi, 5. 1 (5,8, 75) < (4,a,7r1,72)
Case 1: 2r) + ry < 2r; 4+ rp where 71(r]) is the number of pairs of

{e} horizontal edges and 75(r%) is the number of Zs-horizontal edges in

d:}loirz (d;}ér2) respectively, then

, /’,,/ ’7,/ ,,.,/ 7,,.,/ /’,,/ ’7,/ , ,
WAL d%) < (A2 < U,
Case 2: 21y + 1l = 2r1 +r9 and r| +74 < r1 472 where r1(r}) is the number
of pairs of {e} horizontal edges and r2(r%) is the number of Zg-horizontal

edges in d; )" (d;léTQ) respectively, which implies that

Subcase 2.1: suppose that ry, < ro, i.e., at least two Zg-horizontal edges of
d;lf}TQ is connected to a Zy-horizontal edge of d; " to make a loop or one
1,72
1,0
T2 TS
the product d, 'dj,,B .

,Q

Zo-horizontal edge of d is connected to a Zs-through class of d;léTQ in

Subcase 2.2: suppose that r] < 71, i.e., at least two {e} horizontal edges of

d;léTQ is connected to a {e} or Zs-horizontal edge of d
71,72
2,00

T1,

T2
o tO make a loop

or one {e}-horizontal edge of d

class of d;lﬁ’TQ in the product d;lo’fg.d;l/ér?.
Therefore the number of loops is strictly less than 2r] + 7}, and thus

is connected to a {e} or Zs-through

1,7 Tl 77J T/ )T/ T/ )T/ _ 1,7 71,7
Ui djig?)  Ud 2 d57) = Udig™ dig"™)
Case 3: 2r) +71h = 2r1 +ro, 1y + 15 = r1 +r9 and a < § where 71 (r}) is the
number of pairs of {e} horizontal edges and r9(r%) is the number of Zo-
horizontal edges in d;'" (d;l/érz) respectively and a(f3) is the underlying

/ !/
T1,To

partition of d;;" (dj 5 ), which implies that
Wdi > diy?) = l(d;}érQ.d;}éTQ) =2r1 + 1o =21 + 14
and 71 + 1o = 1] + 7).
Every {e}-through class of U ((:ll:gi))
{e}-through class of d;1é7“2 and vice versa and if l(d;lcf?d;lér?) —

l(d”’m.d;lo;m) = l(d;:lﬁ’ré.dgéﬁ’ré) then every {e}(Zz)-horizontal edge of

(e

is uniquely connected to a

/ /
1,7

d;" is connected uniquely to a {e}(Zs)-horizontal edge of d 57 and

7,0
! !
T1L,T2 dﬁfz

vice versa which implies that d, B
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/

Thus, if d:fo;r? #* d;:lﬂ’% and 2ry +ro = 2r) + 7 and r + 1o = 1] + 14
then 1(d727* 5 5%) < (a7 ) = 1(dfy™ afy™)
(i)(b) and (i)(c) can be proved similarly to (i)(a).

(ii) It follows from (i) of Lemma 3.9, that the degree of the monomial
{H aw(i)} , is strictly less than the degree of the monomial
U€6f251+32

T12°2 ag.

Thus, the determinant of the Gram matrix G5_ . of the algebra of
Zo-relations is a non-zero monic polynomial with integer coefficients and
the roots are all algebraic integers.

Similarly, we can prove for the determinant of the Gram matrices

’581 4, and G’; of signed partition algebras and partition algebras re-
spectively. O

Lemma 3.10. The Gram matrices Ggsl+82, 8581+s2 and G* are symmet-
ric.

Proof. The proof follows from the Definition 3.8, since the top and bottom
rows of the diagrams in J22§1+52, 7%’;1+52, J¥ have the same number of

horizontal edges. ]

Remark 3.11. Every partition diagram can be represented as a set

partition and in set partition we can talk about subsets.

2

Thus a connected component of the diagram d;lﬁ’r is contained in a

connected component of d; " if the corresponding set partition of al;lﬁ’r2

is contained in the set partition of d; ™.
)
We shall introduce a finer version of coarser diagrams.

Definition 3.12. (a) Let d;lozm,d;lér2 € J3F ... Define a relation on
<d

B
(i) if each {e}-through class of d;};"* is contained in a {e}-through class

71,72
1,0

J3% ., as follows: d

¢ .l
.. ]’ﬁ ’ 7’.1
(ii) every Zs-through class of d;
b
of dji5*,

(ili) every {e}-horizontal edge of d:la

"2 is contained in a Zs-through class

"? is contained in a ({e} or Zs)

horizontal edge or ({e} or Zs)-through class of d;ll’ré and
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(iv) every Zs-horizontal edge of d;’;"
r,rh

edge or Zo-through class of 8

is contained in a Zs-horizontal

/

/
We say that d;l[g? is a coarser diagram of d;%" and (j,8,7],75) <
(4, ,71,72).
: 2k 2%k : 2k :
(b) Since J35¢ ,,, C J3 ., the relation defined on J57 ., in (a)

holds for the diagrams in %IS’CI tsg°

(¢) Define a relation on J* as follows: R%.e < R%.s,

(i)’ if each through class of R%.o is contained in a through class of R%.s ,
(ii)" if each horizontal edge of R%. is contained in a horizontal edge or

through class of R4,

We say that R%.5 is a coarser diagram of R%.a then (4,8,7") < (i,c,7).
The relation < holds for the diagrams in J¥.

In our subsequent paper we establish the semisimplicity of our algebras.
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