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ABSTRACT. In this paper, we introduce some algebraic struc-
ture associated with rings and lattices. It appeared as the result of
our new approach to the fuzzy rings and L-fuzzy rings where L is a
lattice. This approach allows us to employ more convenient language
of algebraic structures instead of currently accepted language of
functions.

Introduction

The purpose of this work is to look at some algebraic structures that
relate to defined-on-a group functions with a somewhat different angle.
If S is a set, then for each of its subset, M, there is a corresponding
characteristic function, namely the mapping xas: S — {0, 1} such that
xm(y) = 1 for all y € M and xp(y) = 0 for all y ¢ M. In many
cases, the subset M is equated with its characteristic function. With the
classical work of L.A. Zadeh [12] fuzzy mathematics, which is based on a
generalization of characteristic functions, begins. A fuzzy set on a set S
is a sort of generalized “characteristic function” on S, whose “degrees
of membership” may be more general than “yes” or “no”. In fact, we
assume the existence of a set (from here it will be denoted by L) of
degrees of membership. In an optimization problem, L may express the
degree of optimality of the choice (in S), while in a classification problem,
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it may express the degree of membership in a pattern class. In other
contexts, other terminologies appear. In fuzzy mathematics, a habitual
step was to address the situation where L = [0, 1] is an ordinary closed
interval of real numbers with its natural order. The motivation for this is
the following interpretation: we can consider the value of a generalized
characteristic function as the probability of the belonging of this element
to this subset. Algebraic fuzzy structures appeared here as follows. To
every algebraic structure A one ties an appropriate fuzzy structure, which
described the specific functions of A in [0, 1] associated with the ordinary
algebraic structure A (see, for example [9]). Thus fuzzy group theory
studies the functions v: G — [0, 1] where G is a group, satisfying the
following conditions:

Y(zy) = v(x) Ay(y) for all z,y € G; and v(z~') > y(z) for every z € G

(see, for example, [10], §1.2).

Fuzzy ring theory considers the functions x: R — [0, 1] where R is a
ring satisfying the following conditions:

k(z —y) = k(x) ANk(y) and k(zy) = k(z) Ak(y) forall z,y € R.

Fuzzy ring theory takes its roots in the works [5], [11]. Immediately,
some generalizations appeared. More concretely, the functions v: A — £
where A is some algebraic structure and £ is a distributive lattice have
been considered [1]. In particular, in the paper [6], the L-fuzzy rings
were introduced (see, also the book [7]). Fuzzy algebra theory has been
developed very rapidly, but it was the upswing in breadth rather than in
depth. Outwardly, it looks like a collection of separate results. The most
advanced here is the theory of fuzzy groups. There is the monograph [10]
specifically devoted to fuzzy groups. But even in the book [10], it was
no attempt to systematize the results: a large array of results on fuzzy
groups have just been collected in this book. Concerning L-fuzzy groups,
L-fuzzy rings and other L-fuzzy algebraic structures. However, except
most common results, significant progress is not observed here. Note that
interpretation of the algebraic structure as a certain function is quite
inconvenient. Therefore, quite often the function v: A — £ is treated as
a set of all point functions. More accurately it is viewed as a union of
all point functions x(g,7v(g)),g € A. (Here x(g, a) is a function such that
x(g,a)(g9) = a, x(g,a)(y) = 0 whenever y # g). In this sense, there is the
following subtlety. There is a natural order on the set of such functions
which is entered by the rule: v < & if and only if y(z) < k(z) for all z € A.
In other words, we can say about the subfunctions, and then a subfunction
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must be treated as a subset. Based on this logic one should consider the
function v as the union of all point functions x(g,a) for all ¢ € G and
a < 7(g). This approach was taken, for example, in the papers [2], [3], which
allowed to obtain natural fuzzy analogues of some important concepts
of group theory. However, its point functions (g, a), actually acting as
elements, are formally subfunctions of v, so that every time it is necessary
to resort to special reservations. In the paper [4], the interpretation of an
L-fuzzy group as a set with operations was offered. With this approach,
the basic concepts and results acquire its natural algebraic form, and
the process of their appearance becomes more meaningful. Moreover,
a construction giving a very clear idea of these objects’ structures has
been demonstrated. In this paper, we consider a similar interpretation for
L-fuzzy rings. The resulting structure is formally different, and therefore
different terminology will be used for it. Furthermore, the term an L-fuzzy
ring does not reflect the facts. We do not seek maximum generality, it
seems more natural to consider the case, when the lattice £ is distributive
and finite, even though all of the obtained results could be extended to
the case of an arbitrary complete distributive lattice. In the paper [4] we
did not touch the concept of homomorphism. Here this concept will be
discussed in great detail.

1. Preliminary results

Let R be a ring and £ be a finite distributive lattice. Being finite,
it has the greatest element m' and the least element m - Consider the
Cartesian product A = R x £. Define the operations on A by the following
rule:

(u,a) + (v,b) = (u+v,aAb) and (u,a)(v,b) = (uv,aAb)

for all u,v € R and a,b € £.

Clearly the operation of addition is commutative and associative,
because the addition in R and the operation A in £ are commutative
and associative. Pair (0,m") is a zero element. If the multiplication on
R is associative, then the multiplication on A is also associative. If R
has an multiplicative identity element e, then a pair (e,mT) is a an
identity element in A. If the multiplication on R is commutative, then
the multiplication on A is also commutative. We can define the operation
of subtraction on A in a usual way

(u,a) — (v,b) = (u—wv,aAb) forallu,veR, a,be L.
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A nonempty subset K of R x £ is called a lattice ring over £ if it
satisfies the following conditions:

(LR 1) if (z,a) € K and b < a, then (z,b) € K;
(LR 2) if (z,0),(y,b) € K, then (z,a) — (y,b) € K;
(LR 3) if (z,0),(y,b) € K, then (z,a)(y,b) € K;

If K is a lattice ring and (y, b) € K, then using (LR 2) we obtain that
(y,0) — (y,b) = (y —y,b) = (0,b) € K. It follows that (0,b) — (y,b) =
(—y,b) € K, and hence, if (z,a), (y,b) € K, then

(,a)+ (y,0) = (z+y,anb) = (x— (—y),aAb) = (z,a) — (—y,b) € K.

Thus every lattice ring K is closed by multiplication and contains
(0, a) for each element a € prgo(K).

Let K, X be the lattice rings over £. If K includes 3, then we will
say that X is a lattice subring of K and will denote this by ¥ < K.

Clearly R x £ is the greatest lattice ring over £, and {(0,m})} is the
least lattice ring over £. The last lattice ring is called trivial. Furthermore,
if a € £, then {(0,b)|b < a} is a lattice ring over £.

Every lattice ring K includes prp(K) x {m }. For every subring S
of R the subset S x {m,} is a lattice ring.

Proposition 1. Let R be a ring, £ be a finite distributive lattice and &
be a family of lattice subrings over £. Then and the intersection NG is a
lattice subring.

Proof. The proof is almost obvious.

Recall that a subset 9t of £ is called a lower (respectively upper)
segment of £ if from a € M and b < a (respectively a < b) it follows that
b e M.

If a € £ then {¢|r € £ and ¢ < a} (respectively {r|r € £ and ¢ > a})
is a lower segment (respectively upper segment) of £. It called principal
lower (respectively upper) segment of £, generated by a.

Let a € £, put K[a] = {(z,a)|(z,a) € K} and H(a) = prp(K[a]). We
note that Kla] = H(a) x {a}.

For every element x € prr(A) and a subset M of K put €y (z) =
{a € £|(x,a) € M}. O

Consider some preliminaries properties of lattice rings.

Proposition 2. Let R be a ring, £ be a finite distributive lattice and K
a lattice ring.
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(i)

(i)

(iii)

(iv)

(v)

(vi)
(vii)

pre(K) is a semigroup by the operation A with identity e(K) =
VEk(0) and zero m. Moreover, pro(K) is a principal lower segment
of £ generated by e(K).

prp(K) is a subring of R. Conversely, for every subring S of prp(K)
the subset {(x,a)|(x,a) € K and x € S} is a lattice subring of K.
If M C £ and M is a lower segment of £, then the subset
{(z,a)|(z,a) € K anda € M} is a lattice subring of K. In
particular, the subset {(z,b)|(z,b) € K and b < a} is a lattice
subring of K for every element a € £.

Suppose that S is a subring of prr(K) and M is a lower segment
of £. Then the subset {(z,a)|(z,a) € K,z € S and a € M} is a
lattice subring of K.

For every element a € £ the subset K|a] is closed by operations of
addition and multiplication of pairs and it is a ring by the restric-
tions of these operations. The subset H(a) is a subring of R and is
isomorphic to Klal.

Ifa,b e £ and a < b, then H(b) < H(a).

A closed by addition and multiplication subset M of K is an ordinary
ring by restrictions of addition and multiplication if and only if
M < Kla] for some element a € £ (and hence M is an ordinary
subring of K[a]). Furthermore, K is an ordinary ring by addition
and multiplication if and only if K = K[m].

Proof. (i) Let a,b € pro(K), then there are elements =,y € R such that
(x,a),(y,b) € K. Since K is a lattice ring, (z+y, aAb) = (z,a)+(y,b) € K,
and it implies that a A b € prg(K).

Put ¢ = ¢(K). Since ¢ € prg(K), there exists an element v € R such
that (v,e) € K. Let a € prg(K) and = be an element of R such that
(z,a) € K. As we have seen above, it follows that (0,a) € K. In turn, it
follows that a € €x(0). Then a < ¢ and aAe = a.

Finally, let ¢ be an arbitrary element of £ such that ¢ < e. The fact
that (0,¢) € K and condition (LR 1) imply (0,¢) € K and ¢ € prg(K).

(ii) Indeed, let z,y € prr(K). Then there are elements a,b € £ such
that (z,a), (y,b) € K. The fact that K is a lattice ring implies

(x —y,aAb)=(z,a) — (y,b) € K, (zy,a Ab) = (z,a)(y,b) € K

which implies that  — y, zy € prp(K).

Conversely, let S be a subring of R and put

Y ={(z,a)|(z,a) € K and x € S}.



L. A. KURDACHENKO, I. YA. SUBBOTIN, V. S. YASHCHUK 279

Choose arbitrary pairs (z,a), (y,b) € X. Since S is a subring of R,
x —y,xry €S, so that

(x,a) — (y,b) =(x —y,anb)eX and (z,a)(y,b) = (zy,aAb) €.

Let (z,a) € ¥ and b < a. By (LR 1) (z,b) € K, which implies that
(z,b) € X.

(iii) Indeed, let ¥ = {(z, a)|(z,a) € K and a€M}, and (z,a), (y, b) € X.
By (ii) z — y, 2y € pri(K). Since K is a lattice ring,

(x,a) — (y,b) = (z —y,aAb) € K and (z,a)(y,b) = (zy,aNb) e K.

The fact a A b < a implies that a A b € I, so that (x,a) — (y,b) € X,
(x,a)(y,b) € . If (z,a) € Y and b < a, then b € M. By (LR 1) (z,b) € K,
which implies that (x,b) € X.

(iv) Is a immediate consequence of (ii) and (iii).

(v) Indeed,

(z,0) = (y,0) = (z —y,aNa) = (z —y,a) € Kla],
(z,a)(y, a) = (zy,a) € KTa].

The mapping (z,a) — z, (z,a) € Klal, is a ring monomorphism and its
image coincides with H(a).

(vi) Suppose that € H(b). We have (z,b) € K and condition (LR 1)
implies that (z,a) € K. It follows that z € H(a).

(vii) By (v), K[a] is a ring by addition and multiplication for each a € £.
Suppose now that M is a subset of K and M is closed by addition and
multiplication. Assume also that M is an ordinary ring by the restrictions
of these operations. In particular, M contains zero element. This element
is an idempotent by addition. As we have seen above, every idempotent
of K has a form (0,b) for some element b € £. Let a = V&€;/(0), then
M contains a pair (0,a). Assume that M contains a pair (z,b) where
b # a. Then M contains a pair (z,b) — (x,b) = (0,b). The pair (0, b)
is an idempotent by addition. Since M is a ring, it contains only one
idempotent by addition. It follows that b = a, so that M < K]a. O

By (v), K[my] is a ring by addition and multiplication of pair. In
particular, it satisfies the conditions (LR 2) and (LR 3). Since m is the
least element of £, K[m ] satisfied the condition (LR 1). Thus K[m,] is a
lattice subring of K.

Suppose now that K is an ordinary ring by addition and multiplication.
Let e = V€k(0), and assume that e # m). Then both pairs (0,¢) and
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(0,m}) are the idempotents by addition. However an ordinary ring has
only one idempotent. This contradiction shows that e = m,.

If U is a subset of R and U is a subset of £, then put

K[U] ={(z,a)|(z,a) € K and z € U},
K[Y] = {(z,a)|(z,a) € K and a € T}.

By above proved, if S is a subring of R, then K[S] is a lattice subring
of K, and if M is a lower segment of £, then K [9] is a lattice subring
of K. K[| is called a M-level of K.

The subset K[a] is called the layer of K (more precisely, a-layer), and
H(a) is called the a-hoop of K.

Clearly K[a] N K[b] = @ whenever a # b and K = UseeK]Ja]. In
other words, the family {K[a],a € £} is a partition of a lattice ring K.
Moreover, it organizes some graduation of K by ordinary rings, because
Kla] + K[b] C K[a A b] and K[a]K[b] C K[a A b].

Suppose that b < a and = € H(a). Then (x,a) € K[a]. By (LR 1) the
fact that (z,a) € K implies that (z,b) € K. It follows that (x,b) € K[b]
and hence = € H(b). Thus b < a implies H(b) < H(a).

Let K be a lattice ring. As we already mentioned, lattice ring can
contains more than one idempotent (by addition). Moreover, K contains
a pair (0, a) for each element a € prg(K). Indeed, let u be an element of R
such that (u,a) € K. Since K is a lattice ring, (0,a) = (u,a) — (u,a) € K.

If K is a lattice ring over £, then put O(K) = {(0,b)[b < ¢(K)}.
Clearly O(K) is a lattice subring of K. If (x,a) is an idempotent by
addition, then x is an idempotent by addition on a ring R, so that x = 0.
Thus O(K) contains all idempotents by the addition of lattice ring K.

Let A be a lattice subring of K. The pair (0,¢(K)) is a zero element
of K and (0,¢(A)) is a zero element of A. Since A < K, Proposition 2
shows that e(A) < e(K). We say that A is a complete lattice subring of K
if (0,¢(K)) € A. Every lattice subring of K can be extended to a complete
lattice subring. Indeed, put AT = AU O(K), then AT is a lattice ring. In
fact, if (u,a) € A, then (u,a) — (0,b) = (u,a A b), (u,a)(0,b) = (0,a A b).
Since a A b < a, (u,a A b) € A. Clearly, AT satisfies the condition (LR 3).

Let A be a lattice subring of K. We say that A is an lattice ideal of K,
if (z,a)(y,b), (y,b)(z,a) € A for all pairs (z,a) € K, (y,b) € A.

We remark that (z,a)(y,b) = (zy,a A b),(y,b)(z,a) = (yz,a A b).
This shows at once that if A a lattice ideal of K, then prp(A) is an ideal
of prp(K). Conversely, suppose that H is an ideal of R, then K[H] is a
lattice ideal of K. Indeed, by Proposition 2 (ii) K[H] is a lattice subring
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of K. Furthermore, if (z,a) € K, (y,b) € K[H], then
(z,a)(y,b) = (zy,aANb) € K and (y,b)(z,a) = (yz,aAb) € K.

Since H is an ideal of prp(K),zy,yx € H, so that
(z,a)(y, b), (y, b)(z, a) € K[H].

Similarly, if 9 is a lower segment of £, then K[9] is a lattice ideal
of K. Indeed, by Proposition 2 (iii) K9] is a lattice subring of K.
Furthermore, let (x,a) € K, (y,b) € K[9M]. Since M is a lower segment
of £, then from a A b < b implies that a A b € 9. Then

(z,a)(y,b) = (zy,anb) € K[| and (y,b)(z,a) = (yx,aAb) € K[M].

2. Translation to fuzzy language

Let £ be a lattice and R be a ring. We will consider the set £7 of
all functions A: R — £. We define operations A and V on this set by the
following rules: if \, € £F, then put

(AA p)(x) = M) A p(x) and (AV p)(z) = A(z) V pu(z) for each x € R.
Clearly the operations A and V are commutative and associative,
(A AV @)(@) = Aw) A AV 1)) = A@) A (M) V ju(a)) = A(2)
and

AV (AA @) (@) = Aa) V (A A p)(2) = M) V (M) A () = A(z)

so that AA(AV ) = Xand AV (AA ) = A Clearly A A X = X and
AV X = ). Hence the set £ is a lattice.

If a,b € £, then aV b = b is equivalent to a < b. Therefore we can
define an order on £ if for A\, u € £ we will put A < p if and only if
Az) < p(z) for each element x € R.

Suppose now that a lattice £ is distributive and finite. Note that
instead of the finiteness of the lattice £ sometime one uses another
condition: a lattice £ must be complete. Since we do not aim maximum
generality, the case of finiteness of lattice £ is more transparent for our
consideration. Nevertheless, the considerations below can be extended to
the case when £ is a complete lattice.
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Being finite, it has the greatest element m' and the least element m 1
For every function f: R — £ define Supp(f) as a subset of all elements
x € R such that f(x) # my.

Let Y be a subset of R and a € £. We define a function x(Y,a) as

follows:
a ifzey,

x(Y,a) = {mi ifex¢Y.

If Y = {y}, then instead of x({y}, a) we will x(y,a). The function x(y, a)
is called a point function or just point. By its definition x(y,a) € £&.
Furthermore, let f € £f. If Supp(f) = {g1,...,9.} and flgj) = aj,
1 < j < n, then clearly f = x(g1,a1) V...V x(gn, an).

Let R be a ring, x € £, Then a function « is said to be an £-fuzzy
ring on R if it satisfies the following conditions:

(RF 1) k(z—y) = k(x) Ak(y) for all z,y € R,
(RF 2) k(zy) > k(z) A k(y) for all z,y € R.

Let v,k be L-fuzzy rings on R. If v < k, then we will say that v is a
L-fuzzy subring of k. This fact we will denoted v < k.

Define now the binary operation @ on £ by the following rule. Let
u,v € £ and = be an arbitrary element of a ring R. Consider the subset

{u(y) ANv(z)|u,v are the elements of R such that y + z = x}

of the lattice £. Since £ is finite, this subset is finite. Therefore we can
talk about its least upper bound. Put

(:UJ ¥ V)(x) - vy,zER,y+z:z(M(y> A l/(Z))
We remark that
(h®v)(x) = Vyer(u(y) Av(z —y)) = Vier(u(z — 2) Av(2)).
Consider now the basic properties of this product.
Proposition 3. The following assertions hold.
(i) Operation & is associative.
Operation & is commutative.

)

) Function x(0,my) is a zero element of the operation @.

(iv) A@ (uVv)=A@p) Vv (Aav) for all functions \, u,v € LE.
)

if a = VoerA(7), then (x(y,a) ® A)(z) = Mz —y).
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(vi) If x,y,u € R,a,b € £, then (x(y,a) ® x(u,0))(y +u) = aAb
and (x(y,a) ® x(u,b))(x) = my if v # y + u. In other words,
X(y,a) ® x(u,b) = x(y + u,a A b),in particular, x(y,a) ® x(u,a) =
X(y + u,a).

(vii) If N\, p,v € L8 and A < p, then \@v < p @ v.

Proof. We will prove only assertions (ii) and (vii). The proofs of other
assertions can be done in exactly same way as proofs of corresponding
assertions of Proposition 1 of the paper [4].

(i) Let A, € £ Put k = A@ p and n = p © v. We have

A ® p)(x) = Vyzer, yrz=a(Ay) A u(2)),
(:UJ @ )\)(Z’) - \/y,zeR, y—l—z:x(U(y) N )‘(z))

Put

Ry ={(y,2)ly + z =},
D1 ={Ay) Au(2)l(y,2) € Re} and - D2 = {u(y) A A(2)|(y; 2) € Ra}.

Since the addition on R is commutative, (y, z) € R, implies that (z,y) € R,.
Hence if A(y) A pu(z) € D1 (respectively u(y) A A(z) € D2) then p(y) A
A(2) = A(2) A pu(y) € D1 (respectively A(y) A u(z) = u(z) A A(y) € D2),
which proves that ©; = ©5. In turn it follows that (A@ u)(z) = (LB M) (2)
for each z € R and hence A@& = pu @ .

(vii) We have

()\ S V)(CU) = Vy.z2€R, y+z:x(/\(y) A V(Z))
< Vyzer, y+a=a (1Y) Av(2)) = (@ v)(2).

It follows that A v < ud v.
Define now the binary operation ® on £ by the following rule. Let
w,v € £ and = be an arbitrary element of a ring R. Consider the subset

{p(y) A v(z)|u,v are the elements of R such that yz = x}

of the lattice £. Since £ is finite, this subset is finite. Therefore we can
say about its least upper bound. Put

(M © V)(.T}) - vy,zeR,yz:x(M(ZD A V(z)>'

Consider now the basic properties of this product. The proofs here
are exactly same as proofs of corresponding assertions of Proposition 1 of
the paper [4] and in Proposition 3. Therefore we omit them. O
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Proposition 4. The following assertions hold.

(i) If a multiplication on R is associative, then the operation © is
associative.

(ii) If a multiplication on R is commutative, then the operation © is
commutative.

(iii) If a ring R has an identity element e, then a function x(e,m) is
an identity element of an operation ©.

(iv) Ao (uVvry)=Aou)VIAoOY) and (uVr) A= (1O AV (O
for all functions \, pu,v € £F.

(v) If z,y,u € R, and a,b € £, then (x(y,a) ® x(u,b))(yu) =aAb
and (x(y,a) ® x(u, b))(x) = my if & # yu. In other words, x(y,a) ®
x(11,b) = x(yu, a A B), in particular, x(y,a) © x(u, a) = x(yu, a).

(vi) If v € 8 and A< p, then A\Ov < poOv and v O < v O p.

Corollary 1. Let R be a ring, £ be a finite distributive lattice, k € £¢
and suppose that k is an L-fuzzy ring on R. If \,v < k, then A\® v < K
and A\ ©® v < K, in particular, Kk ® Kk < Kk and K ©® K < K.

Proof. Let x be an arbitrary element of R. The inclusions A, v < x imply
AMy) Av(z) < k(y) Ak(z). Since & is an L-fuzzy ring group function, then
K(y) A k(z) < Ky + 2), 6(y) A K(z) < K(yz), thus

(MA@ V)(T) = VyseRytz=a(AY) AV(2)) < Vy2eRyte=ak(y + 2) = K(z),
(>‘ © V)(:E) = vy,zGR,yz:a:()\(y) A V(Z)) < \/y,zeR,yz:x/{(yz) = ’{(:L') O

Proposition 5 (The points criterion). Let R be a ring, £ be a finite
distributive lattice and x € £%. Then k is an L-fuzzy ring on R if and
only if the following assertions hold.

(RE3)  x(x,k(x)) © x(y,k(y)) < & for all z,y € R.
(RF4) x(—=z,k(z)) < Kk for every x € R.
(RF5)  x(x,k(z)) ® x(y,k(y)) < Kk for all x,y € R.

Proof. Suppose first that x is an L-fuzzy ring on R. Let x,y be the
arbitrary elements of R. Clearly x(z,k(z)) < k and x(y,k(y)) < & for
every elements x,y € R. Using Corollary 1 we obtain that

x(z, k(x)) © x(y, 5(y) < £ and  x(z,k(z)) © Xx(y, £(y)) < K.

Let = be an arbitrary element of R. We have (x(—=z,k(z)))(—z) =
k(—x). Since k is an L-fuzzy ring on R, k(—xz) = x(x). We note that if
y # —, then (x(—z, r(x)))(y) = my, 50 that (x(—z, 5(2))(y) < A(y) for
every y € R. This means that x(—z, k(x)) < k.
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Conversely, suppose that x satisfies the conditions (RF 3)—(RF 5). Let
x,y be the arbitrary elements of R. Then (RF 4) shows that x(—y, x(y)) <
k. It follows that (x(—y,x(y)))(—y) = k(y) < k(—y). Because of sym-
metry, K(—y) < k(y), so that x(y) = k(—y). Using condition (RF 3), we
obtain that x(z, k(z)) ® x(—vy, x(—y)) < k. By Proposition 3 (vi)

(x(z,6(2)) © X (~y, s(=y))(x — y) = K(x) A k(—y) = K(x) A K(Y).
The inclusion x(z, k(x)) & x(—y, k(—y)) < k implies that
(x(7, k(7)) & X (=Y, s(—=y))(x — y) = k(z) A k(—y) < k(T —Y),

and k satisfies (RF 1).
Using condition (RF 5), we obtain that x(z, k(x)) ® x(y,x(y)) < k.
By Proposition 4 (v)

(x(x, £(x)) © x(y, £() (xy) = £(x) A K(y).
The inclusion x(z,x(x)) ® x(y, £(y)) < k implies that
(X(z, k(@) © Xx(y, £(y)) (zy) = K(x) A K(y) < K(zy),

and k satisfies (RF 2). O

Proposition 5 shows the following. We can look on the L-fuzzy ring
k as a L-fuzzy ring consisting of point functions x(z, a) where a < x(z).
As Propositions 3 and 4 show, these point functions satisfy the following
rules of addition and multiplication

X(y? Cl) D X(ua b) - X(y +u, a b) and X(yv Cl) © X(u7 b) - x(yu, an b)

This interpretation directly points to a connection of L-fuzzy rings
and lattice rings over £, and therefore makes possible the transition from
the language of fuzzy functions to the language of algebraic structures.
This connection is in fact a one—one. A lattice ring K defines an L-fuzzy
ring on R. Indeed, for every element x € prp(K) the set €k (z) is not
empty. Put x(z) = V& (). If = ¢ pri(K), then put x(z) = m;. Then
k is a function from R in £. If u,v € R and k(u) = a,k(v) = b, then
(uv,a A b) € K by condition (LR 3). It follows that

k(uv) = aAb = k(u) A k(v),

so that x satisfies (RF 2). And similarly, using condition (LR 2) we obtain
that (u —v,a A b) € K. It follows that k(u —v) = a A b = k(u) A k(v), so
that x satisfies (RF 1).
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3. Homomorphisms

The notion of a homomorphism of L-fuzzy rings is formulated rather
cumbersome, we will not bring it here, we start to work directly with
lattice rings over £ where this concept looks quite natural. Note at once
the following remark. Since we will focus on mappings preserving the
structure of lattice rings, it is not enough just to demand that they
retain the operations of addition and multiplication. The following simple
example demonstrates this. Let R be an arbitrary ring, a lattice £ is the set
{1,2} with a natural order. Consider a lattice ring K = R x {1,2}. Then
Y = R x {1} is a lattice subring. The mapping f: (z,1) = (2,2),x € R,
preserves addition and multiplication. However, Im(f) = R x {2} is a not
lattice ring. These considerations lead us to the next concept. Let R be
a ring, £ be a finite distributive lattice and K be a lattice ring over £.
Since K C prp(K) x £, we will assume farther that R = prp(K).

Let R, T be rings and £ be a finite distributive lattice, and let
K C R x £ (respectively © C T x £) be a lattice rings over £. Then the
mapping f: K — © is called a homomorphism, if it satisfies the following
conditions:

o flu,a)+f(v,0) = f((u,a)+(v,b)) and f(u, a) f(v,b) = f((u, a)(v, b))

for all (u,a), (v,b) € K;

o if (z,¢) € Im(f) and ? < ¢, then (z,0) € Im(f).

As usual, an injective homomorphism is called a monomorphism,
a surjective homomorphism is called an epimorphism, and a bijective
homomorphism is called an isomorphism.

Now we will obtain some properties of homomorphism. We will denote
by Op the zero element of a ring R.

Lemma 1. Let R, T be the rings, £ be a finite distributive lattice. Let
K C Rx £, respectively © C T x £, be lattice rings over £ and f: K — ©
be a homomorphism. Then f(O(K)) < O(0©). Moreover, if f(Og,a) =
(07,0), f(ORr,¢) = (07,0) and a < ¢, then b < 0. In particular, f(Op, m|) =
(O, my).

Proof. Let a be an arbitrary element of £. The equality (Or,a)+ (0gr,a) =
(Og, a) implies

f(Or,a) = f((Or,a) + (Or,a)) = f(Or,a) + f(Or, ).

It shows that f(Og,a) is an idempotent by addition on lattice ring 6. As
we have seen above, every idempotent by addition of © has a form (07, b)
for some element b € £, so that f(0g,a) = (07,b). Let ¢ € £ and suppose
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that f(Og,c) = (0r,?). We have

(OTa bA D) = (OTa b) + (OT,D) = f(OR7 Cl) + f(ORv C)
= f((Or,a) + (0g,¢)) = f(Og,a Ac).

In particular, if a < ¢, then a A ¢ = a, so that f(Or,a) = (0p,b) =
(07, b A D). This means that b < 0. By the definition of homomorphism
(07, my) € Im(f), that is (O, m) = f(0g,u) for some element u € £. Let
f(Or,my) = (07, q), then m < u implies g < my. Since m is the least
element of £,q =m|, so that f(Or, my) = (07, my). O

Corollary 2. Let R, T be rings, £ be a finite distributive lattice. Let

K C Rx £, respectively © C T x £, be lattice rings over £ and f: K — ©

be a homomorphism. If a € £, and f(Or,a) = (Op,b), then the mapping

fl: & — £, defined by the rule f*(a) = b satisfies the following conditions:
(i) fE(anb) = fE(a)AfE(b), in particular, if a < b, then f¥(a) < f(b);
(ii) if b € Im(f%) and a < b, then a € Im(fL).

Corollary 3. Let R, T be the rings, £ be a finite distributive lattice. Let
KCRxLand ©® CT x £ be lattice rings over £ and f: K — O be a
homomorphism. If a, b elements of £ such that a < b,x € R and f(x,a) =
(u,¢), f(z,b) = (v,0), then ¢ <. In particular, f(x,my) € T[m].

Proof. We have (z,a) — (z,a) = (Og, a), which implies
(OTv C) = (ua C) - (ua C) = f(xa Cl) - f(x,a) = f((xv Cl) - ($, Cl)) = f(ORa Cl).
And similarly, (0p7,9) = f(Og,b). By Lemma 1 we obtain that ¢ <2. [

Corollary 4. Let R, T be rings, £ be a finite distributive lattice. Let
KCRxELand® CT x £ be lattice rings over £ and f: K — O be a
homomorphism. If x € R and f(x,m}) = (u,m}) where u € T, then the
mapping f%: R — T defined by the rule ff(x) = u is an ordinary ring
homomorphism.

Proof. Indeed, let z,y € R and f(z,m}) = (u,m}), f(y,m) = (v,m}).
Then f(z+y,my) = f((z,m))+(y,my)) = fz,m)+ f(y,m) = (u,m))+
(v,m}) = (u+v, my), which follows that f%(z+y) = ut+v = fF(z)+fL(y).
And similarly,
flry,my) = f((z,my)(y,my)) = flz,my) f(y, my)
= (u,my)(v,my) = (uv,my),

which follows that f®(zy) = uv = f(z)fF(y). O
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Lemma 2. Let R, T be rings, £ be a finite distributive lattice. Let
K CRXxE&and ® CT x £ be lattice rings over £ and f: K — © be
a homomorphism. Let v € R,a € £ and suppose that f(Or,a) = (Or,¢),
where ¢ € £. Then f(x,a) = (v,c¢) for some element v € T.

Proof. Suppose that f(z,a) = (v,0) for some element ? € £. We have
(OT,D) - (U7a) - (’U,O) - f(wa Cl) - f(wa Cl) - f((.%', Cl) - (x,a))
= f(Or,a) = (Or,¢).
It follows that ? = «. 0

Corollary 5. Let R, T be rings, £ be a finite distributive lattice. Let
K CRxELand ©® CT x £ be lattice rings over £ and f: K — ©
be a homomorphism. Then f(xz,a) — f(y,b) = f((z,a) — (y,b)) for all
(z,a),(y,b) € K.

f(—=z,a) = (v,0) where ¢,d € £. By

Q-

Proof. Suppose that f(x,a) = (u,c)
Lemma 2 ¢ = 9. We have (Og,a) = (z+ (—z),a) = (z,a) + (—z, a), which
implies (07, ¢) = f(z,a) + f(—z,a) = (u,c) + (v,¢) = (u+ v, ¢). It follows
that v = —u. Put f(y,b) = (w, m) where m € £. Now we have

f(@,0) = fy,0) = (u,¢) = (w,m) = (u—w,cAm),

and

f((z,a) = (y,0)) = f((x,a) + (=y, b)) = f(z,0) + f(-y,b)

= (u,¢) + (—w,m) = (v — w,c Am),
so that f((z,a) — (y,b)) = f(z,a) — f(y,b). O

Corollary 6. Let R, T be rings, £ be a finite distributive lattice. Let
KCRxELand ©® CT x £ be lattice rings over £ and f: K — O be a
homomorphism. Then Im(f) is a lattice subring of ©.

Proof. Indeed, Corollary 5 shows that Im(f) satisfies condition (LR 2).
Let (x,a), (y,b) be arbitrary elements of K, then

f(@,0)f(y, ) = f((z,0)(y, b)) € Im(f),

so that Im(f) satisfies condition (LR 3). Finally, Im(f) satisfies condition
(LR 1) by the definition of homomorphism.

Let K € Rx £, 0 CT x £ be lattice rings and f: K — O be a
homomorphism. Put Ker(f) = {(z,a)|f(z,a) € O(O)}. O
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Lemma 3. Let R,T be rings, £ be a finite distributive lattice. Let K C
Rx & and © C T x £ be lattice rings over £ and f: K — © be a
homomorphism. Then Ker(f) is a lattice ideal of K.

Proof. Indeed, since O(0©) is a lattice ideal of ©, it is not difficult to
check that (z,a), (y,b) € Ker(f), (z,c¢) € K, then (z,a) — (y,b) € Ker(f),
(z,¢)(z,a), (z,a)(z,¢) € Ker(f). Let (z,a) € Ker(f), f(z,a) = (Op,u),
where u € £ and 0 be an element of £ such that 0 < a. We have

f(OR,0) = f((2,0) = (x,0)) = f(x,0) = f(z,0) = f(2,0) = (Or,u).

By above proved f(O(K)) < O(©), which implies that f(z,0) € O(0),
so that (z,0) € Ker(f).

The lattice ideal Ker(f) arises in the following way. The intersection
K[m ] N Ker(f) is an ordinary ideal in a ring K[m,]. By our agreement
R = prgp(K) = prg(K[m,]), and moreover R and K[m|| are isomorphic as
ordinary rings. It follows that Ry = prg(K[m ] NKer(f)) = prr(Ker(f))
is an ideal of R. O

Proposition 6. Let R, T be rings, £ be a finite distributive lattice. Let
KCRxELand© CT x £ be lattice rings over £ and f: K — © be a
homomorphism. Then Ker(f) = K[Ry].

Proof. Indeed, if (z,a) € Ker(f), then the fact that Ker(f) is a lattice

ideal implies that (z,m) € Ker(f), which implies that = € R;.
Conversely, assume that (z,a) € K[Rf], then z € Ry, so that

f(z,my) € O(©). Lemma 3.1 shows that f(z,m|) = (07, m}),sincem < a,

f(ORvmi) = f((x,a) - ($7m¢)) = f(x,a) - f(xvmi) = f(l’, Cl) - (0T7m¢)'

By above proved, f(O(K)) < O(0), which implies that f(z,a) € O(0©),
so that (x,a) € Ker(f). O

Lemma 4. Let R, T be rings, £ be a finite distributive lattice. Let
K CRxZLand © CT x £ be lattice rings over £ and f: K — ©
be a homomorphism. Let x € R, and a,b € £, a < b, and suppose that
f(xz,b) = (y,c) for some y € T,c € £. Then f(x,a) = (y,0) where
f(Or,a) = (07,0).

Proof. By Lemma 1 9 < ¢. Since f is a homomorphism, (y,?) € Im(f),
so that there is an element u € T such that f(u,a) = (y,0). We have

2(y,0) = (4,0)+(y; ¢) = f(x,0)+f(u,0) = f((x,b) +(u, a)) = f(z+u,q).
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On the other hand, 2(y,0) = 2f(u,a) = f(2u,a). Thus f(z + u,a) =
f(2u, a). Using Corollary 5 we obtain

f(x,a)—f(u,a):f((a:,a)—(u,a)
= f((z+u,a) —(
= f(2u,a) — f(2u,a) = (07,9).

It follows that f(z,a) = f(u,a), so that f(z,a) = (y,9). O

Corollary 7. Let R, T be rings, £ be a finite distributive lattice. Let
KCRxELand © CT x £ be lattice rings over £ and f: K — O be a
homomorphism. If (z,a) € K, then f(x,a) = (ff(z), fX(a)).

Proof. By Lemma 2, f(z,a) = (u, ff(a)). By Lemma 4, f(z,m)) =
(u,m}), which follows that u = ff(z).

Whereas obtained above, we arrive at the following two natural map-
pings. We define the mapping s(f): K — T x £ by the following. Let
f: R — T be an ordinary ring homomorphism of R in T If (z,a) € K,
then put s(f)(z,a) = (f(x),a). Then this mapping is a homomorphism.
In fact, for (z,a), (y,b) € K we have

(v,
s(f)((z,a) + (y,0)) = s(f)(x +y,anb) = (f(z+y),anb),
s(f)(z,a) +s(f)(y, b) = (f(x),0) + (f(y), b) = (f(x) + f(y),a A b).

(
Since f(z +y) = f(z) + f(y),
s(f)((z,a) + (y,b)) = s(f)(z, a) + s(f)(y, b).

(v,
Similarly we can prove that s(f)((z,a)(y,b)) = s(f)(z,a)s(f)(y,b).

Let (z,¢) € Im(s(f)) and 0 < ¢. The fact that (z,¢) € Im(s(f)) means
that K contains a pair (z,a) such that s(f)(z,a) = (z,¢). On the other
hand, s(f)(z,a) = (f(x), a). It follows that a = ¢. Since K is a lattice ring,
0 < ¢ = a implies that (z,0) € K. Then (z,0) = (f(z),?) = s(f)(z,0) €
Im(s(f)), so that all conditions of definition of homomorphism hold.

Consider now the mapping g: £ — £, satisfying the following condi-
tions:

(i) g(anb) = g(a) A g(b),
(ii) If b € Im(g) and a < b, then a € Im(g).

In other words, Im(g) is a lower segment of lattice £.

Define the mapping p(g): K — R x £ by the following rule. If
(z,a) € K, then put p(g)(x,a) = (z,g(a)). Then this mapping is a homo-
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morphism. In fact, for (z,a), (y,b) € K we have

(
P(9)((z,a) + (y,b)) =p(9)(x +y,a Ab) = (z +y,g9(a A b)),
p(9)(z,a) + p(9)(y,b) = (z,9(a)) + (y,9(b)) = (z + y,g(a) A g(b)).

By our conditions, g(a A b) = g(a) A g(b), so that
p(9)((z,a) + (y,b)) = p(g)(z,a) + P(9)(y, b).
Similarly we can prove that
p(9)((z,a)(y,b)) = p(9)(z, a)p(9)(y,b).

Let (z,¢) € Im(p(g)) and 0 < ¢. The fact that (z,¢) € Im(p(g)) means
that K contains a pair (z,a) such that p(g)(z,a) = (z,¢). On the other
hand, p(g)(z,a) = (x,g(a)). It follows that x = 2z and g(a) = ¢, i.e.
¢ € Im(g). By (ii) it follows that ? € Im(g). In other words, there is an
element b € £ such that g(b) =0. Since a Ab < a,(z,a Ab) € K. Then

p(9)(x,aAb) = (z,9(anb)) = (z,9(a)Ag(b)) = (z,cAD) = (2,0) = (,0).

Hence (z,0) € Im(p(g)), so that all of the conditions of the definition of
a homomorphism are fulfilled. [

)=
)=

Proposition 7. Let R, T be rings, £ be a finite distributive lattice. Let
KCRxELand ©® CT x £ be lattice rings over £ and f: K — © be a
homomorphism. Then f = p(f*) o s(f7).

Proof. Let (z,a) be an arbitrary element of K and f(z, ) = (u, ), where
uw € T and ¢ € £ By Corollary 7 (u,c) = (ff(z), f%(a)). By Corol-
lary 2 and Lemma 2 (ff(z), f*(a)) = p(f*)(f"(x), a). Using Corollary 4
we obtain that (ff(x),a) = s(f®)(x,a), so that

f(z.a) = p(f) (@), 0) = p(f) () (@, 0)) = (p(F) 0 5(f7))(2, 0).

A homomorphism f: K — © is called a layer-preserved, if f(K[a]) < ©[q]
for each element a € £. O

Note that the mapping p(f) is completely defined by a transformation
of a lattice L satisfying the conditions (i) and (ii). Thus Proposition 7
shows that layer-preserved homomorphisms plays here a major role.

For layer-preserved homomorphisms we have the following direct
analog of the theorem of ring homomorphisms.

Theorem 1. Let R, T be rings, £ be a finite distributive lattice. Let
KCRxELand © CT x £ be lattice rings over £ and f: K — © be a
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layer-preserved homomorphism. Define the lattice ring Ky C R/Ry x £
by the rule: the pair (x + Ry,a) € Ky if and only if (x,a) € K. Then
Im(f) is a lattice subring of © and Im(f) is isomorphic to Ky.

Proof. The fact that Im(f) is a lattice subring of ©® was proved in Corol-
lary 6. We show that K is a lattice subring of R/Ry x £. Let (v + Ry, a),
(y + Rf,b) € Ky. Then (x,a),(y,b) € K. Since K is a lattice ring,
(z,a)=(y,b) € K, (z,a)(y,b) € K. We have (z,a) = (y,b) = (x—y,aAb),
(z,a)(y, ) = (:Uy,a A b). It follows that (x —y + Ry,a Ab) € Ky, and
(xy + Rf, aAb) € Ky. Moreover,

(x —y+ Ry, aAb) = (z+ Ry,a) — (y+ Ry, b)
and
(zy + Rp,a Ab) = (z + Ry,a)(y + Ry, b).

It follows that Ky satisfies the conditions (LR 2), (LR 3). Finally suppose
that (z + Ry,¢) € Ky and @ < ¢. The fact that (z + Ry, ¢) implies
that (z,¢) € K. Since K is a lattice ring, (2,0) € K. It follows that
(Z+Rf,0) S Kf.

Define now the mapping f7: K¢ — Im(f) by the rule fT(z+ Rf,a) =
f(x,a) for each (z + Ry,a) € K. This definition is correct. In fact, let
(x + Ry a) = (y + Ry, b) and f(x,a) = (u,a) for some m € £. Then
a=>band z + Ry =y + Ry. The last equality implies that y = = + 2 for
some element z € Ry. We obtain f(y,a) = f(x + z,a) = f(z,a) + f(z, a).
By z € Ry and Proposition 6 (z,a) € Ker(f). Lemma 2 shows that
f(z,a) = (07, a). Now we obtain that

fly,a) = f(z,a) + f(z,0) = (u,a) + (07, a) = (u,a) = f(z,q).
The mapping f is a homorphism. Indeed

f((x+ Ry,a) + (y+ Ry, b)) = f{(x +y+ Rp,anb) = f(z +y,aAb),

M@+ Ry,a) + Ty + Ry, ) = f(z,0) + f(y,b) = f((z,a) + (y,))
= f(z+y,anb),

so that
Nz + Ry, a) + (y + Ry, b)) = [z + Ry, a) + f1(y + Ry, b).

Similarly



L. A. KuURDACHENKO, I. YA. SUBBOTIN, V. S. YASHCHUK 293

By the choice of fT we have Im(fT) = Im(f). By Corollary 6, Im(f7)
is a lattice subring of ©. Let (z,¢) € Im(fT) and 0 < ¢. The equality
Im(f7) = Im(f) and the fact that f is a homomorphism imply that
(2,0) € Im(f1).

Finally, suppose that fT(z 4+ Ry, a) = fT(y + Ry, b). Then f(y,b) =
f(z,a) € f(K]|a]), which follows that b = a. Further

(Or,0) = f(z,0) = fy,a) = f((z,a) = (y,0)) = f(z -y, ),

so that (x —y,a) € Ker(f). By Proposition 6, Ker(f) = K[Ry|. In turn
out, it follows that x —y € Ry. It follows that z + Ry = y + Ry and
therefore (z + Ry,a) = (y + Ry, b). Hence fT is injective epimorphism,
the mapping f1: K; — Im(f) is an isomorphism. O

Theorem 1 shows that a layer-preserved homomorphism f is defined
by the ordinary ideal Ry of a ring R, and Ry is defined by the kernel of f,
and the latter is a lattice ideal of K. Thus, to every homomorphism a
lattice ideal of K is assigned. The question about the feedback naturally
arises here. We now consider options for this connection.

Let K C R x £ be a lattice ring and A be a lattice ideal of K. Then
Afm| = {(z,m)[(z,my) € A} = K[mj] N A is an ordinary ideal of the
ring K[m|]. Then Hy(m) = prp(A[m,]) is an ordinary ideal of a ring R
and A[m|] = Hj(a) x {m}. Hence we can consider n ordinary factor-ring
R/Hp(my). Define the lattice ring Ky € R/Hp(m) x £ by the rule:
the pair (x + Hy(m}),a) € K, if and only if (x,a) € K. Repeating the
arguments given above, it is easy to show that K, is a lattice subring
of R/Hp(m) x £, and the mapping h: K — K, defined by the rule:
h(z,a) = (z + Hp(m}),a),z € K is a layer-preserved homomorphism.
Let (z,a) € Ker(h), then (x +Hp(m}),a) = h(z,a) € O(K,) for each
a < e(K)=r¢e(Ky). For the element a € £ we put Ala] = {(z, a)|(z,a) €
A} = Kla]NA. Then (z,a) € Ala] for each a < ¢(K). Taking into account
the inequality K = Ug< (i) Ka], we obtain that (z,a) € Usce(r)Ala] = A,
which shows that Ker(h) = A.

We can consider a lattice ring Ky over £ as a factor of a lattice ring K.
Here we have a difference from ordinary rings. In the case of the ordinary
quotient ring, the ring is a set whose elements are some subsets of K,
on which the operations of addition and multiplication are entered in a
special way. In our case, we have an opportunity to get a partition of a
lattice ring, which can be viewed as “internal” analogue of a factor-ring.

Put Hy (a) = prg(Afa]). We note that Ala] = Hp(a) x {a}. As we have
seen above, K [a] is closed by addition and multiplication and is an ordinary
ring by the restrictions of these operations, and A[a] is an ideal of KJa].
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Thus we can consider the (ordinary) factor-ring K[a]/A[a]. Do it for each
a € £ and consider a set K /A, whose elements are all of the resulting cosets
(z,a) + Ala]. We remark that either ((z,a)+ Ala]) N ((y,b) + A[b]) =
or (z,a) + Ala] = (y, b) + A[b]. Indeed, if a # b, then by (z,a) + Afa] C
Kla], (y,b) + Alb] C KIb] and by K[a] N K[b] = & we conclude that
((z,a) 4+ Ala]) N ((y, b) + A[b]) = @. Suppose that a = b. The subset K|a]
is an ordinary ring by addition and multiplication and A[a] is an ordinary
ideal of K[a]. Then either

((z,0) + Ala]) N ((y,0) + Ala]) =@ or  (2,a) + Ala] = (y,a) + Ala].
Taking into account the equality K = Usce K [a], we obtain that the family
{(z,a) + Ala]|z € R,a € £} is a partition of K.

On the set K/A we define the addition and multiplication by the
following rules. Let (x,a) + Afa], (y, b) + A[b] be arbitrary cosets. Then
put

(z,a) + Afa] + (y,b) + A[b] = (z +y,a A b) + Ala A b],
((z,a) + Ala])((y, ) + Alb]) = (zy,a Ab) + Ala A D],

Show now that these operations are defined correctly. Suppose that
(z,a) + Ala] = (u,a) + Ala] and  (y,b) + A[b] = (v, b) + Afb].

Then
(u,a) = (z,a) + (w,a) and (v,b) = (y,b) + (2, b),
where (w,a) € Afa], (z,b) € A[b]. We have

(u,a) + (v, b) = (z,0) + (w,a) + (y,b) + (2, b)
=(z+y,anb)+ (w+z,aAb),

(u, 0)(v,b) = ((z,0) + (w,a))((y, b) + (2,b))
= (zy,a Ab) + (zz + wy + wz,a A b).

Since A is a lattice ideal (w+z,aAb) = (w,a)+(z, b) € A, more concretely,
(w+ z,a Ab) € Ala A b]. It follows that

(u,a) + Afla] + (v,b) + A[b] = (u+v,a Ab) + Ala A b]
=(x+y,aANb)+(w+z,aAb)+AlaAb] = (z+y,aAb)+ Ala A b]
= (z,a) + Ala] + (y, b) + A[b].

And similarly,
(zz +wy + wz,a A b) = (z,a)(2,b) + (w,a)(y,b) + (w,a)(z,b) € A,
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which implies that, (xz + wy + wz,a A b) € Ala A b]. Then we obtain

((u,a) + Afa])((v, b) + A[b]) = (uv,a A b) + Ala A b]
= (zy,a A b) + (zz + wy + wz,a A b) + Ala A b]
= (zy,aAb)+ Ala Ab] = ((x,a) + Ala])((y, b) + A[b]).

Consider now the mapping n: K/A — K, defined by the rule: n((x,a) +
Ala]) = (x 4+ Hp(m)), a) for each pair (z,a) € K. This mapping is defined
correctly. In fact, let again (z,a) + Ala] = (u,a) + Afa]. Then (u,a) =
(z,a) + (w,a) = (z + w, a) where (w,a) € Afa]. From Afa] = Hp(a) x {a}
we obtain that w € Hy(a). The inclusion Hp(a) < Hp(m)) shows that
w € Hy(m}). Then

(U + HA(m¢)7 Cl) = (‘T +w+ HA(mi)v Cl) = (I =+ HA(mi)v Cl)-
Let (x,a) + Alal, (v, b) + A[b] be arbitrary cosets. Then put

n((z,a) + Ala]) + n((y, b) + Afb]) = (z + Hy(m,), a) + (y + Ha(m), b)
=(z+y+Hpr(my),aAb)
and
n((xz,a) + Ala] + (y,b) + A[b]) = n((z +y,a Ab) + Ala A b))
= (z+y+Hpr(my),aNb),

so that
n((z, ) + Ala] + (y, b) + A[b]) = n((z, @) + Ala]) +n((y, b) + Afb]).
Similarly
n(((z,a) + Afa])((y, b) + A[b])) = n((z, a) + Ala])n((y, b) + A[b]).

The mapping 7 is surjective. Indeed if (z + Hp(m),a) € Kj, then
(z,a) € K and therefore we can consider the coset (z,a) + Ala]. By defi-
nition of 7 we have n((x, a) + Ala]) = (x + Hy(m)), a).

Finally: let n((x, a) + Ala]) = n((y, b) + A[b]). Then (z +Hy(m)),a) =
(y + Hp(my),b). It immediately implies that a = b and « + Hp(m)) =
y + Hp(m). Then y = = + u for some element u € Hp(my). On the
other hand, by (z,a), (y,a) € K we obtain that (z,a), (y,a) € K[a], and
hence z,y € H(a). It follows that u = y — x € H(a), and therefore
u € H(a) NHp(my) = Hp(a). Then (u,a) € Ala] and we have

(y,a) + Alb] = (2, a) + (u,a) + Ala] = (2, a) + Afd],

which shows that 7 is injective. That is why 7 is an isomorphism.
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