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Abstract. For a monounary algebra A = (A, f) we study
the lattice QuordA of all quasiorders of A, i.e., of all reflexive and
transitive relations compatible with f . Monounary algebras (A, f)
whose lattices of quasiorders are complemented were characterized
in 2011 as follows: (∗) f(x) is a cyclic element for all x ∈ A, and all
cycles have the same square-free number n of elements. Sufficiency
of the condition (∗) was proved by means of transfinite induction.
Now we will describe a construction of a complement to a given
quasiorder of (A, f) satisfying (∗).

Introduction

If A is an algebra, then the set consisting of all reflexive and transi-
tive relations on A, which are compatible with all operations of A (i.e.,
quasiorders of A), will be denoted QuordA. Then QuordA is a lattice
with respect to inclusion. It is easy to see that the latice Con A of all
congruences of A is a sublattice of QuordA.

We will deal with the lattice Quord(A, f) of all quasiorders of (A, f),
where (A, f) is a monounary algebra. The necessary and sufficient condi-
tions for a monounary algebra (A, f) under which the lattice Quord(A, f)
is complemented were found in [4]. The sufficiency of the condition was
proved by means of transfinite induction. Analogous conditions for the
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lattice Con (A, f) to be complemented were proved by Egorova and Sko-
rnyakov [2].

The aim of our paper is to describe a construction of a complement to
a given quasiorder α ∈ Quord(A, f) when the algebra (A, f) satisfies the
condition (∗), i.e., when the lattice Quord(A, f) is complemented.

Another, still open question which is of interest is how to find a
complement to a given quasiorder in an arbitrary monounary algebra
provided the quasiorder has a complement.

1. Preliminaries

By a monounary algebra we will understand a pair A = (A, f) where
A is a nonempty set and f : A → A is a mapping.

A monounary algebra A is called connected if for arbitrary x, y ∈
A there are non-negative integers n,m such that fn(x) = fm(y). A
maximal connected subalgebra of a monounary algebra is called a connected
component.

An element x ∈ A is referred to as cyclic if there exists a positive
integer n such that fn(x) = x. Then the set {x, f1(x), f2(x), . . . , fn−1(x)}
is said to be a cycle.

A quasiorder of an algebra A = (A,F ) is a reflexive and transitive
binary relation on A, which is compatible with all operations f ∈ F .
A quasiorder is a congruence of A if it is symmetric. We will denote by
QuordA the lattice of all quasiorders ordered by inclusion and by Con A
its sublattice, the lattice of all congruences. The smallest and the greatest
elements of QuordA and of Con A are denoted IA = {(a, a) : a ∈ A} and
A×A. If ∧Con,∨Con,∧Quord,∨Quord are the corresponding operations in the
lattices Con A and QuordA, then it is obvious, that ∧Con = ∧Quord = ∩
and ∨Con = ∨Quord is the operation of the transitive hull. Therefore we
will use the symbols ∧ and ∨ for these operations.

A complement to a quasiorder α of (A, f) is a quasiorder β of (A, f)
such that α ∨ β = A×A and α ∧ β = IA.

For a, b ∈ A let α(a, b) and θ(a, b) be the smallest quasiorder and the
smallest congruence, respectively, such that (a, b) ∈ α(a, b), (a, b) ∈ θ(a, b).

The symbol N is used for the set of all positive integers.
From the paper of Berman [1] concerning congruences, it follows that

if n ∈ N, then θ is a congruence relation of an n-element cycle (C, f)
if and only if there is d ∈ N such that d divides n and for each x ∈ C,
[x]θ =

{

x, fd(x), . . . , f (n
d
−1) d(x)

}

= {fk(x) : 0 6 k ≡ d(mod n)}.
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The congruence with this property will be denoted θCd (or simply θd).
It is easy to verify that for each x ∈ C, θCd is the smallest congruence
containing the pair (x, fd(x)).

It appears that even in a case when a quasiorder is congruence, finding
a complementary quasiorder can prove to be difficult. E.g., let (A, f) be
an algebra such that A = {0, 1, 2, 3, 4, 5, 0′, 1′, 2′, 3′, 4′, 5′} and

0
f
−→ 1

f
−→ 2

f
−→ 3

f
−→ 4

f
−→ 5

f
−→ 0 and 0′

f
−→ 1′

f
−→ 2′

f
−→ 3′

f
−→ 4′

f
−→ 5′

f
−→ 0′.

Let us consider a congruence α such that α = θ(0, 3) ∪ θ(0′, 4′). The
lattice Quord(A, f) is complemented. However, to find a complementary
quasiorder to α is not trivial. A general construction for finding a com-
plementary quasiorder to a given quasiorder if the lattice Quord(A, f)
is complemented could help with the task. In the next section, we will
describe such a construction.

In [3] the following assertions were proved; we will use them often
without any further quotation:

Lemma 1. Let (A, f) be an n-element cycle, n ∈ N. Then Quord(A, f)
= Con (A, f) = {θd : d/n}.

Lemma 2. Let (A, f) be an n-element cycle, n ∈ N. If a, b ∈ A, fm(a) = b,
d =g.c.d.(n,m), then α(a, b) = θd.

Corollary 1. Let (A, f) be an n-element cycle, d/n, k/n. Then θd∨θk =
θg.c.d.(d,k) and θd∧θk = θl.c.m.(d,k).

In the following, we will suppose that
• (A, f) is a monounary algebra,
• for each a ∈ A, the element f(a) is cyclic,
• there is n ∈ N square-free, such that each cycle of (A, f) has n

elements.
From Lemma 1 we get

Lemma 3. Let (A, f) be a cycle, α = θd, d/n. Then β is a complement
to α in the lattice Quord(A, f) if and only if β = θe, e =

n
d
.

For a ∈ A let C(a) be the cycle containing the element f(a).

Lemma 4. Assume that x is a noncyclic element of A, α ↾ C(x) = θ
C(x)
d ,

d/n. Next suppose that k ∈ N and either (x, fk(x)) ∈ α or (fk(x), x) ∈ α.
Then d/k.
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Proof. The assumption implies that either

(f(x), fk+1(x)) ∈ α or (fk+1(x), f(x)) ∈ α,

i.e., either (f(x), fk+1(x)) ∈ θ
C(x)
d or (fk+1(x), f(x)) ∈ θ

C(x)
d . In both

cases we obtain that d/k.

Definition 1. Let α ∈ Quord(A, f). We denote ᾱ the dual quasiorder
to α, i.e, such that, whenever a, b ∈ A,

(a, b) ∈ α ⇐⇒ (b, a) ∈ ᾱ.

It is easy to see that the relation α ∩ ᾱ is an equivalence on A.

Definition 2. Let rα be the binary relation (depending on α) defined on
the set of all cycles of (A, f) as follows: If B,D are cycles of (A, f), then we
put B rα D, if there are k ∈ N, cycles B = C0, C1, . . . , Ck = D, elements
c0 ∈ C0, c1 ∈ C1, . . . , ck ∈ Ck such that for each i ∈ {0, 1, . . . , k − 1},
(ci, ci+1) ∈ α ∪ ᾱ. If a, b ∈ A, then we set

a rα b ⇐⇒ C(a) rα C(b).

It is apparent from the definition of rα, that if C,D are cycles of (A, f)
and C rα D, then c rα d for ∀c ∈ C, d ∈ D.

Lemma 5. Let α ∈ Quord(A, f). The relation rα is an equivalence on A.

Proof. It is easy to see, that rα is reflexive: to prove that a rα a, take
k = 1, c0 = c1 = f(a). Next, rα is symmetric, since α ∪ ᾱ is symmetric.

Now let us show transitivity. Assume that c rα d and d rα b. Denote
C = C(c), D = C(d), B = C(b). There exist m, l ∈ N, cycles C =
C0, C1, . . . , Cm = D, cycles D = D0, D1, . . . , Dl = B, elements c0 ∈
C0, c1 ∈ C1, . . . , cm ∈ Cm, d0 ∈ D0, d1 ∈ D1, . . . , dl ∈ Dl such that for
each i ∈ {0, 1, . . . ,m−1}, (ci, ci+1) ∈ α∪ᾱ and for each j ∈ {0, 1, . . . , l−1},
(dj , dj+1) ∈ α ∪ ᾱ. Denote k = m+ l and for j ∈ {1, . . . , l} put

Cm+j = Dj .

Since D = D0 = Cm is a cycle and it contains the elements d0, cm,
there is t ∈ {0, . . . , n − 1} such that d0 = f t(cm). Further, the relation
(dj , dj+1) ∈ α ∪ ᾱ for j ∈ {0, 1, . . . , l − 1} implies

(f t(dj), f
t(dj+1)) ∈ α ∪ ᾱ.

Now it suffices to denote cm+j = dj for each j ∈ {1, . . . , l} and the proof
is complete.
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Lemma 6. Let α ∈ Quord(A, f). If a, b ∈ A belong to the same connected
component, then a rα b.

Proof. Similarly as in the proof of reflexivity of the relation rα, let us take
C0 = C1 = C(a) = C(b), k = 1, c0 = f(a) = c1.

Definition 3. Let α ∈ Quord(A, f) and A/rα = {Aj : j ∈ J}. If J is
a one-element set, then α is said to be connected.

Let us remark that this notion is natural: by drawing the quasiordered
set, we obtain a graph G in which for every pair Ci, Cj cycles of (A, f),
there exist elements ci ∈ Ci, cj ∈ Cj such that there exists a path in G
connecting vertices denoted ci, cj .

2. Construction of a complement to connected

quasiorder

Now we will work with the classes of the equivalence rα.The goal of
the following construction is to define, for a given j ∈ J and a given
quasiorder α ∈ Quord(Aj , f), some β ∈ Quord(Aj , f); later we show that
β is a complement of α in Quord(Aj , f). In further, we will denote rα
by r.

For simplification, we will write A instead of Aj , i.e., till the main
result about complements in Quord(Aj , f) (Theorem 2.2) of this section,
we assume that J is a one-element set.

Notation 2.1. Let A′ be the set of all noncyclic elements x of A such
that

(x, fn(x)) /∈ α and (fn(x), x) /∈ α.

We define a binary relation ρ on A′ as follows. Put (a, b) ∈ ρ if a, b ∈ A′,
f(a) = f(b) and there are k ∈ N and a = u0, u1, . . . , uk = b elements of
A′ such that

(∀i ∈ {0, . . . , k − 1}) (f(a) = f(ui), (ui, ui+1) ∈ α ∪ ᾱ).

i.e., put (a, b) ∈ ρ if a, b ∈ A′, f(a) = f(b) and a, b belong to the same
connected subcomponent of the quasiordered set of α, consisting of elements
of A′.

It is easy to verify that the relation ρ is an equivalence and that the
following assertion is valid.
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Definition 4. Let D ∈ A′/ρ. We choose one fixed element t from each
class D/(α∩ ᾱ) = T and denote the set of all these fixed elements t as D∗.

Lemma 7. Let D ∈ A′/ρ. Then there exists a set D∗ ⊆ D such that
1) (∀x ∈ D \D∗)(∃y ∈ D∗)((x, y) ∈ α ∩ ᾱ);
2) (∀x, y ∈ D∗, x 6= y)((x, y) ∈ α ⇒ (y, x) /∈ α).

For each D ∈ A′/ρ, there can be one or more sets D∗ such as described
in Lemma 7. We choose arbitrary one of them before we begin the construc-
tion (K). Then for each D ∈ A′/ρ, we choose a representative d∗ ∈ D∗,
again arbitrarily. By choosing different D∗ and d∗ for individual D, we
can construct different complements to α.

The following example shows choosing of D∗ and d∗ in a particular
case.

Example 1. Let us consider a monounary algebra (A, f) and a qua-
siorder α on (A, f) as we can see in Figures 1 and 2. By Notation
2.1, A′ = {6, 7, 8, 9, 10} and A′/ρ = {D∗

1, D
∗

2}, where we can choose
D∗

1 = {6, 8, 9} or D∗

1 = {7, 8, 9}, and D∗

2 = {10}.

Figure 1. Algebra (A, f).

Figure 2. Quasiorder α.

If we choose D∗

1 = {6, 8, 9} and D∗

2 = {10}, then d∗1 can be either 6, 8
or 9 and d∗2 = 10. If we choose D∗

1 = {7, 8, 9} and D∗

2 = {10}, then d∗1 can
be either 7, 8 or 9 and d∗2 = 10.
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Now let us describe a relation β. Let x, y ∈ A. We put (x, y) ∈ β if
either x = y or the pair (x, y) fulfils one of the steps of the construction.
Let us remark that in (e) (and only there) we use some previous steps.

Construction (K)

Step (a). Let x, y belong to the same cycle C, y = fk(x), α ↾ C = θd, d/n
and let e = n

d
. We set (x, y) ∈ β if and only if e/k.

Step (b). Let x ∈ C1, y ∈ C2, where C1 and C2 are distinct cycles. We
put (x, y) ∈ β if and only if there are a ∈ C1 and b ∈ C2 with
(b, a) ∈ α, (a, b) /∈ α.

Step (c). Suppose that x, y ∈ D∗ for some D ∈ A′/ρ. Then (x, y) ∈ β if
and only if and (y, x) ∈ α.

Step (d1). Suppose that x belongs to a cycle C, y is noncyclic, C(y) = C.
Further let α ↾ C = θd, d/n, e = n

d
. If y /∈ A′, then (x, y) ∈ β if and

only if (fn(y), y) /∈ α, (y, fn(y)) ∈ α, x = fk(y), e/k.
Step (d1′). Suppose that y belongs to a cycle C, x is noncyclic, C(x) = C.

Further let α ↾ C = θd, d/n, e = n
d
. If x /∈ A′, then (x, y) ∈ β if and

only if (fn(x), x) ∈ α, (x, fn(x)) /∈ α, y = fk(x), e/k.
Step (d2). Suppose that x belongs to a cycle C, y is noncyclic, C(y) = C.

Further let α ↾ C = θd, d/n, e = n
d
. If y ∈ A′, then (x, y) ∈ β if

and only if there is D ∈ A′/ρ such that y ∈ D∗, x = fk(y), e/k and
(y, d∗) ∈ α.

Step (d2′). Suppose that y belongs to a cycle C, x is noncyclic, C(x) = C.
Further let α ↾ C = θd, d/n, e = n

d
. If x ∈ A′, then (x, y) ∈ β if

and only if there is D ∈ A′/ρ such that x ∈ D∗, y = fk(x), e/k and
(d∗, x) ∈ α.

Step (e). Suppose that x, y satisfy none of the assumptions of the previous
steps. Then (x, y) ∈ β if and only if (x, fn(x)) ∈ β, (fn(y), y) ∈ β,
(fn(x), fn(y)) ∈ β.

We will show that β ∈ Quord(A, f) and that β is a complementary
quasiorder to α.

Lemma 8. Let (x, y) ∈ β. Then (f(x), f(y)) ∈ β.

Proof. We can assume that x 6= y and that the pair (x, y) is obtained
according to the steps of the above construction.

(A) First x, y belong to the same cycle C, y = fk(x), α ↾ C = θd, d/n,
e = n

d
and e/k. Then (f(x), f(y)) = (f(x), fk(f(x))), thus (f(x), f(y)) ∈

β by the step (a).
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(B) Now x ∈ C1, y ∈ C2, where C1 and C2 are distinct cycles and
there are a ∈ C1 and b ∈ C2 with (b, a) ∈ α, (a, b) /∈ α. Since f(x) ∈ C1

and f(y) ∈ C2, the above step (b) yields that (f(x), f(y)) ∈ β.
(C) In the step (c) the assumption implies that f(x) = f(y).
(D1) We will not repeat all assumptions of (d1). We have

y /∈ A′, (fn(y), y) /∈ α, (y, fn(y)) ∈ α, x = fk(y), e/k.

For verifying that (f(x), f(y)) ∈ β we need to apply (a), because f(x)
and f(y) belong to the same cycle. We have f(y) = fn−k(f(fk(y))) =
fn−k(f(x)) and e/n− k, therefore (f(x), f(y)) ∈ β.

(D1′) Analogously as (D1).
(D2) We suppose that x belongs to a cycle C, y is noncyclic, C(y) = C.

Further, y ∈ A′ and there is D ∈ A′/ρ such that y ∈ D∗, x = fk(y), e/k,
(y, d∗) ∈ α. The elements f(x) and f(y) belong to the same cycle, f(y) =
f(d∗), thus f(y) = fn−k(f(fk(y))) = fn−k(f(x)) and e/n− k, therefore
(f(x), f(y)) ∈ β.

(D2′) Analogously as (D2).
(E) In this case we have (x, fn(x))∈β, (fn(y), y)∈β, (fn(x), fn(y))∈β.

The elements fn(x), fn(y) are cyclic. Then (B), in the view of
(fn(x), fn(y)) ∈ β, implies (f(fn(x)), f(fn(y))) ∈ β, i.e., (f(x), f(y)) ∈ β.

Lemma 9. Let (x, y) ∈ β, (y, z) ∈ β. Then (x, z) ∈ β.

Proof. We can assume that x, y, z are mutually distinct.
1) First assume that C(x) 6= C(y). By (e) we have

(x, fn(x)) ∈ β, (1)

(fn(x), fn(y)) ∈ β, (2)

(fn(y), y) ∈ β. (3)

Then (b) yields

there are a ∈ C(x), b ∈ C(y) with (b, a) ∈ α, (a, b) /∈ α (4)

Similarly suppose that C(z) 6= C(y). Then

(y, fn(y)) ∈ β, (5)

(fn(y), fn(z)) ∈ β, (6)

(fn(z), z) ∈ β, (7)

there are b′ ∈ C(y), c′ ∈ C(z) with (c′, b′) ∈ α, (b′, c′) /∈ α. (8)
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From (4) and (8) it follows that there is m ∈ N with b = fm(b′).
Denote c = fm(c′). Then

c = fm(c′) α fm(b′) = b α a.

Since (a, b) /∈ α, we get (a, c) /∈ α. Therefore

(c1, c2) ∈ β for each c1 ∈ C(x), c2 ∈ C(z),

according to (b). Then (fn(x), fn(z)) ∈ β. Thus (1) and (7), in view of (e),
imply (x, z) ∈ β.

2) Suppose that C(x) 6= C(y) = C(z). If z is cyclic, then (x, z) ∈ β
by (4). Let z be noncyclic. If the elements y, z satisfy (e), then (x, z) ∈ β
analogously as in the first part of the proof. Hence y is cyclic.

Let α ↾ C(y) = θn

e
. If z /∈ A′, then by (d1), (fn(z), z) /∈ α, (z, fn(z)) ∈

α, y = fk(z), e/k. Thus again according to (d1), (fn(z), z) ∈ β. If z ∈ A′,
then by (d2) there is D ∈ A′/ρ such that z ∈ D∗, y = fk(z), e/k and
(z, d∗) ∈ α. Thus (fn(z), z) ∈ β in view of (d2). This in view of (1), (2)
and (e) yields that (x, z) ∈ β.

3) The case when C(x) = C(y) 6= C(z) is similar to 2).
4) Finally we suppose that C(x) = C(y) = C(z), α ↾ C(x) = θn

e
.

First we show the assertion for cyclic elements x, y, z. There are k,m
with y = fk(x), z = fm(y), e/k, e/m. Then z = fk+m(x), e/k + m,
hence (x, z) ∈ β. From the assumption (x, y) ∈ β, (y, z) ∈ β it follows
(fn(x), fn(y))∈β, (fn(y), fn(z)) ∈ β, the elements fn(x), fn(y), fn(z)
are cyclic, thus

(fn(x), fn(z)) ∈ β. (9)

This implies that if (x, fn(x)) ∈ β, (fn(z), z) ∈ β then the pair x, z satis-
fies (e) and then either (x, z) ∈ β or x, z satisfy some of the assumptions
of (a), (c), (d1), (d1′), (d2), (d2′). We will proceed according to this idea
in the remaining part of the proof.

4.1) Let x, y be cyclic, z be noncyclic. By (x, y) ∈ β we have y =
fk(x), e/k, thus also x = fn(x) = fk+i(x) = f i(fk(x)) = f i(y), e/i. In
view of (d1) or (d2), y = fm(z), e/m. Then x = f i+m(z), e/i + m and
(x, z) ∈ β according to (d1) or (d2).

4.2) Let x, z be cyclic, y be noncyclic. For y /∈ A′, then (d1′) by
(y, z) ∈ β implies that (y, fn(y)) /∈ α and (d1) by (x, y) ∈ β implies that
(y, fn(y)) ∈ α, a contradiction. If y ∈ A′, then (d2′) and (y, z) ∈ β yield
y ∈ D∗ for some D ∈ A′/ρ and z = fm(y), e/m. Similarly, if y ∈ A′,
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then (d2) and (x, y) ∈ β yield that x = fk(y), e/k. There is t ∈ N with
m− k + tn > 0 and then

z = fm+tn(y) = fm−k+tn(fk(y)) = fm−k+tn(x), e/m− k + tn.

Therefore (x, z) ∈ β in view of (a).
4.3) Let x be cyclic, y, z be noncyclic. First let y, z ∈ D∗ for some D ∈

A′/ρ. Then (z, y) ∈ α in view of (c). Next, x = fm(y), e/m, (y, d∗) ∈ α,
thus (z, d∗) ∈ α. Since fm(y) = fm(d∗) = fm(z), we obtain by (d2) that
(x, z) ∈ β. Now let (y, z) ∈ β by (e). Then (y, fn(y)) ∈ β, (fn(y), fn(z)) ∈
β, (fn(z), z) ∈ β. The second relation implies that y = fk(z), e/k. From
(d1), (d2) for the elements x, y we get that x = fm(y), e/m, thus x =
fm+k(z), e/m+ k. If z /∈ A′, then by (d1), (fn(z), z) /∈ α, (z, fn(z)) ∈ α
and then (x, z) ∈ β. If z ∈ A′, then according to (fn(z), z) ∈ β by (d2)
we obtain z ∈ D∗ for some D ∈ A′/ρ and (z, d∗) ∈ α, therefore (x, z) ∈ β.

4.4) The case when x, y are noncyclic, z is cyclic is dual to 4.3).
4.5) Let x, z be noncyclic, y be cyclic. From (x, y) ∈ β and (d1′), (d2′) it

follows that either x /∈ A′, (fn(x), x) ∈ α, (x, fn(x)) /∈ α, y = fk(x), e/k,
or x ∈ A′, there is D ∈ A′/ρ such that x ∈ D∗, y = fk(x), e/k and
(d∗, x) ∈ α. Next, (d1′), (d2′) yield (x, fn(x)) ∈ β. It can be shown
analogously that (fn(z), z) ∈ β. Therefore we either obtain that (x, z) ∈ β
according to (e) or x, z satisfy the assumption of (c). Then z ∈ D∗. Since
(y, z) ∈ β, (d2) implies that y = fm(z), e/m and (z, d∗) ∈ α. Therefore

z α d∗ α x,

hence (x, z) ∈ β by (c).
4.6) Finally suppose that x, y, z are noncyclic. Then either x, y satisfy

the assumption of (c) and

x, y ∈ D∗, D ∈ A′/ρ, (y, x) ∈ α

or x, y satisfy the assumption of (e) and

(x, fn(x)) ∈ β, (fn(x), fn(y)) ∈ β, (fn(y), y) ∈ β.

Similarly, either y, z satisfy the assumption of (c) and

y, z ∈ D∗

1, D1 ∈ A′/ρ, (z, y) ∈ α

or y, z satisfy the assumption of (e) and

(y, fn(y)) ∈ β, (fn(y), fn(z)) ∈ β, (fn(z), z) ∈ β.
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Let x, y satisfy the assumption of (c) and y, z satisfy the assumption
of (c). Then D1 = D, z α y α x, thus (x, z) ∈ β by (c).

Let x, y satisfy the assumption of (c) and y, z satisfy the assumption
of (e) (the case when x, y satisfy the assumption of (e) and y, z satisfy the
assumption of (c) is analogous). We have (y, fn(y)) ∈ β, thus by (d2′),
(d∗, y) ∈ α, which yields d∗ α y α x. Then (d2′) implies that (x, fn(x)) ∈ β,
therefore (e) according to (9) yields (x, z) ∈ β.

Let x, y satisfy the assumption of (e) and y, z satisfy the assumption
of (e). In view of (9), if (x, z) /∈ β, then x, z ∈ D∗

2, D2 ∈ A′/ρ, (z, x) /∈
α. Since (fn(z), z) ∈ β, by (d2) we obtain (z, d∗2) ∈ α, and from (d2′)
and (x, fn(x)) ∈ β it follows that (d∗2, x) ∈ α. Therefore (x, z) ∈ β,
a contradiction.

We have shown that β is a quasiorder on (A, f). Now, we will show
that β is also complementary to α in Quord(A, f).

Lemma 10. If (x, y) ∈ α ∧ β, then x = y.

Proof. Let (x, y) ∈ α ∧ β, x 6= y.
(A) Assume that x, y belong to the same cycle C. There is d ∈ N such

that α ↾ C = θd, d/n. Step (a) implies that β ↾ C = θe, where e = n
d
. We

have (x, y) ∈ α ↾ C ∩ β ↾ C = θd ∩ θe. Then according to Lemma 3, x = y.
(B) Suppose that x ∈ C1, y ∈ C2, where C1 and C2 are distinct cycles.

There is d ∈ N such that α ↾ C2 = θd, d/n. Then (x, y) ∈ β if and only if
there are a ∈ C1 and b ∈ C2 with (b, a) ∈ α, (a, b) /∈ α. There are k,m ∈ N

such that a = fk(x), b = fm(y). Since (x, y) ∈ α, also (fk(x), fk(y)) ∈ α,
hence

fm(y) = b α a = fk(x) α fk(y).

The elements fm(y), fk(y) belong to C2 and (fm(y), fk(y)) ∈ θd, which
yields that d/m− k. Then

a α fm−k(a) = fm−k(fk(x)) = fm(x) α fm(y) = b,

which is a contradiction.
(C) Let x, y ∈ D∗ for some D ∈ A′/ρ. Then (x, y) ∈ β if and only if

and (y, x) ∈ α. We assumed that (x, y) ∈ α, but this is a contradiction,
because x, y ∈ D∗.

(D1) Suppose that x belongs to a cycle C, y is noncyclic, C(y) = C.
Further let α ↾ C = θd, d/n, e = n

d
and let y /∈ A′. Then (fn(y), y) /∈ α,

(y, fn(y)) ∈ α, x = fk(y), e/k. Next, (fk+1(y), f(y)) = (f(x), f(y)) ∈ α,
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which implies that d/k. The assumption about n at the beginning of the
section yields ed/k, i.e., n/k and x = fn(y) = y.

(D2) Suppose that x belongs to a cycle C, y is noncyclic, C(y) = C.
Further let α ↾ C = θd, d/n, e = n

d
and y ∈ D∗ for D ∈ A′/ρ. Then

x = fk(y), e/k and (y, d∗) ∈ α. Similarly as in (D1), (fk+1(y), f(y)) =
(f(x), f(y)) ∈ α, therefore we obtain x = y.

(D1′), (D2′) Analogously as (D1), (D2).
(E) Now x, y satisfy none of the assumptions of the previous steps and

(x, fn(x)) ∈ β, (fn(x), fn(y)) ∈ β, (fn(y), y) ∈ β.

From the assumption of the lemma it follows that (fn(x), fn(y)) ∈ α. For
the cyclic elements fn(x), fn(y) we can apply (A) or (B), thus fn(x) =
fn(y). If y is cyclic, then y = fn(x), hence (x, y) = (x, fn(x)) ∈ β,
(x, y) ∈ α and x = y. Therefore we can assume that x and y are noncyclic.
If x /∈ A′, then (x, fn(x)) ∈ β by (d1′) implies (fn(x), x) ∈ α, thus

fn(y) = fn(x) α x α y,

a contradiction to (fn(y), y) ∈ β. Similarly for y; therefore let x, y ∈ A′.
From f(x) = fn+1(x) = fn+1(y) = f(y) it follows that x, y ∈ D∗ for some
D ∈ A′/ρ. This completes the proof according to (C).

Lemma 11. α ∨ β = A×A.

Proof. Let x, y ∈ A, x 6= y.
1) If x, y belong to the same cycle, then the assertion follows from

Lemma 3.
2) Let x, y belong to distinct cycles. First let us prove that if C,D are

distinct cycles, c ∈ C, d ∈ D and (c, d) ∈ α ∪ ᾱ, then (c′, d′) ∈ α ∨ β for
each c′ ∈ C, d′ ∈ D. Let c′ ∈ C, d′ ∈ D. If (c, d) ∈ ᾱ, then (d, c) ∈ α and
(b) implies (c′, d′) ∈ β. If (c, d) ∈ α, then using the proved case 1) we get

c′ (α ∨ β) c α d (α ∨ β) d′.

By the assumption, x r y. Then C(x) r C(y) and there are k ∈ N,
cycles C(x) = C0, C1, . . . , Ck = C(y) and elements c0 ∈ C0, c1 ∈ C1, . . . ,
ck ∈ Ck such that for each i ∈ {0, 1, . . . , k − 1}, (ci, ci+1) ∈ α ∪ ᾱ. Then
by induction, (x, y) ∈ α ∨ β.

3) Let C(x) = C(y) and either x is noncyclic, x /∈ A′, y is cyclic, or x is
cyclic, y is noncyclic, y /∈ A′. We prove only the first case; the second one
is analogous. Since x /∈ A′, thus either (x, fn(x)) ∈ α or (fn(x), x) ∈ α,
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(x, fn(x)) /∈ α, which by (d1′) implies (x, fn(x)) ∈ β. Then (x, y) ∈ α ∨ β
by 1).

4) Assume that x, y belong to the same connected component, x, y /∈ A′.
Then (x, y) ∈ α ∨ β in view of 3). From this and from 1) it follows, that
the condition that x, y belong to the same connected component can be
omitted.

5) Let x, y ∈ D, D ∈ A′/ρ. Then there are k ∈ N and x = u0, u1, . . . ,
uk = y elements of D∗ ⊆ D such that f(x) = f(y) = f(ui), (ui, ui+1) ∈
α ∪ ᾱ for each i ∈ {0, . . . , k − 1}. It can be shown analogously as in 2)
that (x, y) ∈ α ∨ β.

6) Let D ∈ A′/ρ. In view of (d2′) we obtain (d∗, fn(d∗)) ∈ β. This,
together with the previous steps, implies that if x ∈ A′, then x ∈ D for
some D ∈ A′/ρ, thus (x, d∗) ∈ α ∨ β and (fn(d∗), y) ∈ α ∨ β for each
y /∈ A′. So then (x, y) ∈ α ∨ β.

7) Let D ∈ A′/ρ. Then (fn(d∗), d∗) ∈ β by (d2). Thus if x is cyclic,
y ∈ A′, then y ∈ D for some D ∈ A′/ρ and we get by (2) that (x, fn(d∗)) ∈
α∨ β, (fn(d∗), d∗) ∈ β and by (5) that (d∗, y) ∈ α∨ β. It follows from the
previous steps that (x, y) ∈ α ∨ β for arbitrary x, y ∈ A, so the claim is
proved.

In the view of Construction (K) and Lemmas 8–11 we obtain:

Theorem 2.2. Let (A, f) be a monounary algebra such that for each
a ∈ A, the element f(a) is cyclic, and there is a square-free n ∈ N such
that each cycle of (A, f) has n elements. Let α ∈ Quord(A, f) be connected.
If a binary relation β on A is formed by Construction (K), then β is a
complementary quasiorder to α in the lattice Quord(A, f).

Example 2. The converse is not true. Let us consider the algebra (A, f),
such that A = {0, 1, 2, 3}, f(0) = 1, f(1) = 0, f(2) = 3, f(3) = 2 and a
quasiorder α = IA ∪ {(0, 2), (1, 3)}. It is easy to verify that a quasiorder
γ = IA ∪ {(2, 1), (3, 0)} is a complement in Quord(A, f) to α. However, a
complementary quasiorder in Quord(A, f) to α formed by the construction
(K) is β = IA ∪ {(1, 0), (0, 1), (2, 3), (3, 2), (2, 0), (2, 1), (3, 0), (3, 1)}.

3. Construction of a complement to a quasiorder — the

general case

The aim of this section is to find a complementary quasiorder to a
non-connected quasiorder if the lattice Quord(A, f) is complemented.
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Figure 3. Converse of Theorem 3.8 is not true.

Suppose that α ∈ Quord(A, f) and that rα is as above. According to
the previous section the case |J | = 1 is solved; now let us suppose that
|J | > 1. We will describe the Construction (K′) in the following section.

For i ∈ J let ci be a fixed cyclic element of some chosen cycle Ci in Ai.
We denote by γ the following relation:

γ = {(fk(ci), f
k(cj)) : i, j ∈ J, k ∈ N}.

It can be easily shown that γ ∈ Quord(A, f).
For each i ∈ J , the relation α ↾ Ci is a congruence of the cycle Ci, thus

there is di ∈ N such that α ↾ Ci is the smallest congruence containing the
pair (ci, f

di(ci)). The set of all di is finite, denote it by {d1, d2, . . . , ds}.
Without loss of generality, let {1, 2, . . . , s} ⊆ J .

Notice that, for i ∈ J , d, l, k ∈ N, (f l(ci), f
k(ci)) ∈ θ(ci, f

d(ci)) if and
only if d divides l − k. In what follows, let d will be the greatest common
divisor of d1, d2, . . . , ds. This implies the following.

Lemma 12. There exist positive integers q1, q2, . . . , qs and q such that

1 + qn = q1
d1
d

+ q2
d2
d

+ · · ·+ qs
ds
d
.

Let i ∈ J . Put
α′

i = θ(ci, f
d(ci)) ∨ αi.

If α′ =
⋃

j∈J α
′

i, then α′ ∈ Quord(A, f) and it easy to see that rα′ = rα.
By the results of the previous section there exists a complement β′

i of α′

i

in Quord(Ai, f). Further, from the construction of a complement on Ai

we obtain
β′

i ↾ Ci = θ(ci, f
n

d (ci)).

Lemma 13. Let i ∈ J , l, k ∈ N. Then (f l(ci), f
k(ci)) ∈ αi ∨ β′

i if and
only if di

d
/l − k.
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Proof. From the notation above, (f l(ci), f
k(ci)) ∈ αi if and only if di/l−k

and (f l(ci), f
k(ci)) ∈ β′

i if and only if n
d
/l−k. Then (f l(ci), f

k(ci)) ∈ αi∨β
′

i

if and only if g.c.d(di, nd)/l− k, i.e., if and only if di
d
/l − k.

Now we define the relation β by putting

β = γ ∨
∨

j∈J

β′

j .

We are going to show that β is a complement to the quasiorder α in the
lattice Quord(A, f). Since β is a join of quasiorders, it is clear that it is
also a quasiorder.

Lemma 14. If (x, y) ∈ α ∧ β, then x = y

Proof. Let (x, y) ∈ α ∧ β, x 6= y. The relation (x, y) ∈ α implies that
there is i ∈ J such that x, y ∈ Ai, (x, y) ∈ αi. Then (x, y) ∈ α′

i. We have
αi ∩ β′

i = α′

i ∩ β′

i, which, since β′

i is a complement to α′

i, is the smallest
quasiorder of (Ai, f). The assumption x 6= y yields that (x, y) /∈ β′

i.
There is the shortest chain of elements x = u0, u1, . . . , um = y with
m > 1 such that either (uk, uk+1) ∈ γ or (uk, uk+1) ∈

∨

j∈J β
′

j , for any k.
Obviously, the elements u0, u1, . . . , um are distinct and if (uk, uk+1) ∈ γ,
then (uk+1, uk+2) ∈

∨

j∈J β
′

j , and similarly for the second possibility. For
each k there is ik ∈ J with uk ∈ Aik . From the definition of β we get

(uk, uk+1) ∈ γ =⇒ uk = f tk(cik),

uk+1 = f tk+1(cik+1
), ik 6= ik+1,

tk = tk+1, (10)

(uk, uk+1) ∈ β′

j =⇒ ik = ik+1, (11)

uk = f tk(cik), uk+1 = f tk+1(cik+1
), (uk, uk+1) ∈ β′

j =⇒ ik = j, (12)
n

d
/tk − tk+1. (13)

We have either

x = u0 γ u1 β′

j u2 γ u3 β′

j u4 . . . , (14)

or
x = u0 β′

j u1 γ u2 β′

j u3 γ u4 . . . . (15)

We have m > 1, thus between the elements of the chain, the quasiorder γ
is used at least twice.
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Assume that (15) holds. Also, assume that um−1 ∈ Ai. (The remaining
cases are similar, but more simple.) Then m is odd. By the definition
of γ, for each 0 < k ≦ m there exists a positive integer tk such that
uk = f tk(cik). In view of (10)–(13), t1 = t2, n

d
/t2 − t3, t3 = t4, n

d
/t4 − t5,

. . . , tm−2 = tm−1. Then n
d
/(t1−t2)+(t2−t3)+(t4−t5)+· · ·+(tm−3−tm−2)+

(tm−2− tm−1) = t1− tm−1, hence (u1, um−1) ∈ β′

i0
. This, together with the

relations (u0, u1) ∈ β′

i0
, (um−1, um) ∈ β′

i0
implies (x, y) = (u0, um) ∈ β′

i0
,

which is a contradiction.

Lemma 15. α ∨ β = A×A.

Proof. We must show that (x, y) ∈ α∨β for every x, y ∈ A. We will prove
that there are m ∈ N ∪ {0} and a chain of elements x = u0, u1, u2, . . . ,
um = y of the set A such that either

(uk, uk+1) ∈ γ or (uk, uk+1) ∈ αj ∨ β′

j for some j ∈ J (16)

is valid for each 0 6 k < m. Assume that x 6= y. We will investigate the
following four cases and we will use the previous cases for the proof of
a new one (we omit the case symmetric to the third one, because these
cases are similar):

1) x ∈ C1, y = f(x),
2) i ∈ J , x, y ∈ Ci,
3) i ∈ J , x ∈ Ai, y ∈ Ci,
4) i, j ∈ J , x ∈ Ai, y ∈ Aj .
Let the case 1) be valid. There is k ∈ N with x = fk(c1). In view of

Lemmas 13 and 12 we obtain

x = fk(c1) (α1 ∨ β′

1) f
k+q1

d1
d (c1) γ fk+q1

d1
d (c2) (α2 ∨ β′

2)

fk+q1
d1
d
+q2

d2
d (c2) . . . (αs ∨ β′

s) f
k+q1

d1
d
+q2

d2
d
+···+qs

ds

d (cs)

= fk+1+qn(cs) = fk+1(cs) γ fk+1(c1) = f(x) = y.

Hence x (α ∨ β) y. Assume that the case 2) occurs. Then x = fk(ci),
y = f l(ci). By Lemma 13 and by the case 1),

x = fk(ci) γ fk(c1) (α ∨ β) f(fk(c1)) (α ∨ β) f(fk+1(c1)) . . .

(α ∨ β)f l(c1) γ f l(ci) = y.

Now let the case 3) be valid. Since β′

i is a complement to α′

i, it
yields that (x, y) ∈ α′

i ∨ β′

i and there exist m ∈ N and a chain x =
v0, v1, . . . , vm = y such that for each 0 6 k < m either (vk, vk+1) ∈ α′

i or
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(vk, vk+1) ∈ β′

i holds. If k is such that (vk, vk+1) ∈ α′

i and (vk, vk+1) /∈ αi,
then vk+1 ∈ Ci and there is v′k+1 ∈ Ci such that (vk, v

′

k+1) ∈ αi. By
the case 2), (v′k+1, vk+1) ∈ α ∨ β. This implies that x (α ∨ β) y. Finally,
suppose that the case 4) holds. Using the case 3) (and the dual to it) we
obtain

x (α ∨ β) ci γ cj (α ∨ β) y,

therefore x (α ∨ β) y.

According to Lemmas 12–15 and the Construction (K′) we obtain:

Theorem 3.1. Let (A, f) be a monounary algebra such that for each
a ∈ A, the element f(a) is cyclic, and there is a square-free n ∈ N

such that each cycle of (A, f) has n elements. Let α ∈ Quord(A, f) be
disconnected. If a binary relation β on A is formed by Construction (K′),
then β is a complementary quasiorder to α in the lattice Quord(A, f).
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