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Abstract. This work is devoted to the investigation of

module decompositions which arise from Rickart modules, socle

and radical of modules. In this regard, the structure and several

illustrative examples of inverse split modules relative to the socle and

radical are given. It is shown that a module M has decompositions

M = Soc(M) ⊕ N and M = Rad(M) ⊕ K where N and K are

Rickart if and only if M is Soc(M)-inverse split and Rad(M)-inverse

split, respectively. Right Soc(·)-inverse split left perfect rings and

semiprimitive right hereditary rings are determined exactly. Also,

some characterizations for a ring R which has a decomposition

R = Soc(RR)⊕ I with I a hereditary Rickart module are obtained.

Introduction

Throughout this paper R denotes a ring with identity, modules are
unital right R-modules, and S stands for the endomorphism ring EndR(M)
of a module M which is under consideration. Right (left) Rickart rings
(or principally projective rings) initially appeared in Maeda [11], and were
further studied by Hattori [7], that is, a ring is called right (left) Rickart
if every principal right (left) ideal is projective, equivalently, the right
(left) annihilator of any single element is generated by an idempotent as a
right (left) ideal. The concept of Rickart rings has been comprehensively
studied in the literature and was also extended by Rizvi and Roman to
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the general module theoretic setting in [13], namely, a module M is said
to be Rickart if for any f ∈ S, Kerf = eM for some e2 = e ∈ S. It is
obvious that a ring R is Rickart as an R-module if and only if it is a right
Rickart ring. The notion of Rickart modules is further studied in [1] and
[9]. Recently, in [14], the present authors consider conditions under which
fully invariant submodules give rise to Rickart modules. In this direction,
an F -inverse split module M is defined, and its properties are investigated
where F is a fully invariant submodule of M . Recall that a submodule F
of a module M is called fully invariant if fF ⊆ F for every f ∈ S. For a
module M , there are abundant fully invariant submodules of M . In [14],
for any fully invariant submodule F of a module M , the module M is
called F -inverse split if f−1(F ) is a direct summand of M for every f ∈ S,
and a basic decomposition of M is obtained, namely, M is F -inverse split
if and only if M = F ⊕N where N is a Rickart module.

Socles and radicals are important tools in studying the structure of
modules and rings. For a module M , the socle Soc(M) and the radical
Rad(M) are fully invariant submodules of M . Motivated by the works on
Rickart modules and inverse split modules, it is of interest to investigate
decompositions of inverse split modules which arise out of Rickart modules,
socle and radical. In this direction, we perform some applications for the
concept of an F -inverse split module M by specialising the fully invariant
submodule F as the socle and the radical of M . Some relations between
Rickart modules and Soc(·)-inverse split modules, Rad(·)-inverse split
modules are obtained. It is proved that a finitely generated Z-module is
Soc(·)-inverse split if and only if its socle and torsion submodule are the
same. A Loewy and Soc(·)-inverse split module is determined. It is also
shown that every module which has a Rad(·)-inverse split projective cover
inherits the same property. We present some applications for the Soc(·)-
inverse split property to rings. Some relations between right Soc(·)-inverse
split rings and certain classes of rings such as left perfect rings, right Kasch
rings, semisimple rings, right nonsingular rings are provided. It is shown
that the maximal right ring of quotients of a right Soc(·)-inverse split ring
is right Rickart. We characterize a semiprimitive right hereditary ring
in terms of Rad(·)-inverse split modules, and also a ring R which has a
decomposition R = Soc(RR)⊕ I with I a hereditary module in terms of
Soc(·)-inverse split modules.

In what follows, by Z, Q and Zn we denote, respectively, the ring of
integers, the ring of rational numbers and the ring of integers modulo
n. For a module M , E(M), Soc(M), Rad(M) and Z(M) stand for the
injective hull, socle, radical and singular submodule, respectively, and J(R)



“adm-n3” — 2018/10/20 — 9:02 — page 49 — #55

A. Harmanci, B. Ungor 49

denotes the Jacobson radical of a ring R. For the facts about the notions
of socle, radical and inverse split modules which are pertinent to this paper
see [2], [5], [14] and [15].

1. Soc(·)-inverse split modules

For a module M , Soc(M) is the intersection of all essential submodules
of M , equivalently, the sum of all simple submodules of M . If a ring R is
semisimple, then every R-module M is semisimple, therefore Soc(M) is
a direct summand of M . There are also some classes of rings over which
every R-module M has an essential socle or Soc(M) need not be a direct
summand of M . In this section, we deal with module decompositions
caused by the socles of modules and Rickart modules.

Definition 1.1. A module M is called Soc(M)-inverse split if for every
f ∈ S, f−1(Soc(M)) is a direct summand of M .

Obviously, every semisimple module M is Soc(M)-inverse split. For a
module M with zero socle, since Kerf = f−1(0), M is Rickart if and only
if it is Soc(M)-inverse split. We now provide an effective characterization
of Soc(·)-inverse split modules in terms of Rickart modules.

Theorem 1.2. The following are equivalent for a module M .

(1) M is Soc(M)-inverse split.
(2) M = Soc(M)⊕N where N is a Rickart module.
(3) M has a decomposition M = K ⊕N where K is semisimple and N

is Rickart with zero socle.

Proof. (1) ⇔ (2) It is a direct consequence of [14, Theorem 2.3].

(2) ⇒ (3) Clear by the fact that Soc(Soc(M)) = Soc(M).

(3) ⇒ (2) Let M = K ⊕ N with K semisimple, N Rickart and
Soc(N) = 0. Then Soc(M) = Soc(K)⊕ Soc(N) = K. This completes
the proof.

The next examples show that there is no implication between Rickart
and Soc(·)-inverse split properties of modules.

Examples 1.3. (1) Let M denote the Z-module Z2⊕Z. Then Soc(M) =
Z2 and so M = Soc(M) ⊕ Z. Since Z is Rickart, by Theorem 1.2, M
is Soc(M)-inverse split. On the other hand, M is not Rickart by [9,
Example 2.5].
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(2) Consider the ring R =
∞
∏

i=1
Ri where Ri = Z2 for all i and let

M = RR. Then Soc(M) =
∞
⊕

i=1
Ri where Ri = Z2 for all i and it is an

essential submodule of M . Thus Soc(M) is not a direct summand of M .
Therefore M is not Soc(M)-inverse split. On the other hand, S ∼= R and
R is von Neumann regular. Hence M is Rickart by [9, Theorem 3.17].

We now investigate some conditions under which Rickart modules and
Soc(·)-inverse split modules imply each other.

Proposition 1.4. Every indecomposable Soc(M)-inverse split module
M is Rickart, therefore M is Baer.

Proof. Let M be an indecomposable Soc(M)-inverse split module and 1
denote the identity endomorphism of M . Since 1−1(SocM) = Soc(M),
we have Soc(M) = 0 or Soc(M) = M . Being Soc(M) = 0 implies that
M is Rickart since for any f ∈ S, f−1(Soc(M)) = f−1(0) is a direct
summand. If Soc(M) = M , then M is semisimple, and so is Rickart. The
last assertion follows from [9, Corollary 4.6].

Let R be a ring. In the literature, R is called a right V-ring if every
simple R-module is injective. By [8, Theorem 3.75], R is a right V-ring if
and only if for every R-module M , Rad(M) = 0.

Proposition 1.5. Let R be a right Noetherian and right V-ring. Then
every Rickart module M is Soc(M)-inverse split.

Proof. Let M be a Rickart module. Since every simple module is injective
and R is right Noetherian, Soc(M) is injective. Hence Soc(M) is a direct
summand of M . Let M = Soc(M)⊕N for some submodule N of M . By
[9, Theorem 2.7], N is Rickart. Therefore M is Soc(M)-inverse split.

Proposition 1.6. The following are equivalent for a module M .

(1) M is a Soc(M)-inverse split module and Kerf is a direct summand
of f−1(Soc(M)) for all f ∈ S.

(2) M is Rickart and Soc(M) is a direct summand of M .

Proof. It follows from [14, Theorem 2.9].

Homomorphic images of Soc(·)-inverse split modules need not be
Soc(·)-inverse split as the following example shows.
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Example 1.7. Consider the ring Z as a Z-module. Note that Soc(Z) = 0
and Z is Rickart. Thus Z is Soc(Z)-inverse split. On the other hand,
Soc(Z/12Z) = 2Z/12Z is an essential submodule of Z/12Z, and so it is
not a direct summand of Z/12Z. Therefore Z/12Z is not Soc(Z/12Z)-
inverse split.

However, the Soc(·)-inverse split property is inherited by direct sum-
mands as shown below.

Proposition 1.8. Let M be a Soc(M)-inverse split module. Then every
direct summand N of M is Soc(N)-inverse split.

Proof. Let N be a direct summand of M . According to [14, Proposi-
tion 2.12], N is (N∩ Soc(M))-inverse split. Then the assertion holds by
[2, Corollary 9.9].

In the next, we characterize finitely generated Soc(·)-inverse split
abelian groups in terms of their torsion submodules.

Theorem 1.9. A finitely generated Z-module M is Soc(M)-inverse split
if and only if Soc(M) is the torsion submodule of M .

Proof. Let M be a finitely generated Z-module. We can decompose M =
t(M) ⊕ N where t(M) is the torsion submodule and N is the torsion-
free submodule of M . Then Soc(N) = 0, and Soc(t(M)) is essential in
t(M). Hence Soc(M) = Soc(t(M)). Assume that M is Soc(M)-inverse
split. By Proposition 1.8, t(M) is also Soc(M)-inverse split. It follows
Soc(M) = t(M). Conversely, assume that Soc(M) = t(M). Thus M =
Soc(M) ⊕ N where N is a free Z-module. By [9, Theorem 2.26], N is
Rickart. Therefore M is Soc(M)-inverse split due to Theorem 1.2.

Let M be a module with socle S = Soc(M). The (lower) Loewy series
for M is defined transfinitely by: S0 = 0, S1 = Soc(M), Sα+1/Sα =
Soc(M/Sα) and, if α is a limit ordinal, Sα =

⋃

β<αSβ (see [3, page 470]).
If M = Sα for some ordinal α, then M is called a (lower) Loewy module.
The Loewy length of such a module is L(M) = γ, the least ordinal γ
with M = Sγ . A ring R is said to be right Loewy in case the regular
representation RR is a Loewy module. A right Loewy ring is also called
as right semi-Artinian.

Proposition 1.10. If a module M is semisimple, then it is Soc(M)-
inverse split. The converse holds if any nonzero submodule of M contains
a minimal submodule. In particular, if R is right Loewy.
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Proof. The first assertion is obvious. For the converse, let M be a Soc(M)-
inverse split module. According to [2, 9.10 Corollary], Soc(M) is essential
in M . By Theorem 1.2, Soc(M) is a direct summand of M . Therefore M
is semisimple.

Corollary 1.11. A module M is Loewy and Soc(M)-inverse split if and
only if it is semisimple.

Proof. If M is Loewy, then every nonzero submodule of M contains a
minimal submodule. By Proposition 1.10, we are done.

Proposition 1.12. Let M be a module. Then the following hold.

(1) M is Soc(M)-inverse split and has the ascending chain condition
on essential submodules if and only if M has a decomposition M =
Soc(M)⊕N where N is a Noetherian Rickart module.

(2) M is Soc(M)-inverse split and has the descending chain condition
on essential submodules if and only if M has a decomposition M =
Soc(M)⊕N where N is an Artinian Rickart module.

Proof. (1) Let M be a Soc(M)-inverse split module. By Theorem 1.2, M
has a decomposition M = Soc(M)⊕N where N is a Rickart module. Since
M has the ascending chain condition on essential submodules, M/Soc(M)
is Noetherian by [5, 5.15(1)], and so N is Noetherian. Conversely, assume
that M = Soc(M) ⊕ N for some Noetherian Rickart module N . This
implies that M/Soc(M) is Noetherian. Hence Theorem 1.2 and [5, 5.15(1)]
complete the proof.

(2) It follows from Theorem 1.2 and [5, 5.15(2)] as in the proof of (1).

Recall that a module M is called hereditary if every submodule of M
is projective (see [15]). We now observe a characterization of a ring R
which has a decomposition R = Soc(RR)⊕ I with I a hereditary module
in terms of Soc(·)-inverse split property.

Theorem 1.13. The following are equivalent for a ring R.

(1) Every free R-module M is Soc(M)-inverse split.
(2) Every projective R-module M is Soc(M)-inverse split.
(3) R = Soc(RR)⊕ I where I is a hereditary Rickart R-module.
(4) R = Soc(RR)⊕ I where I is a hereditary R-module.

Proof. (1) ⇔ (2) By Proposition 1.8.

(3) ⇒ (4) Obvious.
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(2) ⇒ (3) By (2), R is Soc(RR)-inverse split. Then R = Soc(RR)⊕ I
where I is a Rickart R-module due to Theorem 1.2. Let J be a submodule
of I. There exists a short exact sequence 0 → K → P

f
→ J → 0 with P

a projective R-module. We can assume f ∈ EndR(P ). Clearly, Kerf ⊆
f−1(Soc(P )). Let x ∈ f−1(Soc(P )). Hence fx ∈ Soc(P ) ∩ J = Soc(J).
Note that being R = Soc(RR)⊕ I implies Soc(I) = 0, and so Soc(J) = 0.
Thus fx = 0. It follows that x ∈ Kerf , so Kerf = f−1(Soc(P )). By (2),
P being Soc(P )-inverse split implies that Kerf is a direct summand of P .
Since P/Kerf ∼= J , J is projective. Therefore I is hereditary.

(4) ⇒ (1) Let M =
⊕

J

R be a free R-module with an index set J and

f ∈ S. By (4),M = Soc(M)⊕(
⊕

J

I). Then
⊕

J

I = eM for some e = e2 ∈ S

and EndR(
⊕

J

I) = eSe. Since Soc(M) ⊆ f−1(Soc(M)), by modularity

condition, f−1(Soc(M)) = Soc(M) ⊕
(
⊕

J

I ∩ f−1(Soc(M))
)

. We claim

that
⊕

J

I ∩ f−1(Soc(M)) = Ker(efe). Let x ∈
⊕

J

I ∩ f−1(Soc(M)). Since

eM =
⊕

J

I, efe(x) = ef(x) ∈
⊕

J

I∩ Soc(M) = 0, and so x ∈ Ker(efe).

Now let y ∈ Ker(efe). So y ∈
⊕

J

I and efe(y) = ef(y) = 0. Also,

f(y) = a + b for some a ∈ Soc(M) and b ∈
⊕

J

I. Then 0 = ef(y) =

ea + eb = ea + b implies b ∈
⊕

J

I∩ Soc(M) = 0. Hence f(y) = a ∈

Soc(M), and so y ∈
⊕

J

I ∩ f−1(Soc(M)). Thus
⊕

J

I ∩ f−1(Soc(M)) =

Ker(efe). On the other hand, by (4) and [15, 39.7],
⊕

J

I is hereditary. It

follows that (
⊕

J

I)/Ker(efe) is projective, so Ker(efe) is a direct summand

of
⊕

J

I. Thus f−1(Soc(M)) is a direct summand of M . Therefore M is

Soc(M)-inverse split.

We conclude this section by performing an application for the notion
of Soc(·)-inverse split modules by using semiperfectness relative to the
socle. Recall that a module M is called Soc(M)-semiperfect if for any
submodule N of M , there exists a projective direct summand A of M such
that A ⊆ N and M = A⊕B with N ∩B ⊆ Soc(M). Note that Soc(M) is
an intersection of some submodules N of M with M/N singular. However,
M/Soc(M) need be neither singular nor semisimple.
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Proposition 1.14. Let M be a Soc(M)-semiperfect module. Then the
following hold.

(1) M/Soc(M) is semisimple.
(2) M is Soc(M)-inverse split if and only if it is semisimple.
(3) Any submodule N of M with N∩ Soc(M) = 0 is a Rickart module.
(4) If Soc(M) is a direct summand of M , then M is Soc(M)-inverse

split.

Proof. (1) Let N/Soc(M) be any submodule of M/Soc(M). By hypothesis,
there exists a submodule U of M contained in N such that M = U ⊕ V
and V ∩N ⊆ Soc(M). It is obvious that [N/ Soc(M)]⊕ [

(

V+ Soc(M)
)

/
Soc(M)] = M/ Soc(M). Therefore M/Soc(M) is semisimple.

(2) Assume that M is Soc(M)-inverse split. There exists a submodule
N of M such that M = Soc(M) ⊕ N . Let A be a submodule of N .
By hypothesis there exists a projective submodule B such that B ⊆ A,
M = B ⊕ C and A ∩ C ⊆ Soc(M). Being A ∩ C ⊆ Soc(M) ∩N implies
A ∩ C = 0 and A = B. Hence M = A⊕ C. Thus A is a direct summand
of N and so N is semisimple. It follows that N = 0, therefore M is
semisimple. The converse is clear.

(3) Let N be a submodule of M such that N∩ Soc(M) = 0. By (1),
M/Soc(M) is semisimple. Then N is semisimple as it is isomorphic to a
submodule of M/Soc(M).

(4) It follows from (3).

2. Applications to rings

This section is devoted to applications for the Soc(·)-inverse splitness
to rings. Note that I is an ideal of a ring R if and only if it is a fully
invariant submodule of RR (resp. RR). For an ideal I of R, in [14], R
is called right (left) I-inverse split if it is I-inverse split as a right (left)
R-module. In the light of I-inverse splitness where I is an ideal of a ring,
we give the following definition.

Definition 2.1. A ring R is called right (left) Soc(RR)-inverse split if for
every f ∈ End(RR), f

−1(Soc(RR)) is a direct summand of R as a right
(left) ideal.

Right (left) Soc(RR)-inverse splitness is defined similarly. For a ring R,
Soc(RR)-inverse split property is not left-right symmetric as shown below.
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Example 2.2. Let R denote the ring





k k k
0 k 0
0 0 k



 where k is a semisimple

ring. Then Soc(RR) =





0 k k
0 k 0
0 0 k



 (see [8, Example 7.14c]). Since Soc(RR) is

an essential right ideal of R, it is not a direct summand of R as a right
ideal. Thus R is not right Soc(RR)-inverse split. On the other hand, R =

Soc(RR) ⊕ I where I is the left ideal





k 0 0
0 0 0
0 0 0



 of R. The ring k being

semisimple implies that I is a semisimple R-module, and so I is Rickart.
Therefore R is left Soc(RR)-inverse split by Theorem 1.2.

Proposition 2.3. Let R be a right Soc(RR)-inverse split ring. If the socle
of R/J(R) is finitely generated, then the following hold.

(1) The right socle Soc(RR) is a direct summand of R as a left R-module.
(2) If R is left Rickart, then it is left Soc(RR)-inverse split.

Proof. (1) The ring R being right Soc(RR)-inverse split implies that
Soc(RR) is projective as a direct summand of the right R-module R. Since
Soc(R/J(R)) is finitely generated, then the right socle Soc(RR) is also a
direct summand as a left R-module by [6, Corollary to Theorem 1.2].

(2) It follows from (1) and Proposition 1.6.

Soc(·)-inverse split rings occur in abundance in the context of the class
of rings.

Example 2.4. Let R1 be a semisimple ring and R2 be a right Rickart
ring with Soc(R2R2

) = 0. By Theorem 1.2, the ring R = R1 × R2 of
direct product of the rings R1 and R2 is a right Soc(RR)-inverse split ring.
In particular, Z is a right Rickart ring. Let n be a positive integer and
{pi | i = 1, 2, . . . , n} a set of prime integers and consider the ring R1 =
∏n

i=1

(

Z/piZ
)

and R2 = Z. Then R = R1 ×R2 is a right Soc(RR)-inverse
split ring by Theorem 1.2, because Soc(RR) = Soc(R1R1

) =
∏n

i=1

(

Z/piZ
)

and Z is Rickart. Also M =
∏n

i=1

(

Z/piZ
)

⊕ Z(I) is Soc(M)-inverse split

as a Z-module, because Soc(M) =
∏n

i=1

(

Z/piZ
)

and Z(I) is a Rickart
Z-module where I is any index set.

In the next, we give some relations between right Soc(·)-inverse split
rings and certain classes of rings such as left perfect rings, right Kasch
rings and semisimple rings. Recall that a ring R is called right Kasch
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if every simple R-module is embedded in RR. By [8, Corollary 8.28], a
ring R is right Kasch if and only if every maximal right ideal I of R is
I = rR(t) for some t ∈ R. A ring R is said to be right PS if every simple
right ideal is projective.

Theorem 2.5. Let R be a ring. Then the following are equivalent.
(1) R is right Soc(RR)-inverse split and left perfect.
(2) R is right Soc(RR)-inverse split and right Loewy.
(3) R is right Soc(RR)-inverse split and right Kasch.
(4) R is right Soc(RR)-inverse split and QF.
(5) R is right PS and QF.
(6) R is semisimple.

Proof. (1) ⇒ (2) In [3], Bass shows in Theorem P that every left perfect
ring is right Loewy (see also [2, Theorem 28.4]).

(2) ⇒ (6) Clear by Corollary 1.11.
(3) ⇒ (6) Let M be a simple R-module. Then M = mR and M ∼=

R/rR(m) for some 0 6= m ∈ M . Since R is right Kasch, M ∼= I for some
minimal right ideal I which is projective. Hence every simple R-module is
projective. In particular, every maximal right ideal is a direct summand
of R. Therefore R is semisimple.

(4) ⇒ (5) By Theorem 1.2, Soc(RR) is a direct summand of R, and
so it is projective. Therefore R is right PS.

(5) ⇒ (6) The ring R being right PS implies that Soc(RR) is projective.
Since R is QF, Soc(RR) is also injective, hence it is a direct summand
of R. On the other hand, the right socle of every QF-ring is an essential
right ideal. Thus Soc(RR) = R. Therefore R is semisimple.

(6) ⇒ (1), (6) ⇒ (3) and (6) ⇒ (4) are obvious.

Lemma 2.6. Let R be a right Soc(RR)-inverse split ring. Then there
exists a right ideal K of R such that k−1Soc(RR) = rR(k) for every k ∈ K
where k−1Soc(RR) = {a ∈ R | ka ∈ Soc(RR)}.

Proof. The ring R being right Soc(RR)-inverse split implies that there
exists a right ideal K of R such that R = Soc(RR)⊕K by Theorem 1.2.
Let k ∈ K. Then for any x ∈ R, kx ∈ Soc(RR) implies kx = 0. The rest
is clear.

Theorem 2.7. Every right Soc(·)-inverse split ring is right nonsingular.

Proof. Let R be a right Soc(RR)-inverse split ring. Then R = Soc(RR)⊕
K for some right ideal K of R due to Theorem 1.2. Hence J(R) =



“adm-n3” — 2018/10/20 — 9:02 — page 57 — #63

A. Harmanci, B. Ungor 57

Rad(Soc(RR))⊕ Rad(K). Since Soc(RR) is semisimple, Rad(Soc(RR)) = 0.
Therefore by [12, Theorem 6.14], Rad(Soc(RR)) = Soc(RR) ∩ J(R) and
J(R) = Rad(K) 6 K.

Let a ∈ Z(K). Then rR(a) is essential in R. By Lemma 2.6,
a−1Soc(RR) = rR(a). The ring R being right Soc(RR)-inverse split
implies that a−1Soc(RR) is a direct summand of R. Hence rR(a) = R. It
follows that a = 0, and so Z(K) = 0. Since Z(RR) = Z(Soc(RR))⊕Z(K),
Z(RR) = Z(Soc(RR)) ⊆ Soc(RR).

Let a ∈ Z(RR). Then rR(a) is an essential right ideal of R and so
Soc(RR) ⊆ rR(a). Hence aZ(RR) = 0 or a2 = 0. It follows that Z(RR)
is a nil ideal. By [12, Corollary 6.8], J(R) contains every nil right (left)
ideal, so we have Z(RR) ⊆ J(R). Therefore Z(RR) = 0.

Theorem 2.8. Let R be a right Soc(RR)-inverse split ring. Then the
maximal right ring of quotients Qr

max(R) of R is a right Rickart ring.

Proof. By Theorem 2.7, R is right nonsingular. In the light of [4, Corol-
lary 1.3.15] and [8, Johnson’s Theorem 13.36], Qr

max(R) is a von Neumann
regular ring, therefore it is right Rickart.

3. Rad(·)-inverse split modules

In this section we investigate inverse splitness of a module with respect
to the dual notion to that of the socle. For a module M , Rad(M) is the
intersection of all maximal submodules of M , equivalently, the sum of
small submodules of M . It need not be small in M but, in ring case,
Rad(RR) is denoted by J(R) and it is a small submodule of RR. However,
every module over a right perfect ring, or right cosemisimple ring, has a
small radical. On the contrary, there is a class of modules M such that
Rad(M) is a direct summand of M . In this section we study this class of
modules M . The main aim is that whenever M has a decomposition such
as M = Rad(M)⊕N for some submodule N , to find out what a type of
structure of N is. In this setting, we prove that N is a Rickart module for
inverse split modules relative to the radical.

There is no close relation between Rad(·)-inverse split and Soc(·)-
inverse split properties of modules since there exists a module M such
that Rad(M) = M and Soc(M) 6= M . There also exists a module M
such that Rad(M) 6= M and Soc(M) = M . Before stating the results
we record some properties satisfied by the radical that we will use in the
sequel without proof for an easy reference.
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Lemma 3.1. The following hold for a module M .

(1) For any index set I, let M =
⊕

i∈I

Mi. Then Rad(M) =
⊕

i∈I

Rad(Mi).

(2) Let f : M → M ′ be a module homomorphism. Then f(Rad(M)) ⊆
Rad(M ′).

(3) Rad
(

M/Rad(M)
)

= 0.
(4) Let N be a submodule of M . Then Rad(N) ⊆ N∩ Rad(M) where

equality does not hold in general.

The properties stated in Lemma 3.1 are well known. We only note
that there are modules such that N∩ Rad(M) = Rad(N) does not hold
in general.

Example 3.2. Let F be a field and consider the ring R, module M and
its submodule N as

R =

[

F F
0 F

]

, M =

[

0 F
F F

]

, N =

[

0F
0F

]

.

Then Rad(N) = 0 and Rad(M) =

[

0 0
0F

]

. So Rad(M) = Rad(M) ∩N 6=

Rad(N).

We now give the definition of the dual notion to that of the Soc(·)-
inverse split modules.

Definition 3.3. A module M is called Rad(M)-inverse split if for every
f ∈ S, f−1(Rad(M)) is a direct summand of M .

It is clear that every semisimple module M is Rad(M)-inverse split.
The module M defined in Example 3.2 is not Rad(M)-inverse split. For
a module M which is cogenerated by the class of simple modules, by
[2, Proposition 9.16], M is Rickart if and only if it is Rad(M)-inverse split.

In the next, a module decomposition is obtained by using a Rickart
module and the radical of a module.

Theorem 3.4. The following are equivalent for a module M .

(1) M is Rad(M)-inverse split.
(2) M = Rad(M)⊕N where N is a Rickart module.
(3) M has a decomposition M = K ⊕ N where K has no maximal

submodule and N is Rickart and cogenerated by the class of simple
modules.
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Proof. (1) ⇔ (2) It follows from [14, Theorem 2.3] and Lemma 3.1(2).

(2) ⇒ (3) Let K denote the submodule Rad(M). Then M = K ⊕N
where N is Rickart by (2). Since Rad(N) = 0,N is cogenerated by the class
of simple modules. On the other hand, Rad(M/N) = (Rad(M)+N)/N =
M/N . This means that M/N has no maximal submodule. The submodule
K being isomorphic to M/N implies that K has no maximal submodule.

(3) ⇒ (2) Let M = K ⊕N such that K has no maximal submodule
and N is Rickart and cogenerated by the class of simple modules. Then
by Lemma 3.1(1), Rad(M) = Rad(K)⊕ Rad(N) = Rad(K) = K. This
completes the proof.

The following examples illustrate that being a Rickart module or being
a Rad(·)-inverse split module does not imply the other in general.

Examples 3.5. (1) Let p be a prime integer and consider the localization
Z(p) of Z at pZ as a module over itself. Since Z(p) is a domain, it is a Rickart
module. On the other hand, the Jacobson radical of Z(p) is pZ(p) and it is
not a direct summand of Z(p). Therefore Z(p) is not J(Z(p))-inverse split.

(2) Consider the Prüfer p-group Zp∞ for any prime integer p. Since Zp∞

has no maximal submodule, Rad(Zp∞) = Zp∞ , and so Zp∞ is Rad(Zp∞)-
inverse split, but it is not Rickart by [9, Example 2.17].

Proposition 3.6. Every indecomposable Rad(·)-inverse split module is
either a radical module or a Rickart module for which every nonzero
endomorphism is a monomorphism.

Proof. Let M be an indecomposable Rad(M)-inverse split module. As
Rad(M) is a direct summand of M , we have Rad(M) = M or Rad(M) = 0.
In the first case M is a radical module. Assume that Rad(M) = 0. By
Theorem 3.4, M is Rickart. Let 0 6= f ∈ S. Rickartness of M implies Kerf
is a direct summand of M . Then Kerf = 0. This completes the proof.

Proposition 3.7. Every Rad(·)-inverse split module over a right V-ring
is Rickart.

Proof. Let R be a right V-ring and M a Rad(M)-inverse split module.
Then Rad(M) = 0. By Theorem 3.4, M is Rickart.

Clearly, if a module M is Rickart with Rad(M) = 0, then it is Rad(M)-
inverse split. In the next, we investigate under what conditions the converse
of this statement is true. Recall that a module M is called coatomic if
every proper submodule of M is contained in a maximal submodule of M .
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Semisimple modules, finitely generated modules and Noetherian modules
are some examples of coatomic modules.

Proposition 3.8. Let M be a coatomic module. Then M is Rad(M)-
inverse split if and only if M is Rickart with Rad(M) = 0.

Proof. Let M be Rad(M)-inverse split and coatomic. Then Rad(M) is a
small submodule of M . Also, it is a direct summand of M by Theorem 3.4.
Hence Rad(M) = 0, this implies that M is Rickart.

By [2, Theorem 28.4] and Proposition 3.8, we obtain the next result
immediately.

Corollary 3.9. Let R be a right perfect ring. Then for every R-module M ,
M is Rad(M)-inverse split if and only if M is Rickart with Rad(M) = 0.

Examples 3.10. (1) Let R be a right V-ring. It is known that for every
module M , Rad(M) = 0. One may suspect that such a module is Rickart

but it is not the case, for example, consider the ring R =
∞
∏

i=1
Ri where

Ri = Z2 for all i. Since R is commutative von Neumann regular, it is a
V-ring but not semisimple. By [9, Theorem 2.25], there exists an R-module
which is not Rickart.

(2) Let M denote the Z-module
(
⊕

i∈I

Qi

)

⊕
(
⊕

j∈J

Zj

)

where Qi = Q

and Zj = Z for some index sets I and J . Note that Rad(Q) = Q,
Rad

(
⊕

j∈J

Zj

)

= 0. For any hereditary ring, every free right R-module

is Rickart by [9, Theorem 2.26]. This fact and Theorem 3.4 imply that M
is a Rad(M)-inverse split Z-module.

(3) Every divisible abelian group M is a Rad(M)-inverse split Z-
module by the fact that Rad(M) = M .

We now investigate when the homomorphic images of Rad(·)-inverse
split modules have the same property.

Proposition 3.11. Let M and M ′ be R-modules and M
f
→ M ′ an

epimorphism. If M is Rad(M)-inverse split and Kerf ⊆ Rad(M), then
M ′ is Rad(M ′)-inverse split.

Proof. Note that by [2, Proposition 9.15], Kerf ⊆ Rad(M) implies that
f(Rad(M)) = Rad(M ′) and so Rad(M) = f−1(Rad(M ′)). Let M be
Rad(M)-inverse split. There exists a Rickart module N such that M =
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Rad(M)⊕N by Theorem 3.4. Then M ′ = f(Rad(M))+f(N) = Rad(M ′)+
f(N). Let y ∈ f(Rad(M)) ∩ f(N). There exist a ∈ Rad(M), b ∈ N such
that y = f(a) = f(b). Since Kerf ⊆ Rad(M), b ∈ Rad(M). Hence b = 0
and so Rad(M ′)∩ f(N) = 0. On the other hand, the restriction of f to N
is an isomorphism between N and f(N). Hence f(N) is a Rickart module.
Therefore M ′ is Rad(M ′)-inverse split.

Let M and P be arbitrary modules. Recall that P is called a small

cover of M if there exists an epimorphism P
f
→ M such that Kerf is a

small submodule of P . In case, P is a projective module and a small cover
of M , P is called a projective cover of M . Every projective cover of a
module is a small cover.

Corollary 3.12. The following hold.
(1) Let M be a module having a small cover P which is Rad(P )-inverse

split. Then M is Rad(M)-inverse split.
(2) Let M be a module with a projective cover P . If P is Rad(P )-inverse

split, then so is M .

The next result shows that direct summands of Rad(·)-inverse split
modules inherit the same property.

Proposition 3.13. Let M be a Rad(M)-inverse split module. Then every
direct summand N of M is Rad(N)-inverse split.

Proof. Let N be a direct summand of M . Then M = N ⊕K for some
submodule K of M . In light of [14, Proposition 2.12], N is (N∩ Rad(M))-
inverse split. On the other hand, Rad(M) being fully invariant in M
implies Rad(M) = (N∩ Rad(M))⊕(K∩ Rad(M)). Also, by Lemma 3.1(1),
Rad(M) = Rad(N)⊕ Rad(K). Hence Rad(N) = N∩ Rad(M). Thus N
is Rad(N)-inverse split.

We now characterize semiprimitive right hereditary rings in terms of
Rad(·)-inverse split modules.

Theorem 3.14. The following are equivalent for a ring R.
(1) Every free R-module M is Rad(M)-inverse split.
(2) Every projective R-module M is Rad(M)-inverse split.
(3) R is semiprimitive right hereditary.

Proof. (1) ⇒ (2) Let M be a projective R-module. Then M is a direct
summand of a free R-module P . By (1), P is Rad(P )-inverse split, and
so M is Rad(M)-inverse split by Proposition 3.13.



“adm-n3” — 2018/10/20 — 9:02 — page 62 — #68

62 Module decompositions via Rickart modules

(2) ⇒ (3) Since R is projective, it is J(R)-inverse split, and so J(R) is
a direct summand of R. Hence J(R) = 0, i.e., R is semiprimitive. Let I be
a right ideal of R. There exist a free R-module P and a homomorphism
f : P → I with Imf = I. Being J(R) = 0 implies Rad(P ) = 0. By (2), P
is Rad(P )-inverse split, so it is Rickart. Thus P/Kerf ∼= I is projective.
Therefore R is right hereditary.

(3) ⇒ (1) Let M be a free R-module. Since R is right hereditary, by
[9, Theorem 2.26], M is Rickart. On the other hand, Rad(M) = 0 because
J(R) = 0. Therefore M is Rad(M)-inverse split.

We end this paper by presenting some applications of the notion of
Rad(·)-inverse split modules by using semiperfect modules relative to the
radical. Recall that a module M is called Rad(M)-semiperfect if for any
submodule N of M , there exists a projective direct summand A of M
such that A ⊆ N and M = A⊕B with N ∩B ⊆ Rad(M).

Proposition 3.15. Let M be a Rad(M)-semiperfect module. Then M
is Rad(M)-inverse split if and only if M = Rad(M) ⊕ N where N is
semisimple.

Proof. Let K be a submodule of M with Rad(M) ⊆ K. There ex-
ists a direct summand A of M such that M = A ⊕ B and K ∩ B ⊆
Rad(M). Then M/Rad(M) =

(

K/Rad(M)
)

⊕
(

(B+ Rad(M))/Rad(M)
)

.
Hence M/Rad(M) is semisimple. Now suppose that M is a Rad(M)-
inverse split module. Then there exists a submodule N of M such that
M = Rad(M)⊕N . Thus N is semisimple. The converse is clear due to
Theorem 3.4.

For any R-module M , by the fact that MJ(R) ⊆ Rad(M), the module
M/Rad(M) has an R/J(R)-module structure.

Proposition 3.16. Let R be a right J(R)-semiperfect ring. Then the
following hold.

(1) R/J(R) is semisimple and R has a decomposition R = A⊕B with
A semisimple and J(R) is an essential right ideal in B and B/J(R)
is a semisimple right R-module.

(2) Every R/J(R)-module M has a decomposition M = M1 ⊕M2 with
M1 a semisimple R/J(R)-module and Rad(M) essential in M2 as
an R/J(R)-module.

Proof. (1) By a similar discussion in the proof of Proposition 3.15,
R/J(R) is semisimple. The second assertion is a direct consequence of
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[10, Proposition 2.1]. (2) Let M be an R/J(R)-module. By (1),M/Rad(M)
is a semisimple R/J(R)-module. Due to [10, Proposition 2.1], there exist
submodules M1 and M2 of M such that M = M1 ⊕M2 where M1 is a
semisimple R/J(R)-module and Rad(M) is essential in M2 as an R/J(R)-
module and M2/Rad(M) is semisimple as an R/J(R)-module.

Theorem 3.17. Let M be a Rad(M)-semiperfect module with ascending
chain condition on direct summands. Then M has a decomposition M =
Rad(M)⊕N where Rad(M) is projective and N is semisimple. In this
case, M is Rad(M)-inverse split.

Proof. Let M be a Rad(M)-semiperfect module. There exists a projective
direct summand A1 ⊆ Rad(M) such that M = A1⊕B1. Then Rad(M) =
A1 ⊕

(

B1∩ Rad(M)
)

. Assume that B1∩ Rad(M) 6= 0, by the same
reasoning, there exists a projective direct summand A2 ⊆ B1∩ Rad(M)
such that M = A2 ⊕ B2. Then B1 = A2 ⊕

(

B2 ∩ B1

)

and Rad(M) =
A2 ⊕ A1 ⊕

(

B2 ∩ B1∩ Rad(M)
)

and M = A1 ⊕ A2 ⊕
(

B2 ∩ B1

)

. If
B2 ∩ B1∩ Rad(M) 6= 0, then there exists a projective direct summand
A3 ⊆ B2 ∩ B1∩ Rad(M) such that M = A3 ⊕ B3. Then B2 ∩ B1 =
A3⊕ (B3∩B2∩B1), M = A3⊕A2⊕A1⊕

(

B3∩B2∩B1

)

and Rad(M) =
A3 ⊕ A2 ⊕ A1 ⊕

(

B3 ∩ B2 ∩ B1∩ Rad(M)
)

. Continuing in this way, for
each positive integer n, if Bn−1 ∩Bn−2 ∩ · · · ∩B1∩ Rad(M) 6= 0, then we
may find a projective direct summand An of M such that M = An ⊕Bn

and An ⊆ Bn−1 ∩ Bn−2 ∩ · · · ∩ B1∩ Rad(M) 6= 0. By hypothesis, there
must be a positive integer t such that the sequence A1 ⊆ A1 ⊕ A2 ⊆
A1 ⊕ A2 ⊕ A3 ⊆ · · · of direct summands of M terminates at the step
t and then A1 ⊕ A2 ⊕ · · · ⊕ At = A1 ⊕ A2 ⊕ · · · ⊕ At ⊕ At+1 = · · · . At
this step B1 ∩B2 ∩ · · · ∩Bt∩ Rad(M) = 0 must be held. It follows that
M = At ⊕ At−1 ⊕ · · · ⊕ A1 ⊕ (Bt ∩ Bt−1 ∩ · · · ∩ B1) and Rad(M) =
A1⊕A2⊕ · · · ⊕At is projective. Let N = Bt ∩Bt−1 ∩ · · · ∩B1 and L be a
submodule of N . By hypothesis, there exists a projective direct summand
L1 of M such that M = L1 ⊕ L2 and L1 ⊆ L and L2 ∩ L ⊆ Rad(M).
Then L2 ∩ L = 0. Hence L = L1 is a direct summand of N . Thus N is
semisimple. By Theorem 3.4, M is Rad(M)-inverse split.
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