Construction of a complementary quasiorder^{*} Danica Jakubíková-Studenovská and Lucia Janičková

Communicated by A. V. Zhuchok

ABSTRACT. For a monounary algebra $\mathcal{A} = (A, f)$ we study the lattice Quord \mathcal{A} of all quasiorders of \mathcal{A} , i.e., of all reflexive and transitive relations compatible with f. Monounary algebras (A, f)whose lattices of quasiorders are complemented were characterized in 2011 as follows: (*) f(x) is a cyclic element for all $x \in A$, and all cycles have the same square-free number n of elements. Sufficiency of the condition (*) was proved by means of transfinite induction. Now we will describe a construction of a complement to a given quasiorder of (A, f) satisfying (*).

Introduction

If \mathcal{A} is an algebra, then the set consisting of all reflexive and transitive relations on \mathcal{A} , which are compatible with all operations of \mathcal{A} (i.e., quasiorders of \mathcal{A}), will be denoted Quord \mathcal{A} . Then Quord \mathcal{A} is a lattice with respect to inclusion. It is easy to see that the latice Con \mathcal{A} of all congruences of \mathcal{A} is a sublattice of Quord \mathcal{A} .

We will deal with the lattice Quord(A, f) of all quasiorders of (A, f), where (A, f) is a monounary algebra. The necessary and sufficient conditions for a monounary algebra (A, f) under which the lattice Quord(A, f)is complemented were found in [4]. The sufficiency of the condition was proved by means of transfinite induction. Analogous conditions for the

^{*}This work was supported by Grant VEGA 1/0063/14 and VEGA 1/0097/18. **2010 MSC:** 08A60, 08A02.

Key words and phrases: monounary algebra, quasiorder, lattice, complement, complemented lattice.

lattice $\operatorname{Con}(A, f)$ to be complemented were proved by Egorova and Skornyakov [2].

The aim of our paper is to describe a construction of a complement to a given quasiorder $\alpha \in \text{Quord}(A, f)$ when the algebra (A, f) satisfies the condition (*), i.e., when the lattice Quord(A, f) is complemented.

Another, still open question which is of interest is how to find a complement to a given quasiorder in an arbitrary monounary algebra provided the quasiorder has a complement.

1. Preliminaries

By a monounary algebra we will understand a pair $\mathcal{A} = (A, f)$ where A is a nonempty set and $f: A \to A$ is a mapping.

A monounary algebra \mathcal{A} is called *connected* if for arbitrary $x, y \in A$ there are non-negative integers n, m such that $f^n(x) = f^m(y)$. A maximal connected subalgebra of a monounary algebra is called a *connected* component.

An element $x \in A$ is referred to as *cyclic* if there exists a positive integer n such that $f^n(x) = x$. Then the set $\{x, f^1(x), f^2(x), \ldots, f^{n-1}(x)\}$ is said to be a *cycle*.

A quasiorder of an algebra $\mathcal{A} = (A, F)$ is a reflexive and transitive binary relation on A, which is compatible with all operations $f \in F$. A quasiorder is a congruence of \mathcal{A} if it is symmetric. We will denote by Quord \mathcal{A} the lattice of all quasiorders ordered by inclusion and by Con \mathcal{A} its sublattice, the lattice of all congruences. The smallest and the greatest elements of Quord \mathcal{A} and of Con \mathcal{A} are denoted $I_{\mathcal{A}} = \{(a, a) : a \in \mathcal{A}\}$ and $A \times \mathcal{A}$. If \wedge_{Con} , \vee_{Con} , \wedge_{Quord} , \vee_{Quord} are the corresponding operations in the lattices Con \mathcal{A} and Quord \mathcal{A} , then it is obvious, that $\wedge_{\text{Con}} = \wedge_{\text{Quord}} = \cap$ and $\vee_{\text{Con}} = \vee_{\text{Quord}}$ is the operation of the transitive hull. Therefore we will use the symbols \wedge and \vee for these operations.

A complement to a quasiorder α of (A, f) is a quasiorder β of (A, f)such that $\alpha \lor \beta = A \times A$ and $\alpha \land \beta = I_A$.

For $a, b \in A$ let $\alpha(a, b)$ and $\theta(a, b)$ be the smallest quasiorder and the smallest congruence, respectively, such that $(a, b) \in \alpha(a, b), (a, b) \in \theta(a, b)$.

The symbol \mathbb{N} is used for the set of all positive integers.

From the paper of Berman [1] concerning congruences, it follows that if $n \in \mathbb{N}$, then θ is a congruence relation of an *n*-element cycle (C, f)if and only if there is $d \in \mathbb{N}$ such that d divides n and for each $x \in C$, $[x]_{\theta} = \{x, f^d(x), \dots, f^{(\frac{n}{d}-1)d}(x)\} = \{f^k(x) \colon 0 \leq k \equiv d \pmod{n}\}.$ The congruence with this property will be denoted θ_d^C (or simply θ_d). It is easy to verify that for each $x \in C$, θ_d^C is the smallest congruence containing the pair $(x, f^d(x))$.

It appears that even in a case when a quasiorder is congruence, finding a complementary quasiorder can prove to be difficult. E.g., let (A, f) be an algebra such that $A = \{0, 1, 2, 3, 4, 5, 0', 1', 2', 3', 4', 5'\}$ and

 $0 \xrightarrow{f} 1 \xrightarrow{f} 2 \xrightarrow{f} 3 \xrightarrow{f} 4 \xrightarrow{f} 5 \xrightarrow{f} 0 \text{ and } 0' \xrightarrow{f} 1' \xrightarrow{f} 2' \xrightarrow{f} 3' \xrightarrow{f} 4' \xrightarrow{f} 5' \xrightarrow{f} 0'.$

Let us consider a congruence α such that $\alpha = \theta(0,3) \cup \theta(0',4')$. The lattice $\operatorname{Quord}(A, f)$ is complemented. However, to find a complementary quasiorder to α is not trivial. A general construction for finding a complementary quasiorder to a given quasiorder if the lattice $\operatorname{Quord}(A, f)$ is complemented could help with the task. In the next section, we will describe such a construction.

In [3] the following assertions were proved; we will use them often without any further quotation:

Lemma 1. Let (A, f) be an *n*-element cycle, $n \in \mathbb{N}$. Then $\text{Quord}(A, f) = \text{Con}(A, f) = \{\theta_d : d/n\}.$

Lemma 2. Let (A, f) be an n-element cycle, $n \in \mathbb{N}$. If $a, b \in A$, $f^m(a) = b$, d = g.c.d.(n, m), then $\alpha(a, b) = \theta_d$.

Corollary 1. Let (A, f) be an n-element cycle, d/n, k/n. Then $\theta_d \vee \theta_k = \theta_{\text{g.c.d.}(d,k)}$ and $\theta_d \wedge \theta_k = \theta_{\text{l.c.m.}(d,k)}$.

In the following, we will suppose that

• (A, f) is a monounary algebra,

• for each $a \in A$, the element f(a) is cyclic,

• there is $n \in \mathbb{N}$ square-free, such that each cycle of (A, f) has n elements.

From Lemma 1 we get

Lemma 3. Let (A, f) be a cycle, $\alpha = \theta_d$, d/n. Then β is a complement to α in the lattice Quord(A, f) if and only if $\beta = \theta_e$, $e = \frac{n}{d}$.

For $a \in A$ let C(a) be the cycle containing the element f(a).

Lemma 4. Assume that x is a noncyclic element of A, $\alpha \upharpoonright C(x) = \theta_d^{C(x)}$, d/n. Next suppose that $k \in \mathbb{N}$ and either $(x, f^k(x)) \in \alpha$ or $(f^k(x), x) \in \alpha$. Then d/k.

Proof. The assumption implies that either

$$(f(x), f^{k+1}(x)) \in \alpha$$
 or $(f^{k+1}(x), f(x)) \in \alpha$,

i.e., either $(f(x), f^{k+1}(x)) \in \theta_d^{C(x)}$ or $(f^{k+1}(x), f(x)) \in \theta_d^{C(x)}$. In both cases we obtain that d/k.

Definition 1. Let $\alpha \in \text{Quord}(A, f)$. We denote $\bar{\alpha}$ the dual quasiorder to α , i.e, such that, whenever $a, b \in A$,

$$(a,b) \in \alpha \iff (b,a) \in \bar{\alpha}.$$

It is easy to see that the relation $\alpha \cap \overline{\alpha}$ is an equivalence on A.

Definition 2. Let r_{α} be the binary relation (depending on α) defined on the set of all cycles of (A, f) as follows: If B, D are cycles of (A, f), then we put $B r_{\alpha} D$, if there are $k \in \mathbb{N}$, cycles $B = C_0, C_1, \ldots, C_k = D$, elements $c_0 \in C_0, c_1 \in C_1, \ldots, c_k \in C_k$ such that for each $i \in \{0, 1, \ldots, k-1\}$, $(c_i, c_{i+1}) \in \alpha \cup \overline{\alpha}$. If $a, b \in A$, then we set

$$a r_{\alpha} b \iff C(a) r_{\alpha} C(b).$$

It is apparent from the definition of r_{α} , that if C, D are cycles of (A, f)and $C r_{\alpha} D$, then $c r_{\alpha} d$ for $\forall c \in C, d \in D$.

Lemma 5. Let $\alpha \in \text{Quord}(A, f)$. The relation r_{α} is an equivalence on A.

Proof. It is easy to see, that r_{α} is reflexive: to prove that $a r_{\alpha} a$, take $k = 1, c_0 = c_1 = f(a)$. Next, r_{α} is symmetric, since $\alpha \cup \overline{\alpha}$ is symmetric.

Now let us show transitivity. Assume that $c r_{\alpha} d$ and $d r_{\alpha} b$. Denote C = C(c), D = C(d), B = C(b). There exist $m, l \in \mathbb{N}$, cycles $C = C_0, C_1, \ldots, C_m = D$, cycles $D = D_0, D_1, \ldots, D_l = B$, elements $c_0 \in C_0, c_1 \in C_1, \ldots, c_m \in C_m, d_0 \in D_0, d_1 \in D_1, \ldots, d_l \in D_l$ such that for each $i \in \{0, 1, \ldots, m-1\}, (c_i, c_{i+1}) \in \alpha \cup \overline{\alpha}$ and for each $j \in \{0, 1, \ldots, l-1\}, (d_j, d_{j+1}) \in \alpha \cup \overline{\alpha}$. Denote k = m + l and for $j \in \{1, \ldots, l\}$ put

$$C_{m+j} = D_j.$$

Since $D = D_0 = C_m$ is a cycle and it contains the elements d_0, c_m , there is $t \in \{0, ..., n-1\}$ such that $d_0 = f^t(c_m)$. Further, the relation $(d_j, d_{j+1}) \in \alpha \cup \bar{\alpha}$ for $j \in \{0, 1, ..., l-1\}$ implies

$$(f^t(d_j), f^t(d_{j+1})) \in \alpha \cup \bar{\alpha}.$$

Now it suffices to denote $c_{m+j} = d_j$ for each $j \in \{1, \ldots, l\}$ and the proof is complete.

Lemma 6. Let $\alpha \in \text{Quord}(A, f)$. If $a, b \in A$ belong to the same connected component, then a r_{α} b.

Proof. Similarly as in the proof of reflexivity of the relation r_{α} , let us take $C_0 = C_1 = C(a) = C(b), \ k = 1, \ c_0 = f(a) = c_1.$

Definition 3. Let $\alpha \in \text{Quord}(A, f)$ and $A/r_{\alpha} = \{A_j : j \in J\}$. If J is a one-element set, then α is said to be connected.

Let us remark that this notion is natural: by drawing the quasiordered set, we obtain a graph G in which for every pair C_i, C_j cycles of (A, f), there exist elements $c_i \in C_i, c_j \in C_j$ such that there exists a path in G connecting vertices denoted c_i, c_j .

2. Construction of a complement to connected quasiorder

Now we will work with the classes of the equivalence r_{α} . The goal of the following construction is to define, for a given $j \in J$ and a given quasiorder $\alpha \in \text{Quord}(A_j, f)$, some $\beta \in \text{Quord}(A_j, f)$; later we show that β is a complement of α in $\text{Quord}(A_j, f)$. In further, we will denote r_{α} by r.

For simplification, we will write A instead of A_j , i.e., till the main result about complements in $\text{Quord}(A_j, f)$ (Theorem 2.2) of this section, we assume that J is a one-element set.

Notation 2.1. Let A' be the set of all noncyclic elements x of A such that

$$(x, f^n(x)) \notin \alpha$$
 and $(f^n(x), x) \notin \alpha$.

We define a binary relation ρ on A' as follows. Put $(a, b) \in \rho$ if $a, b \in A'$, f(a) = f(b) and there are $k \in \mathbb{N}$ and $a = u_0, u_1, \ldots, u_k = b$ elements of A' such that

$$(\forall i \in \{0, \dots, k-1\}) (f(a) = f(u_i), (u_i, u_{i+1}) \in \alpha \cup \bar{\alpha}).$$

i.e., put $(a, b) \in \rho$ if $a, b \in A'$, f(a) = f(b) and a, b belong to the same connected subcomponent of the quasiordered set of α , consisting of elements of A'.

It is easy to verify that the relation ρ is an equivalence and that the following assertion is valid.

Definition 4. Let $D \in A'/\rho$. We choose one fixed element t from each class $D/(\alpha \cap \overline{\alpha}) = T$ and denote the set of all these fixed elements t as D^* .

Lemma 7. Let $D \in A'/\rho$. Then there exists a set $D^* \subseteq D$ such that 1) $(\forall x \in D \setminus D^*)(\exists y \in D^*)((x, y) \in \alpha \cap \overline{\alpha});$

 $2) \ (\forall x,y \in D^*, x \neq y)((x,y) \in \alpha \Rightarrow (y,x) \notin \alpha).$

For each $D \in A'/\rho$, there can be one or more sets D^* such as described in Lemma 7. We choose arbitrary one of them before we begin the construction (K). Then for each $D \in A'/\rho$, we choose a representative $d^* \in D^*$, again arbitrarily. By choosing different D^* and d^* for individual D, we can construct different complements to α .

The following example shows choosing of D^* and d^* in a particular case.

Example 1. Let us consider a monounary algebra (A, f) and a quasiorder α on (A, f) as we can see in Figures 1 and 2. By Notation 2.1, $A' = \{6, 7, 8, 9, 10\}$ and $A'/\rho = \{D_1^*, D_2^*\}$, where we can choose $D_1^* = \{6, 8, 9\}$ or $D_1^* = \{7, 8, 9\}$, and $D_2^* = \{10\}$.

FIGURE 1. Algebra (A, f).

FIGURE 2. Quasiorder α .

If we choose $D_1^* = \{6, 8, 9\}$ and $D_2^* = \{10\}$, then d_1^* can be either 6, 8 or 9 and $d_2^* = 10$. If we choose $D_1^* = \{7, 8, 9\}$ and $D_2^* = \{10\}$, then d_1^* can be either 7, 8 or 9 and $d_2^* = 10$.

Now let us describe a relation β . Let $x, y \in A$. We put $(x, y) \in \beta$ if either x = y or the pair (x, y) fulfils one of the steps of the construction. Let us remark that in (e) (and only there) we use some previous steps.

Construction (K)

- Step (a). Let x, y belong to the same cycle $C, y = f^k(x), \alpha \upharpoonright C = \theta_d, d/n$ and let $e = \frac{n}{d}$. We set $(x, y) \in \beta$ if and only if e/k.
- Step (b). Let $x \in C_1$, $y \in C_2$, where C_1 and C_2 are distinct cycles. We put $(x, y) \in \beta$ if and only if there are $a \in C_1$ and $b \in C_2$ with $(b, a) \in \alpha, (a, b) \notin \alpha$.
- Step (c). Suppose that $x, y \in D^*$ for some $D \in A'/\rho$. Then $(x, y) \in \beta$ if and only if and $(y, x) \in \alpha$.
- Step (d1). Suppose that x belongs to a cycle C, y is noncyclic, C(y) = C. Further let $\alpha \upharpoonright C = \theta_d$, d/n, $e = \frac{n}{d}$. If $y \notin A'$, then $(x, y) \in \beta$ if and only if $(f^n(y), y) \notin \alpha, (y, f^n(y)) \in \alpha, x = f^k(y), e/k$.
- Step (d1'). Suppose that y belongs to a cycle C, x is noncyclic, C(x) = C. Further let $\alpha \upharpoonright C = \theta_d$, d/n, $e = \frac{n}{d}$. If $x \notin A'$, then $(x, y) \in \beta$ if and only if $(f^n(x), x) \in \alpha$, $(x, f^n(x)) \notin \alpha$, $y = f^k(x)$, e/k.
- Step (d2). Suppose that x belongs to a cycle C, y is noncyclic, C(y) = C. Further let $\alpha \upharpoonright C = \theta_d$, d/n, $e = \frac{n}{d}$. If $y \in A'$, then $(x, y) \in \beta$ if and only if there is $D \in A'/\rho$ such that $y \in D^*, x = f^k(y), e/k$ and $(y, d^*) \in \alpha$.
- Step (d2'). Suppose that y belongs to a cycle C, x is noncyclic, C(x) = C. Further let $\alpha \upharpoonright C = \theta_d$, d/n, $e = \frac{n}{d}$. If $x \in A'$, then $(x, y) \in \beta$ if and only if there is $D \in A'/\rho$ such that $x \in D^*, y = f^k(x), e/k$ and $(d^*, x) \in \alpha$.
- Step (e). Suppose that x, y satisfy none of the assumptions of the previous steps. Then $(x, y) \in \beta$ if and only if $(x, f^n(x)) \in \beta$, $(f^n(y), y) \in \beta$, $(f^n(x), f^n(y)) \in \beta$.

We will show that $\beta \in \text{Quord}(A, f)$ and that β is a complementary quasiorder to α .

Lemma 8. Let $(x, y) \in \beta$. Then $(f(x), f(y)) \in \beta$.

Proof. We can assume that $x \neq y$ and that the pair (x, y) is obtained according to the steps of the above construction.

(A) First x, y belong to the same cycle $C, y = f^k(x), \alpha \upharpoonright C = \theta_d, d/n, e = \frac{n}{d}$ and e/k. Then $(f(x), f(y)) = (f(x), f^k(f(x)))$, thus $(f(x), f(y)) \in \beta$ by the step (a).

(B) Now $x \in C_1$, $y \in C_2$, where C_1 and C_2 are distinct cycles and there are $a \in C_1$ and $b \in C_2$ with $(b, a) \in \alpha$, $(a, b) \notin \alpha$. Since $f(x) \in C_1$ and $f(y) \in C_2$, the above step (b) yields that $(f(x), f(y)) \in \beta$.

(C) In the step (c) the assumption implies that f(x) = f(y).

(D1) We will not repeat all assumptions of (d1). We have

$$y \notin A'$$
, $(f^n(y), y) \notin \alpha$, $(y, f^n(y)) \in \alpha$, $x = f^k(y)$, e/k .

For verifying that $(f(x), f(y)) \in \beta$ we need to apply (a), because f(x) and f(y) belong to the same cycle. We have $f(y) = f^{n-k}(f(f^k(y))) = f^{n-k}(f(x))$ and e/n - k, therefore $(f(x), f(y)) \in \beta$.

(D1') Analogously as (D1).

(D2) We suppose that x belongs to a cycle C, y is noncyclic, C(y) = C. Further, $y \in A'$ and there is $D \in A'/\rho$ such that $y \in D^*, x = f^k(y), e/k$, $(y, d^*) \in \alpha$. The elements f(x) and f(y) belong to the same cycle, $f(y) = f(d^*)$, thus $f(y) = f^{n-k}(f(f^k(y))) = f^{n-k}(f(x))$ and e/n - k, therefore $(f(x), f(y)) \in \beta$.

(D2') Analogously as (D2).

(E) In this case we have $(x, f^n(x)) \in \beta$, $(f^n(y), y) \in \beta$, $(f^n(x), f^n(y)) \in \beta$. The elements $f^n(x), f^n(y)$ are cyclic. Then (B), in the view of $(f^n(x), f^n(y)) \in \beta$, implies $(f(f^n(x)), f(f^n(y))) \in \beta$, i.e., $(f(x), f(y)) \in \beta$.

Lemma 9. Let $(x, y) \in \beta$, $(y, z) \in \beta$. Then $(x, z) \in \beta$.

Proof. We can assume that x, y, z are mutually distinct.

1) First assume that $C(x) \neq C(y)$. By (e) we have

$$(x, f^n(x)) \in \beta, \tag{1}$$

$$(f^n(x), f^n(y)) \in \beta, \tag{2}$$

$$(f^n(y), y) \in \beta. \tag{3}$$

Then (b) yields

there are $a \in C(x), b \in C(y)$ with $(b, a) \in \alpha, (a, b) \notin \alpha$ (4)

Similarly suppose that $C(z) \neq C(y)$. Then

$$(y, f^n(y)) \in \beta, \tag{5}$$

$$(f^n(y), f^n(z)) \in \beta, \tag{6}$$

$$(f^n(z), z) \in \beta, \tag{7}$$

there are
$$b' \in C(y), c' \in C(z)$$
 with $(c', b') \in \alpha, (b', c') \notin \alpha.$ (8)

From (4) and (8) it follows that there is $m \in \mathbb{N}$ with $b = f^m(b')$. Denote $c = f^m(c')$. Then

$$c = f^m(c') \alpha f^m(b') = b \alpha a.$$

Since $(a, b) \notin \alpha$, we get $(a, c) \notin \alpha$. Therefore

$$(c_1, c_2) \in \beta$$
 for each $c_1 \in C(x), c_2 \in C(z),$

according to (b). Then $(f^n(x), f^n(z)) \in \beta$. Thus (1) and (7), in view of (e), imply $(x, z) \in \beta$.

2) Suppose that $C(x) \neq C(y) = C(z)$. If z is cyclic, then $(x, z) \in \beta$ by (4). Let z be noncyclic. If the elements y, z satisfy (e), then $(x, z) \in \beta$ analogously as in the first part of the proof. Hence y is cyclic.

Let $\alpha \upharpoonright C(y) = \theta_{\frac{n}{e}}$. If $z \notin A'$, then by (d1), $(f^n(z), z) \notin \alpha, (z, f^n(z)) \in \alpha$, $y = f^k(z), e/k$. Thus again according to (d1), $(f^n(z), z) \in \beta$. If $z \in A'$, then by (d2) there is $D \in A'/\rho$ such that $z \in D^*, y = f^k(z), e/k$ and $(z, d^*) \in \alpha$. Thus $(f^n(z), z) \in \beta$ in view of (d2). This in view of (1), (2) and (e) yields that $(x, z) \in \beta$.

3) The case when $C(x) = C(y) \neq C(z)$ is similar to 2).

4) Finally we suppose that $C(x) = C(y) = C(z), \ \alpha \upharpoonright C(x) = \theta_{\frac{n}{2}}$.

First we show the assertion for cyclic elements x, y, z. There are k, mwith $y = f^k(x), z = f^m(y), e/k, e/m$. Then $z = f^{k+m}(x), e/k + m$, hence $(x, z) \in \beta$. From the assumption $(x, y) \in \beta, (y, z) \in \beta$ it follows $(f^n(x), f^n(y)) \in \beta, (f^n(y), f^n(z)) \in \beta$, the elements $f^n(x), f^n(y), f^n(z)$ are cyclic, thus

$$(f^n(x), f^n(z)) \in \beta.$$
(9)

This implies that if $(x, f^n(x)) \in \beta$, $(f^n(z), z) \in \beta$ then the pair x, z satisfies (e) and then either $(x, z) \in \beta$ or x, z satisfy some of the assumptions of (a), (c), (d1), (d1'), (d2), (d2'). We will proceed according to this idea in the remaining part of the proof.

4.1) Let x, y be cyclic, z be noncyclic. By $(x, y) \in \beta$ we have $y = f^k(x), e/k$, thus also $x = f^n(x) = f^{k+i}(x) = f^i(f^k(x)) = f^i(y), e/i$. In view of (d1) or (d2), $y = f^m(z), e/m$. Then $x = f^{i+m}(z), e/i + m$ and $(x, z) \in \beta$ according to (d1) or (d2).

4.2) Let x, z be cyclic, y be noncyclic. For $y \notin A'$, then (d1') by $(y, z) \in \beta$ implies that $(y, f^n(y)) \notin \alpha$ and (d1) by $(x, y) \in \beta$ implies that $(y, f^n(y)) \in \alpha$, a contradiction. If $y \in A'$, then (d2') and $(y, z) \in \beta$ yield $y \in D^*$ for some $D \in A'/\rho$ and $z = f^m(y), e/m$. Similarly, if $y \in A'$,

then (d2) and $(x, y) \in \beta$ yield that $x = f^k(y), e/k$. There is $t \in \mathbb{N}$ with $m - k + tn \ge 0$ and then

$$z = f^{m+tn}(y) = f^{m-k+tn}(f^k(y)) = f^{m-k+tn}(x), \qquad e/m-k+tn.$$

Therefore $(x, z) \in \beta$ in view of (a).

4.3) Let x be cyclic, y, z be noncyclic. First let $y, z \in D^*$ for some $D \in A'/\rho$. Then $(z, y) \in \alpha$ in view of (c). Next, $x = f^m(y)$, e/m, $(y, d^*) \in \alpha$, thus $(z, d^*) \in \alpha$. Since $f^m(y) = f^m(d^*) = f^m(z)$, we obtain by (d2) that $(x, z) \in \beta$. Now let $(y, z) \in \beta$ by (e). Then $(y, f^n(y)) \in \beta$, $(f^n(y), f^n(z)) \in \beta$, $(f^n(z), z) \in \beta$. The second relation implies that $y = f^k(z), e/k$. From (d1), (d2) for the elements x, y we get that $x = f^m(y), e/m$, thus $x = f^{m+k}(z), e/m + k$. If $z \notin A'$, then by (d1), $(f^n(z), z) \notin \alpha, (z, f^n(z)) \in \alpha$ and then $(x, z) \in \beta$. If $z \in A'$, then according to $(f^n(z), z) \in \beta$ by (d2) we obtain $z \in D^*$ for some $D \in A'/\rho$ and $(z, d^*) \in \alpha$, therefore $(x, z) \in \beta$.

4.4) The case when x, y are noncyclic, z is cyclic is dual to 4.3).

4.5) Let x, z be noncyclic, y be cyclic. From $(x, y) \in \beta$ and (d1'), (d2') it follows that either $x \notin A', (f^n(x), x) \in \alpha, (x, f^n(x)) \notin \alpha, y = f^k(x), e/k$, or $x \in A'$, there is $D \in A'/\rho$ such that $x \in D^*, y = f^k(x), e/k$ and $(d^*, x) \in \alpha$. Next, (d1'), (d2') yield $(x, f^n(x)) \in \beta$. It can be shown analogously that $(f^n(z), z) \in \beta$. Therefore we either obtain that $(x, z) \in \beta$ according to (e) or x, z satisfy the assumption of (c). Then $z \in D^*$. Since $(y, z) \in \beta, (d2)$ implies that $y = f^m(z), e/m$ and $(z, d^*) \in \alpha$. Therefore

$$z \alpha d^* \alpha x_i$$

hence $(x, z) \in \beta$ by (c).

4.6) Finally suppose that x, y, z are noncyclic. Then either x, y satisfy the assumption of (c) and

$$x, y \in D^*, \qquad D \in A'/\rho, \qquad (y, x) \in \alpha$$

or x, y satisfy the assumption of (e) and

$$(x, f^n(x)) \in \beta, \qquad (f^n(x), f^n(y)) \in \beta, \qquad (f^n(y), y) \in \beta.$$

Similarly, either y, z satisfy the assumption of (c) and

$$y, z \in D_1^*, \qquad D_1 \in A'/\rho, \qquad (z, y) \in \alpha$$

or y, z satisfy the assumption of (e) and

$$(y, f^n(y)) \in \beta,$$
 $(f^n(y), f^n(z)) \in \beta,$ $(f^n(z), z) \in \beta.$

Let x, y satisfy the assumption of (c) and y, z satisfy the assumption of (c). Then $D_1 = D$, $z \alpha y \alpha x$, thus $(x, z) \in \beta$ by (c).

Let x, y satisfy the assumption of (c) and y, z satisfy the assumption of (e) (the case when x, y satisfy the assumption of (e) and y, z satisfy the assumption of (c) is analogous). We have $(y, f^n(y)) \in \beta$, thus by (d2'), $(d^*, y) \in \alpha$, which yields $d^* \alpha y \alpha x$. Then (d2') implies that $(x, f^n(x)) \in \beta$, therefore (e) according to (9) yields $(x, z) \in \beta$.

Let x, y satisfy the assumption of (e) and y, z satisfy the assumption of (e). In view of (9), if $(x, z) \notin \beta$, then $x, z \in D_2^*, D_2 \in A'/\rho, (z, x) \notin \alpha$. Since $(f^n(z), z) \in \beta$, by (d2) we obtain $(z, d_2^*) \in \alpha$, and from (d2') and $(x, f^n(x)) \in \beta$ it follows that $(d_2^*, x) \in \alpha$. Therefore $(x, z) \in \beta$, a contradiction.

We have shown that β is a quasiorder on (A, f). Now, we will show that β is also complementary to α in Quord(A, f).

Lemma 10. If $(x, y) \in \alpha \land \beta$, then x = y.

Proof. Let $(x, y) \in \alpha \land \beta, x \neq y$.

(A) Assume that x, y belong to the same cycle C. There is $d \in \mathbb{N}$ such that $\alpha \upharpoonright C = \theta_d$, d/n. Step (a) implies that $\beta \upharpoonright C = \theta_e$, where $e = \frac{n}{d}$. We have $(x, y) \in \alpha \upharpoonright C \cap \beta \upharpoonright C = \theta_d \cap \theta_e$. Then according to Lemma 3, x = y.

(B) Suppose that $x \in C_1$, $y \in C_2$, where C_1 and C_2 are distinct cycles. There is $d \in \mathbb{N}$ such that $\alpha \upharpoonright C_2 = \theta_d$, d/n. Then $(x, y) \in \beta$ if and only if there are $a \in C_1$ and $b \in C_2$ with $(b, a) \in \alpha$, $(a, b) \notin \alpha$. There are $k, m \in \mathbb{N}$ such that $a = f^k(x), b = f^m(y)$. Since $(x, y) \in \alpha$, also $(f^k(x), f^k(y)) \in \alpha$, hence

$$f^m(y) = b \ \alpha \ a = f^k(x) \ \alpha \ f^k(y).$$

The elements $f^m(y), f^k(y)$ belong to C_2 and $(f^m(y), f^k(y)) \in \theta_d$, which yields that d/m - k. Then

$$a \ \alpha \ f^{m-k}(a) = f^{m-k}(f^k(x)) = f^m(x) \ \alpha \ f^m(y) = b,$$

which is a contradiction.

(C) Let $x, y \in D^*$ for some $D \in A'/\rho$. Then $(x, y) \in \beta$ if and only if and $(y, x) \in \alpha$. We assumed that $(x, y) \in \alpha$, but this is a contradiction, because $x, y \in D^*$.

(D1) Suppose that x belongs to a cycle C, y is noncyclic, C(y) = C. Further let $\alpha \upharpoonright C = \theta_d$, d/n, $e = \frac{n}{d}$ and let $y \notin A'$. Then $(f^n(y), y) \notin \alpha$, $(y, f^n(y)) \in \alpha$, $x = f^k(y)$, e/k. Next, $(f^{k+1}(y), f(y)) = (f(x), f(y)) \in \alpha$, which implies that d/k. The assumption about n at the beginning of the section yields ed/k, i.e., n/k and $x = f^n(y) = y$.

(D2) Suppose that x belongs to a cycle C, y is noncyclic, C(y) = C. Further let $\alpha \upharpoonright C = \theta_d$, d/n, $e = \frac{n}{d}$ and $y \in D^*$ for $D \in A'/\rho$. Then $x = f^k(y), e/k$ and $(y, d^*) \in \alpha$. Similarly as in (D1), $(f^{k+1}(y), f(y)) = (f(x), f(y)) \in \alpha$, therefore we obtain x = y.

(D1'), (D2') Analogously as (D1), (D2).

(E) Now x, y satisfy none of the assumptions of the previous steps and

$$(x, f^n(x)) \in \beta, (f^n(x), f^n(y)) \in \beta, \qquad (f^n(y), y) \in \beta.$$

From the assumption of the lemma it follows that $(f^n(x), f^n(y)) \in \alpha$. For the cyclic elements $f^n(x), f^n(y)$ we can apply (A) or (B), thus $f^n(x) = f^n(y)$. If y is cyclic, then $y = f^n(x)$, hence $(x, y) = (x, f^n(x)) \in \beta$, $(x, y) \in \alpha$ and x = y. Therefore we can assume that x and y are noncyclic. If $x \notin A'$, then $(x, f^n(x)) \in \beta$ by (d1') implies $(f^n(x), x) \in \alpha$, thus

$$f^n(y) = f^n(x) \ \alpha \ x \ \alpha \ y,$$

a contradiction to $(f^n(y), y) \in \beta$. Similarly for y; therefore let $x, y \in A'$. From $f(x) = f^{n+1}(x) = f^{n+1}(y) = f(y)$ it follows that $x, y \in D^*$ for some $D \in A'/\rho$. This completes the proof according to (C).

Lemma 11. $\alpha \lor \beta = A \times A$.

Proof. Let $x, y \in A, x \neq y$.

1) If x, y belong to the same cycle, then the assertion follows from Lemma 3.

2) Let x, y belong to distinct cycles. First let us prove that if C, D are distinct cycles, $c \in C$, $d \in D$ and $(c, d) \in \alpha \cup \overline{\alpha}$, then $(c', d') \in \alpha \lor \beta$ for each $c' \in C, d' \in D$. Let $c' \in C, d' \in D$. If $(c, d) \in \overline{\alpha}$, then $(d, c) \in \alpha$ and (b) implies $(c', d') \in \beta$. If $(c, d) \in \alpha$, then using the proved case 1) we get

$$c' (\alpha \lor \beta) c \alpha d (\alpha \lor \beta) d'.$$

By the assumption, x r y. Then C(x) r C(y) and there are $k \in \mathbb{N}$, cycles $C(x) = C_0, C_1, \ldots, C_k = C(y)$ and elements $c_0 \in C_0, c_1 \in C_1, \ldots, c_k \in C_k$ such that for each $i \in \{0, 1, \ldots, k-1\}, (c_i, c_{i+1}) \in \alpha \cup \overline{\alpha}$. Then by induction, $(x, y) \in \alpha \lor \beta$.

3) Let C(x) = C(y) and either x is noncyclic, $x \notin A'$, y is cyclic, or x is cyclic, y is noncyclic, $y \notin A'$. We prove only the first case; the second one is analogous. Since $x \notin A'$, thus either $(x, f^n(x)) \in \alpha$ or $(f^n(x), x) \in \alpha$,

 $(x, f^n(x)) \notin \alpha$, which by (d1') implies $(x, f^n(x)) \in \beta$. Then $(x, y) \in \alpha \lor \beta$ by 1).

4) Assume that x, y belong to the same connected component, $x, y \notin A'$. Then $(x, y) \in \alpha \lor \beta$ in view of 3). From this and from 1) it follows, that the condition that x, y belong to the same connected component can be omitted.

5) Let $x, y \in D$, $D \in A'/\rho$. Then there are $k \in \mathbb{N}$ and $x = u_0, u_1, \ldots, u_k = y$ elements of $D^* \subseteq D$ such that $f(x) = f(y) = f(u_i), (u_i, u_{i+1}) \in \alpha \cup \overline{\alpha}$ for each $i \in \{0, \ldots, k-1\}$. It can be shown analogously as in 2) that $(x, y) \in \alpha \lor \beta$.

6) Let $D \in A'/\rho$. In view of (d2') we obtain $(d^*, f^n(d^*)) \in \beta$. This, together with the previous steps, implies that if $x \in A'$, then $x \in D$ for some $D \in A'/\rho$, thus $(x, d^*) \in \alpha \lor \beta$ and $(f^n(d^*), y) \in \alpha \lor \beta$ for each $y \notin A'$. So then $(x, y) \in \alpha \lor \beta$.

7) Let $D \in A'/\rho$. Then $(f^n(d^*), d^*) \in \beta$ by (d2). Thus if x is cyclic, $y \in A'$, then $y \in D$ for some $D \in A'/\rho$ and we get by (2) that $(x, f^n(d^*)) \in \alpha \lor \beta$, $(f^n(d^*), d^*) \in \beta$ and by (5) that $(d^*, y) \in \alpha \lor \beta$. It follows from the previous steps that $(x, y) \in \alpha \lor \beta$ for arbitrary $x, y \in A$, so the claim is proved. \Box

In the view of Construction (K) and Lemmas 8–11 we obtain:

Theorem 2.2. Let (A, f) be a monounary algebra such that for each $a \in A$, the element f(a) is cyclic, and there is a square-free $n \in \mathbb{N}$ such that each cycle of (A, f) has n elements. Let $\alpha \in \text{Quord}(A, f)$ be connected. If a binary relation β on A is formed by Construction (K), then β is a complementary quasiorder to α in the lattice Quord(A, f).

Example 2. The converse is not true. Let us consider the algebra (A, f), such that $A = \{0, 1, 2, 3\}$, f(0) = 1, f(1) = 0, f(2) = 3, f(3) = 2 and a quasiorder $\alpha = I_A \cup \{(0, 2), (1, 3)\}$. It is easy to verify that a quasiorder $\gamma = I_A \cup \{(2, 1), (3, 0)\}$ is a complement in Quord(A, f) to α . However, a complementary quasiorder in Quord(A, f) to α formed by the construction (K) is $\beta = I_A \cup \{(1, 0), (0, 1), (2, 3), (3, 2), (2, 0), (2, 1), (3, 0), (3, 1)\}$.

3. Construction of a complement to a quasiorder—the general case

The aim of this section is to find a complementary quasiorder to a non-connected quasiorder if the lattice Quord(A, f) is complemented.

FIGURE 3. Converse of Theorem 3.8 is not true.

Suppose that $\alpha \in \text{Quord}(A, f)$ and that r_{α} is as above. According to the previous section the case |J| = 1 is solved; now let us suppose that |J| > 1. We will describe the Construction (K') in the following section.

For $i \in J$ let c_i be a fixed cyclic element of some chosen cycle C_i in A_i . We denote by γ the following relation:

$$\gamma = \{ (f^k(c_i), f^k(c_j)) \colon i, j \in J, k \in \mathbb{N} \}.$$

It can be easily shown that $\gamma \in \text{Quord}(A, f)$.

For each $i \in J$, the relation $\alpha \upharpoonright C_i$ is a congruence of the cycle C_i , thus there is $d_i \in \mathbb{N}$ such that $\alpha \upharpoonright C_i$ is the smallest congruence containing the pair $(c_i, f^{d_i}(c_i))$. The set of all d_i is finite, denote it by $\{d_1, d_2, \ldots, d_s\}$. Without loss of generality, let $\{1, 2, \ldots, s\} \subseteq J$.

Notice that, for $i \in J$, $d, l, k \in \mathbb{N}$, $(f^l(c_i), f^k(c_i)) \in \theta(c_i, f^d(c_i))$ if and only if d divides l - k. In what follows, let d will be the greatest common divisor of d_1, d_2, \ldots, d_s . This implies the following.

Lemma 12. There exist positive integers q_1, q_2, \ldots, q_s and q such that

$$1 + qn = q_1 \frac{d_1}{d} + q_2 \frac{d_2}{d} + \dots + q_s \frac{d_s}{d}.$$

Let $i \in J$. Put

$$\alpha_i' = \theta(c_i, f^d(c_i)) \lor \alpha_i$$

If $\alpha' = \bigcup_{j \in J} \alpha'_i$, then $\alpha' \in \text{Quord}(A, f)$ and it easy to see that $r_{\alpha'} = r_{\alpha}$. By the results of the previous section there exists a complement β'_i of α'_i in $\text{Quord}(A_i, f)$. Further, from the construction of a complement on A_i we obtain

$$\beta_i' \upharpoonright C_i = \theta(c_i, f^{\frac{n}{d}}(c_i)).$$

Lemma 13. Let $i \in J$, $l, k \in \mathbb{N}$. Then $(f^l(c_i), f^k(c_i)) \in \alpha_i \vee \beta'_i$ if and only if $\frac{d_i}{d}/l - k$.

Proof. From the notation above, $(f^l(c_i), f^k(c_i)) \in \alpha_i$ if and only if $d_i/l - k$ and $(f^l(c_i), f^k(c_i)) \in \beta'_i$ if and only if $\frac{n}{d}/l - k$. Then $(f^l(c_i), f^k(c_i)) \in \alpha_i \lor \beta'_i$ if and only if g.c.d(d_i, $\frac{n}{d})/l - k$, i.e., if and only if $\frac{d_i}{d}/l - k$. \Box

Now we define the relation β by putting

$$\beta = \gamma \ \lor \ \bigvee_{j \in J} \beta'_j.$$

We are going to show that β is a complement to the quasiorder α in the lattice Quord(A, f). Since β is a join of quasiorders, it is clear that it is also a quasiorder.

Lemma 14. If $(x, y) \in \alpha \land \beta$, then x = y

Proof. Let $(x, y) \in \alpha \land \beta$, $x \neq y$. The relation $(x, y) \in \alpha$ implies that there is $i \in J$ such that $x, y \in A_i$, $(x, y) \in \alpha_i$. Then $(x, y) \in \alpha'_i$. We have $\alpha_i \cap \beta'_i = \alpha'_i \cap \beta'_i$, which, since β'_i is a complement to α'_i , is the smallest quasiorder of (A_i, f) . The assumption $x \neq y$ yields that $(x, y) \notin \beta'_i$. There is the shortest chain of elements $x = u_0, u_1, \ldots, u_m = y$ with m > 1 such that either $(u_k, u_{k+1}) \in \gamma$ or $(u_k, u_{k+1}) \in \bigvee_{j \in J} \beta'_j$, for any k. Obviously, the elements u_0, u_1, \ldots, u_m are distinct and if $(u_k, u_{k+1}) \in \gamma$, then $(u_{k+1}, u_{k+2}) \in \bigvee_{j \in J} \beta'_j$, and similarly for the second possibility. For each k there is $i_k \in J$ with $u_k \in A_{i_k}$. From the definition of β we get

$$(u_{k}, u_{k+1}) \in \gamma \implies u_{k} = f^{t_{k}}(c_{i_{k}}), u_{k+1} = f^{t_{k+1}}(c_{i_{k+1}}), \quad i_{k} \neq i_{k+1}, t_{k} = t_{k}$$
(10)

$$t_k = t_{k+1},\tag{10}$$

$$(u_k, u_{k+1}) \in \beta'_j \implies i_k = i_{k+1}, \tag{11}$$

$$u_{k} = f^{t_{k}}(c_{i_{k}}), u_{k+1} = f^{t_{k+1}}(c_{i_{k+1}}), (u_{k}, u_{k+1}) \in \beta'_{j} \implies i_{k} = j, \quad (12)$$

$$\frac{n}{d}/t_k - t_{k+1}.\tag{13}$$

We have either

$$x = u_0 \gamma u_1 \beta'_j u_2 \gamma u_3 \beta'_j u_4 \dots, \qquad (14)$$

or

$$x = u_0 \ \beta'_j \ u_1 \ \gamma \ u_2 \ \beta'_j \ u_3 \ \gamma \ u_4 \ \dots$$
 (15)

We have m > 1, thus between the elements of the chain, the quasiorder γ is used at least twice.

Assume that (15) holds. Also, assume that $u_{m-1} \in A_i$. (The remaining cases are similar, but more simple.) Then m is odd. By the definition of γ , for each $0 < k \leq m$ there exists a positive integer t_k such that $u_k = f^{t_k}(c_{i_k})$. In view of (10)–(13), $t_1 = t_2$, $\frac{n}{d}/t_2 - t_3$, $t_3 = t_4$, $\frac{n}{d}/t_4 - t_5$, $\ldots, t_{m-2} = t_{m-1}$. Then $\frac{n}{d}/(t_1-t_2)+(t_2-t_3)+(t_4-t_5)+\cdots+(t_{m-3}-t_{m-2})+(t_{m-2}-t_{m-1}) = t_1-t_{m-1}$, hence $(u_1, u_{m-1}) \in \beta'_{i_0}$. This, together with the relations $(u_0, u_1) \in \beta'_{i_0}$, $(u_{m-1}, u_m) \in \beta'_{i_0}$ implies $(x, y) = (u_0, u_m) \in \beta'_{i_0}$, which is a contradiction.

Lemma 15. $\alpha \lor \beta = A \times A$.

Proof. We must show that $(x, y) \in \alpha \lor \beta$ for every $x, y \in A$. We will prove that there are $m \in \mathbb{N} \cup \{0\}$ and a chain of elements $x = u_0, u_1, u_2, \ldots, u_m = y$ of the set A such that either

$$(u_k, u_{k+1}) \in \gamma$$
 or $(u_k, u_{k+1}) \in \alpha_j \lor \beta'_j$ for some $j \in J$ (16)

is valid for each $0 \leq k < m$. Assume that $x \neq y$. We will investigate the following four cases and we will use the previous cases for the proof of a new one (we omit the case symmetric to the third one, because these cases are similar):

- 1) $x \in C_1, y = f(x),$
- 2) $i \in J, x, y \in C_i$,
- 3) $i \in J, x \in A_i, y \in C_i,$
- 4) $i, j \in J, x \in A_i, y \in A_j$.

Let the case 1) be valid. There is $k \in \mathbb{N}$ with $x = f^k(c_1)$. In view of Lemmas 13 and 12 we obtain

$$\begin{aligned} x &= f^{k}(c_{1}) \left(\alpha_{1} \vee \beta_{1}'\right) f^{k+q_{1}\frac{d_{1}}{d}}(c_{1}) \gamma f^{k+q_{1}\frac{d_{1}}{d}}(c_{2}) \left(\alpha_{2} \vee \beta_{2}'\right) \\ f^{k+q_{1}\frac{d_{1}}{d}+q_{2}\frac{d_{2}}{d}}(c_{2}) \ldots \left(\alpha_{s} \vee \beta_{s}'\right) f^{k+q_{1}\frac{d_{1}}{d}+q_{2}\frac{d_{2}}{d}+\dots+q_{s}\frac{d_{s}}{d}}(c_{s}) \\ &= f^{k+1+q_{n}}(c_{s}) = f^{k+1}(c_{s}) \gamma f^{k+1}(c_{1}) = f(x) = y. \end{aligned}$$

Hence $x \ (\alpha \lor \beta) \ y$. Assume that the case 2) occurs. Then $x = f^k(c_i)$, $y = f^l(c_i)$. By Lemma 13 and by the case 1),

$$x = f^k(c_i) \gamma f^k(c_1) (\alpha \lor \beta) f(f^k(c_1)) (\alpha \lor \beta) f(f^{k+1}(c_1)) \dots$$
$$(\alpha \lor \beta) f^l(c_1) \gamma f^l(c_i) = y.$$

Now let the case 3) be valid. Since β'_i is a complement to α'_i , it yields that $(x, y) \in \alpha'_i \vee \beta'_i$ and there exist $m \in \mathbb{N}$ and a chain $x = v_0, v_1, \ldots, v_m = y$ such that for each $0 \leq k < m$ either $(v_k, v_{k+1}) \in \alpha'_i$ or

 $(v_k, v_{k+1}) \in \beta'_i$ holds. If k is such that $(v_k, v_{k+1}) \in \alpha'_i$ and $(v_k, v_{k+1}) \notin \alpha_i$, then $v_{k+1} \in C_i$ and there is $v'_{k+1} \in C_i$ such that $(v_k, v'_{k+1}) \in \alpha_i$. By the case 2), $(v'_{k+1}, v_{k+1}) \in \alpha \lor \beta$. This implies that $x \ (\alpha \lor \beta) \ y$. Finally, suppose that the case 4) holds. Using the case 3) (and the dual to it) we obtain

$$x (\alpha \lor \beta) c_i \gamma c_j (\alpha \lor \beta) y,$$

therefore $x (\alpha \lor \beta) y$.

According to Lemmas 12-15 and the Construction (K') we obtain:

Theorem 3.1. Let (A, f) be a monounary algebra such that for each $a \in A$, the element f(a) is cyclic, and there is a square-free $n \in \mathbb{N}$ such that each cycle of (A, f) has n elements. Let $\alpha \in \text{Quord}(A, f)$ be disconnected. If a binary relation β on A is formed by Construction (K'), then β is a complementary quasiorder to α in the lattice Quord(A, f).

References

- J. Berman, On the congruence lattice of unary algebras, Proc. Amer. Math. Soc. 36, 1972, pp.34–38.
- [2] D. P. Egorova and L. A. Skornyakov, On the congruence lattice of unary algebras, Uporyad. Mnozhestva Reshetki 4, 1977, pp.28–40 (Russian).
- [3] D. Jakubíková-Studenovská, Lattice of quasiorders of monounary algebras, Miskolc Math. Notes 10, 2009, pp.41–48.
- [4] D. Jakubíková-Studenovská and M. Petrejčíková, Complemented quasiorder lattices of monounary algebras, Algebra Universalis 65, 2011, pp.363–369.

CONTACT INFORMATION

D. Jakubíková-	Institute of Mathematics, P.J. Šafárik
Studenovská,	University, Jesenná 5, 041 54 Košice,
L. Janičková	Slovak Republic
	E-Mail(s): danica.studenovska@upjs.sk,
	lucia.janickova@student.upjs.sk

Received by the editors: 02.11.2016 and in final form 28.08.2017.