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ABSTRACT. An analogue of the Wedderburn Principal The-
orem (WPT) is considered for finite-dimensional Jordan superal-
gebras A with solvable radical N/, N'2 = 0, and such that A/N =
J0sp,, |2, (F), where F is a field of characteristic zero.

We prove that the WPT is valid under some restrictions over
the irreducible Josp,,|s,,, (F)-bimodules contained in N, and show
with counter-examples that these restrictions cannot be weakened.

Introduction

In recent works, see [10] and [11], the first author proved an analogue
to the Wedderburn principal theorem for Jordan superalgebras when we
have a finite dimensional Jordan superalgebra A with solvable radical N
such that A’?2 = 0 and A/N is a simple Jordan superalgebra of some of
the following types: superalgebra of superform, Kac K1g, Ds, Mn‘m(IF)(*').
Some conditions were impossed over the solvable radical .

Similarly as [11], we consider a finite dimensional Jordan superalgebra
A over an algebraically closed field of characteristic 0 F, with solvable
radical N such that N2 = 0 and A/N 2 Josp,,ja,, (F), to follow we show
that if N considered as J08Py|2m (F)-superbimodule does not contains any
homomorphic image isomorphic to subbimodule Reg (Jospy2(F)) then,
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author by the proyect CODI 2014-1032.
2010 MSC: 17C70, 17C27, 17C55.
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the Wedderburn principal theorem hold. Moreover, we shown that there
is a counter-example to WPT for this case.

1. Preliminary results and notations

Recall that an algebra A is said to be a superalgebra if A = Ay + A;
satisfies the relation A;A; C A; | j(mod 2), 1-6. A is a Zy - graded algebra.
Given an element a € Ay U Ay, |a] = i denotes its parity, according to
a € A;.

Let I' = alg (1,¢;, i € Z"|e;ej + eje; = 0) denote the Grassmann
algebra. Then, I' = I'g +I'1, where I'g and I'y, is spanned by all monomials
of even and odd length respectively, and it is easy to see that I" has a
superalgebra structure.

Let A = Ay + A; be a superalgebra, let’s the Grassmann envelope
of A is the algebra I'(A4) = 'y ® Ap +I'1 ® A;. Assume that 91 is a
homogeneous variety of algebras (see, eg. [23]). The superalgebra A4 is said
to be a M-superalgebra if the Grassmann envelope I'(4) belongs to 9.

An associative superalgebra is just a Zo-graded associative algebra, but
it is not so in general (see [21]). One can easily check that a superalgebra
J = Jo + J1 is a Jordan superalgebra if and only if it satisfies the super
identities

zy = (1) Wye, (1)
((wy)2)t 4+ (=DIHUHDFE(24) )y 4 (1) IAuIHHEDHIE (1) )
= (ay)(2t) + (=D @) (y2) + (1) ¥ 22) (). (2)

In particular, the Jordan superalgebra J = Jo+J1 is a (Ze-graded) Jordan
algebra if and only if (J1)? = 0.

Let A be an associative superalgebra with multiplication ab, we con-
sider a new multiplication a o b = J(ab + (—1)l*1’lba), a, b € Ay U A;.
We can see, that with respect to this multiplication A has a structure of
Jordan superalgebra, which we will denote as A,

Wall proved in [22] that every associative simple finite-dimensional
superalgebra over an algebraically closed field F is isomorphic to one of
following associative superalgebras

() A= My(F), AO:{[S SJ} Alz{[g 8”

(i) A= Q(n) Aoz{[g 0}} Alz{[g g}}
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where a, h € M, (F), d € M, (F), b € Myxm(F), ¢ € Mpxn(F).

Let A be an associative (super)algebra. A superinvolution * in A is
a graded linear mapping * : A — A such that (a*)* = a and (ab)* =
(—1)lallPlp*q*. Let H(A, ) be the set of symmetric elements of A relative
to x, namely, H(A, ) = {a € A/a* = a}. It is easy to see that H(A,*) C
A and therefore H (A, %) is a Jordan superalgebra.

Let I, I, be identity matrices of order n and m respectively. We
denote by t the usual transposition of matrices and let

0 —Im}

gt -1
U=-U U Lm 0

Consider the linear mapping osp : M9, (F) — M9, (F), given by

a bOSp_ I, 0] fat = [1, O
c dl |0 U] d||0 U
where a € M,,, b,ct € My xom and d € Ma,,.
We can see that osp is a superinvolution over superalgebra Mo, (IF).

So, the Jordan superalgebra H (M, 2., (F),0sp), denote by Jospy,a,, (F),
is determined by the following matrices set:

a b1 b2
Jospuan(F) = |tk i | | a=dl dy=—db, dy = —d
bt dy df

where a € Mn(F), b1, by € MnXm(F), di, do, and d3 € Mm(]F)

Simple finite-dimensional Jordan superalgebras over zero characteristic
fields were classified by Kac [12] (see also [13]).

Now, we recall that a J-superbimodule M = Mg + M is a Jordan
superbimodule if the corresponding split null extension £ =3 ® M is a
Jordan superalgebra. Besides, the split null extension is the vector space
direct sum J & M with multiplication that extends the multiplication
of J, the action of J on M, and M? = 0. Let M be a J-superbimodule,
the opposite superbimodule M = Mg + M is defined by the condi-
tions Mg = My, M{P = My, and the following action of J, a - m° =
(—=D)lel(@m)°P, moP - a = (ma)°P, for any a € Jo U J1, m € MPUMSP.
Whenever M is a Jordan J-superbimodule it is possible to see that AM°P
is so as well. A regular superbimodule Reg (J) is defined on the vector
superspace J with the action of J coinciding with the multiplication in J.

Irreducible bimodules over Jordan superalgebra Jospn‘gm(F) were
classified by Martinez and Zelmanov in [19], who proved that the
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only unital irreducible 3ospn|2m(IF )-bimodules are the regular bimodule
Reg (Jospyja,, (F)) the bimodule & = Skew(M,,2,,(F), 08p), and their

opposites, where

a bl b2
G = bé d1 dg a = —at, dg = dé, d3 = dé (3)
S -1

a € Mn(F), bl, b2 S Mnxm(F)a dl, dQ, and d3 S Mm(]F)

1.1. The Peirce decomposition

Recall, that if J is a Jordan (super)algebra with unity 1, and
{e1,...,en} is a set of pairwise orthogonal idempotents such that
1=>"", e, then J admits Peirce decomposition [20], it is

n
J= <@3u> @(@3ij>,
i=1 i<j
where
Ji={zeJ: ex=ux}
and
32']‘:{1’63: e;r =

1 1
§x7 €jT = ix}a i #j

are the Peirce components of J relative to the idempotents e;, and e;,
moreover the following relations hold

=
<

N

o

i+ 3545 Jij - Jjk C Jik
Jij 'Skl =0 when i#k,l andj%k,l.

2. Main theorem

In this section we prove the central result of this paper. To start we
introduce the following notation, by e;;, i,7 = 1,...,n + 2m, we denote
the usual unit matrices.

For i,j € {1,...,n} and p,q € {1,...,m}, denote ey = €ij, e

nm __
ip T
n2m __ mo__ mn __ m2m __
Cin+tp: €p = Cindm4p, Cpg = Cntpntq> Cpi = Entpis Cpg = Endpntmtgs
2m __ 2mm __ 2mn __ .
€pq — Cnt+mtpntm+qs €pg T EntmApntq and €pi = Entmpi-

: BN () nosf o, : o N — ,m 2m —
Consider hi; = e}l + €7 if 4 # 7, hii = €, vpg = epy + €5ty Spg =
m2m _ ,m2m T _ 2mm _ 2mm _ BZDm + eg;mn’ k n2m __ ,mn

€pq €ap Spa = Epq Cgp » Uip = ip = Eip Epi
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With the previous notation, the Jordan superalgebra J = Josp,, o, (F)
is spanned by {hij, Upg, Spqs Spq, Uip, kip} and its dimension is given by
(n+2m)>4+n—2m
B et

From aob = 1 (ab+ (—1)!%Plba) we can see that the non-zero products
of basis elements of J are defined as follows:

hii o hii = hii,
hiy o hyt = %@khﬂ + Srihig + Ogthag + Suxhy)) i # jk A1,
Spq © Srt = %(ciﬂvpt + OptVgr — OgtUpr — Oprgt), (4)
Upq © Upt = %(%rvpt + OptUrg),

1 _ 1 - -
Upq © Srt = 5(5q7“5pt + OtqSrp);  Upq © Srt = 5(5797"51115 + OptSrq)s

1
Ugr © hjj = 5(6jkuifr + dikujr),

1 o .
k‘lp o hij = 5(5jlk¢p + (5”/6]'1,) if 7 75 7,

1 1
Upy © hyy = §5ikuir, ki o hy; = §5z‘lk?z'p, (5)
1
Ukyr © Upg = §6rpukq7 ki 0 vpg = §5qulp7

1 _ 1
Wir © Spg = 5(57"19]%1 — Orqkip);,  Kir 0 5pg = 5(5Tp“iq — OrqUip),

~ 1
Wip © Ujq = 551'3'51%17 kip o kjq = §5ij3qpv
1
Ujp O kiq = ivqp - 5pqhiia (6)
1

5(51'3'”1110 — Opghiy) if i # j,

where 0;; = 0 if i # j and ;; = 1. We note that the products in (4) and
(5) are symmetric and the products in (6) is skew-symmetric.
Now we prove the following theorem.

Wip © kjg =

Theorem. Let A be a finite-dimensional Jordan superalgebra with a solva-
ble radical N, such that N'2 = 0, and the quotient superalgebra J = AN
is isomorphic ti Jospyom (F). If n+m =3 orn=m =1 and no homo-
morphic image of N, considered as a J-bimodule, contains a subbimodule
isomorphic to Reg (Jospyo(F)), then there exists a subsuperalgebra S C A
such that § = Josp,, o, (F) and A =SSN
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Proof. Take J = Josp,, oy, (F) and let J-mod denote the category of Jordan
J-superbimodules. By Theorem 8.1 in [19], every V' € J-mod is completely
reducible. Let M(J) by the set of V' in J-mod such that V' does not
contain a bimodule isomorphic to Reg (Jospl‘g(IF)), among its irreducible
summands. Clearly, 9M(J) is closed with respect to subbimodules and
homomorphic images, and by [10] (Theorem 3.3) we observe that it is
suffices to prove the theorem when A is unital and N is irreducible.
Following [19], (Theorem 6.3), there are four different types of unital
irreducible J-bimodules reg(Jospy,|a,, (F)), Skew (Mo, 08p) and their
opposites.
We have that

305Pn|2m(IF) = alg( hij, Upg, Spq, Spq ) + vect{wip, kip),

where 4,5 =1,...,nand p,g=1,...,m.

Since WPT is valid for Jordan algebras, and using the fact that A/N =
Jospn‘zm(lﬁ') we can assume that there exists Sy C Ag such that Sy =
alg (hij, Upg, Spg> Spq )- Therefore there exist Hyj, Vig, Spq, and Spy € Ao
for which the multiplications (4) are valid when we substitute h;j, Vpq, Spq
and s,q by H;j, Vig, Spq and §pq, respectively.

We note that {H;;, Vpp fori =1...,n;p=1...,m} is a set of pairwise
orthogonal idempotents such that Hy1 + -+ Hpp + Vi1 + -+ Vi = 1.
Thus A has a Peirce decomposition with respect to its idempotents:

A (émm) @( D <A>z»p> @(émm) -

i<y i=1..n P<q
i=1 p=1l...m p=1

Now we need to find ﬁip and IN(ip € A; such that the multiplications
(5) and (6) hold when we change h;j, Upq, Spq, Spg, Wip and kip by Hij, Vpq,
Spgs gpq, ﬁip and IN(ip, respectively.

Since A1 /N1 = (Jospy, o, (F))1, there exist Uip and K;p, € A; /N7 such
that (5) and (6) are valid in A/N when we change hij, Vpq, Spq, Spg> Wip
and k;, by H;j, Vg, Spq, §pq, U;p and K, respectively.

Case 1. N' = Reg (Josppjom (F)). Let gij, Wpg, 2pgs Zpgs Yip and xip € N
and assume that the isomorphism o is determinated by

o(gij) = hij,  o(wWpg) = Vpg, 0 2pg) = Spgs

0(Zpg) = Spgy  0(Yip) = Wip, o (Tip) = Kip.
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So, we have that
No = span (gij, Wpqs Zpg» 2pg) and Ni =span (yip, Tip).

The action of Josp,om, (F) over N is determined by the equations
(4),(5) and (6) when we replace gij, Wpq, Zpqs Zpgs Yip, and xip by hyj,
Upg» Spg> Spg> Wip, and k;y,, respectively.

Lemma 1. Let ¢ : A — A/N be the canonical homomorphism. For

i=1,...,nandp=1,...,m let Uy, and K;, € Ay be preimages of Ulp
and K,p respectwely, then

1
Uip ’ Hij - §Ujp7 Uip ’ qu Uzqv

1 8 (7)
Kip - Hij = 5 Kjp,  Kip - Vogp = 5 Kig

1 = 1
Uip - Spg = QKiqv Kip - Spg = §Uiq (8)

Proof. To start we prove (7). From ¢(Us - Hij) = 3Ujp, ¢(Uip - Vig) =
O(Uiq - Vygq) = %Uiq and using the properties of Peirce decomposition for
the Jordan superalgebra A, we note that Uy - Hij € (Ag)jntp. We can see
that { y;p, zjp} is a generator set of (Np)jp, and therefore we can assume

uf, - 77sz "4 c F such that

that there exist Nipij

1 h h
Up-Hij = inp + nZDi}y Yip + m“pww i (9)
Similarly,
1 k
Kip ’ V;IP = §qu + nzpqp Yiqg + nl;qz Ligs (10)

UV,T UV,Y
for some n;, -, 1,0, €F

Using (4) and replacing « = U;p, y = 2z =t = H;; in (2) we have
2((Usp - Hii) - Hy;) - Hyg + Hy; - Uy = 3(Usp - Hyi) - Hy;. (11)
If we replace (9) in (11), we obtain

uh,x

3 5 5 u 3 .
ZUiP + nZozzy Yip + anzx Lip = ZUW + 377;)111/ Yip + 3777,pu Lip-

Hence, nl“;};f xzp—i—nzp“ Yip = 0. Since y;, and x;, are linearly independent,

uh,y _ _uhx khy _  khux -0

ipii. = Mipi; = 0. Similarly, we can prove that 7, " = ;7

we have 7,
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Using the fact that ¢(Us, - Hij) = ¢(Ujp, - Hjj) we can conclude that
uh,x uh,x uh,y _ uhy 0
Nipij = Mipjj = Mipiz — "ipij = ) ]
Now, if we replace x = K, y = z =t = V), in (2) and using (4) we

obtain

2((Kip ’ V}?p) ’ V}?p) : V;)p + V;Dp ’ Kip - 3(Kip ’ Vpp) : V;)p'
kvy kv
ippp = "ippp

kv,y kv,x

some properties of the canonical homomorphism we obtain Nipap = Mipgp =

As in the case above, it is easy to see that 7 = 0. Again, using

kv,x

ippp

Now, we show the equality (8).
such that

= 0. The other equalities in (7) are proven similarly.

us,T ks,

ksyy
Let nzppq’ Nippg > Mippq

ippa scalars

and 7

1 ks,
5 Uiq +"7;p qqu +n1,;p‘§ ;

N (12)
Let z = Ujp, y = Spq, 2 = Vpq and t = Sy, in the equation (2). Using
(4) and (7) we have,

1 -
Uip-Spg = §Kiq+ng;§qyiq+n?;§§$iq’ Kip-Spq =

~ 1 1
((Uip : Spq) ) V})q) ’ Spq - ZUiq = _gUiq (13)

Using (12) and computing the products we obtain ( ksiy _ us:® 0

Miqpq ~ Tippg ) Yiq =

and nf;pleq = 0. Hence nf;pz = 0 (Similarly, we can prove nZDSI;y =0), and
ks,

nzqspg 77;/;;;;6 =0. (14)

We note that (Ui - Spq) = @(Uip - Spq) = —(Uip - Sgp) = lqu Thus

we have ;. = n; >0 = —n;»7; but this relation only depend of ¢ and ¢
so we can write

1
Uip - Spg = 5 HKig + Tig Tig- (15)

Analogously we have Kjy, - gpq =1U; — Mig Yig- The equation (14) can be
rewritten as nzp = 771q , only depend of i and therefore nfg = n;**. Since
Kip- Spq —Kip- qu, we obtain 77 = kS — () similarly, n;** = 0. Hence,
Usp - Spq = 5Kig, Kip - Spg = ;Uzq O

Lemma 2. Let ¢ : A — A/N be the canonical homomorphism. For
i=1,---,nandp=1,---,m let Uy, and K;, € Ay be preimages of Uy,
and K;, respectively, then

1~ 1

’Spqv Kjp - Kjq = ’qum (16)

Uip-Uia =5 2
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1 1 1
Vaps Uip - Kjp = —5Hij, Usp - Kip = 5Vpp — Hiio (17)

Uip Kig = 5 2 2

Now we prove (16). Let 77;;’5 and 7];;’; € F, such that U;, - Uy =
%qu + Nipa Zpg + ipg Zpg- We note thatjD(Uip ;Uiq) = ¢(Ujp - Ujq) then
Mg only depend of p and g therefore -2 = ny” for all j = 1,...,n. Now
we can write Uy - Uyg = %gpq + Npg Zpg + Mg, Zpq-

Substituting x, y, z and ¢ in the equation (2) respectively by Usp, Ui,
Sqp and Vg, and using (4) we obtain Usq - Vg = Uiq - Sqp = Vpg - Srs = 0,
so because of (7) we obtain ((Usp - Uiq) - Sgp) - Vpg = 0. Hence npg” wpg = 0
and therefore ;" = 0. So, we have

1~

m.U@:§@W+%f%q (18)
By a similar process we can prove that
1 k,z
Kip - Kiq = §qu + Npg Zap- (19)

Now we can consider the product Uj, - Kj;,. Let n?j’;’g € F such that
e .
Up-Kjp = —%H;; +7]?jp’gg¢j. Knowing that o(Usy, - Kjp) = @(Ujp - Kip) =

o(Uiq - Kjq) we can affirm that %9 = "9

— ’U,k‘,g 1 1
i, = Njip. = Tjjq - Similarly, we have

7]%; = n;fﬁq. So we can write
1 uk 1 uk
Uip - Kjp = _§Hij +1y"9i; and Usp - Kig = §qu + Mpg Wap- (20)

If we replace z, y, 2z, and t, respectively, by Us,, Uiq, Sgp and Vj, in
the equation (2), and using (4) and (7) we obtain
1

’Uiq : (Uiq ’ qu)

1
((Uip ) Uiq) : qu) Vg + §(Uiq : qu) Uig = 9

Replacing (15) and (18) in the equality above we obtain 7, — 17}1‘1’,g =0.
Similarly we can show that 0 = n;fq — 17;,‘5.

k k k
Tpg = gy and 1y = mpg (21)

Using (21) we obtain 7, + n’lfq = 77};5 + T];jclf . We note that n,, = —n,, and
Mpg = ~ap THUS 15, &g, = 1pg + g = Mg + g, Bence 1y + 1y = 0

and therefore n%c + 773;‘;’? =0.
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Finally, we show the equality (17). Let x = Ujp, y = Kjp and z =t =
H;j in the equality (2). As we did before, we have

1 1
(Usp - Kip) - Hig) - Hij + SUsp - Kipp = (Ui - Kip) - Hij® + 5 Usp - K.

uk,w uk,w uk,g uk,g o . .
Thus (n;,"™ —n;, " Jwpp + (05, =i, 7)gj5 = 0. Since wyy, and g;; are lin-
. ukaw ukaw _ ukaw uk,g _ uk,g _uk,g
early independent we have ;" = n,,"" =np " and 1;,"" = n;,"" =np 7.

If we take © = Usp, y = Kjp, 2 = Vpg and t = V, in (2) we can show
that ngk’w = ngk’w = n¥* and n}“,‘k’g = ngk’g = ngk and therefore, we obtain

1
Uip - Kip = §Vpp — Hii + nltkwpp + nblf'“gu' (22)

Let z = Uy, y = Uiy, 2 = K;, and t = K, in the equation (2). Thus we
obtain

((Uip ‘ Uiq) ) Kip) Kig +Uiq - ((Uip ’ Kiq) Kip) + ((Uiq ’ Kiq) - Kip) - Ui
= (Uip - Uiq) - (Kip - Kiq) + (Ui - Kip) - (Usp - Kig)
+ (Uig - Kig) - (Kip - Uip). (23)
If we replace (18), (19) and (22) in (23) and using the fact n,* = n{;g =0
and 1,, = 773;;]? = *77;5 and qu = 77;5 we obtain

(2ns" — 2 Jwaq + (205" — ni*Ywp, — 208 gis = 0.

Due to the fact that wpy, wgq and g;; are linearly independent, 7,

ek = ng = 0. Hence 77% = 775(1 =0. -

We note that the relations (7)—(17) are valid when n =1 and m > 2
or n > 2 and m = 1 and therefore, the WPT is valid.

Case 2. N = Skew(My9,,(F), 0sp). We denote

_.n _.n ~ _.m _ . 2m _ ,m2m m2m

Qij = €i5 — €jis Apg = Epg — Eqp > f pg = €pq + €op >

T 2mm 2mm . _nm 2mn - __ _n2m mn
Tra=¢€pq " teg s bip=rep" —e", cip=ep " ey

Since (3) we can see that N is generated by a;j, Gpq, [pq, [pq, bip and cip,
moreover,

No = span (a;j, Gpq, qu»f;;q> and N = span (b, cip)
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It is easy to see that the action of Josp,,s,, (F) over Skew (M, o, (F),
osp) is determined by the following multiplication table

hii o a;; = 5 it
1 . .
hi o a;j = 5(53‘1@%1 + Oyiag; + djag, + dpayy) i i F Gk F#

Spq © frt - 5(6pratq + 6psarq - 5qratp - 5qtapr)a

-~ 1 ~ ~
Spq © Qrt = 5(5qrfpt - 6prfqt)a
Spq © frt = 5(5qrapt + Oqtapr — Oprdgt — Optaqr),

1
5(6ptfqr - 6qtfpr>7

Spq © Grt =
~ 1 ~ - 1
Upgq © Qrt = 5(5q7"apt + Optlirg), Upg © frt = 5(5q7'fpt + 6t fpr),

-~ 1 . .
Upq © frt = 5(5prfqt + 5ptfqr)7

1 1
hij o by, = 5(5jkbz’r + Oikbjr),  hii o by, = 55ikbm

1 1
Upq © by = §5rpbk:q> hz’j O Ckr = 5(5jkcir + 5ik:kjr)a

hi; o ek = §5ik0ira Upg © Ckr = §5rqckp7

- 1
8pq © bir = 5 (OprCig — OgrCip),  Spg © Cir = 5(57"pbiq — 0grbip)

2
1 . 1
uip e} akj = 5((5@‘[)]@ — (Sikbjp), uip (¢] aqr = iéquirv

~ 1
kip 0 aji = 5 (0incip = dijcrp)s  kip © Agr = —50prCiq,

(25)

—_

1 ~
Usjp © fqr = 5(5pqcir + 5prciq)a kip © fqr = (5quir + 5prbiq)7

2

—_

Uir © Spg = 5(5Tpkiq — Orgkip),  Kir 0 Spg = 5(Orpttiq — Orquip),

[\

1. ~ 1 ~
Uip © bjg = 50 fpa:  Uip © Cjg = 5(Opgtij — 0ijgp)
1 _
kip o cjq = _i‘sijqua kip 0 bjq = 5(51%1‘1]'1’ — 0ijlpq)-

The products in (24), (25) are symmetric and the products in (26) are
skew-symmetric.

(26)
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Similarly as was prove to case 1, we have that if n +m > 3 then there
exist an analogous to Lemma 1 and 2. Therefore there exist U;;, and K;), €
Ay such that vect(Uip, Kip, i=1,...,n, p=1,...,m) = (Jospy|om (F))1,
thus the WPT is valid.

Now we prove the theorem form = n = 1 and V"= Skew (M 5(F), osp).

Let h, v, @ and k such that (F-h+F-v)+ (F-a+F- k) = Jospy o (F).

We need to ﬁnd u, k € A; such that (p(u) = @ and ¢(k) = k. Moroever,
tuh = v = 5U, kh = kv = 1k: and uk = QU—h

Let N = (F-a+F-f+F-f)+(F-b+F-c) and consider the following
action of Josp|o(IF) over N

~ o~ 1 1
va=a, vf=1f wvf=Ff, bh:bvzib, ch:cvzic,

o . (27)
ﬁ'd:kfzib, k’d:ﬂfzic
I 1. ~ =~
ub=f, wc= —50= kb, ke=—f, (28)

where (27) and (28) are commutative and anticommutative, respectively.
It is easy to see that N = Skew(M;5(TF), 0sp).

Let &, & and ‘ffe F such that uk = %U —h+&a+&f+ §J7f. Let’s
prove that there exist oy, o, B and S. € F such that
u=u+ apb + acc, E:k—l—ﬂbb%—/)’cc and w-k=—-v—h.
We note that ¢(i2) = @ and (k) = k. Using (27) we have
~ _ 1. ~ ~ 1~
uh =wv=—-u and kh=Fkv=—k.
2 2
Now ik = %v — h if and only if
1 1 ~
(& + 500 — Be)a+ (& +ac)f + (E5+H)f =0
Since a, f, and fare linearly independent we have
11, e a0
ga_‘_iab_iﬁc_gf_"ac_gf_‘_ﬁb_ s

and therefore 2§ + oy = S, §5 = —av, 5]-; = —[3y is a solution, hence the
WPT is valid.
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We note that if A/ is isomorphic to anyone of superbimodules opposites,
then by the Pierce properties, we have that the radical part in any product
is zero and therefore the equalities (7), (8), (16) and (17) hold when we
change H;j, Vpq, Spq: Spgs Uij and K, respectively by hij, Upgs Spg, Spgs
u;; and k;jp, and therefore, WPT is true.

3. A counter-example

Let A = Ay ® Ay where 4 = F-h+F-v+F-g+F w and
A1 =F - u+F -k+F-y+F-z,and N =(F-g+F -w)+ (F-y+F-x).
The non-zero multiplications in A are given by

1
R2=h, v>=v, hg=g, vw=uw, uh:uvziu,

1

1 1
h= 1 kg =k !
€T —xv—zx, g = w_2x7
1 ook k= ip—h+ (30)
u:z—2w g, Yy _2w g, u _211 9

where the products (29) are symmetric and (30) are skew-symmetric.

Using (2), and the table of multiplications above it is easy to show that
Ais a Jordan superalgebra. Moreover, if Jospy|o(F)o = F-h11 +F-v1; while
3osp1‘2(IF')1 = F-u31+F-ky;1. Consider the mapping ¢ : A/N — Josp1|2(IF)
and ¢ : N — 3OSP1|2(F) given by p(h) = 9¥(g) = hi1, p(v) = Y(w) = o1,
p(u) = Y(y) = uir and p(k) = P(z) = k1.

We can see that ¢ is an isomorphism between A/N and Jospy,(F),
while 1) is an isomorphism between N and Reg (Josp(1/2)).

If we assume that the WPT is valid for A, then there exist h, v € Ag
and u, k € A; such that, the following products are commutative h? = h,
v? = v, hu = vu = %17, hk = vk = %%, and anticommutative product
uk = 10— R hold, and @ = w(mod N) and k = k(mod ).

Consider ay, oy, B, and 3, € F such that © = u + ayy + o,z and
k=k+ Byy + Bzx. We note that

k= (u+ ayy + azx)(k + ez + Byy) = uk + ayyk + Brux

1 1 1
=5V —htgtgow—ayg+ 0w — g

1 1
= iv—h—l-(l —ay—ﬁx)g+§(ay+ﬁx)w.
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So @ik = tv—hif and only if 2(1 — oy — B2)g + (ay + B)w = 0. Due to g
and w are linearly independent, we have 1 = oy + 3, = 0 and so we have
a contradiction.
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