Algebra and Discrete MathematicsVolume 27 (2019). Number 1, pp. 20–36© Journal "Algebra and Discrete Mathematics"

Generalized classes of suborbital graphs for the congruence subgroups of the modular group

Pradthana Jaipong and Wanchai Tapanyo^{*}

Communicated by L. A. Kurdachenko

ABSTRACT. Let Γ be the modular group. We extend a nontrivial Γ -invariant equivalence relation on $\widehat{\mathbb{Q}}$ to a general relation by replacing the group $\Gamma_0(n)$ by $\Gamma_K(n)$, and determine the suborbital graph $\mathcal{F}_{u,n}^K$, an extended concept of the graph $\mathcal{F}_{u,n}$. We investigate several properties of the graph, such as, connectivity, forest conditions, and the relation between circuits of the graph and elliptic elements of the group $\Gamma_K(n)$. We also provide the discussion on suborbital graphs for conjugate subgroups of Γ .

Introduction

Let G be a permutation group acting transitively on a nonempty set X. Then the action of G can be extended naturally on $X \times X$ by

$$g(v,w) = (g(v), g(w)),$$

where $g \in G$ and $v, w \in X$. The orbit G(v, w) is called a *suborbital* of G containing (v, w). A *suborbital graph* $\mathcal{G}(v, w)$ for G on the set X is a graph whose vertex set is the set X and the family of directed edges is

^{*}Corresponding author.

²⁰¹⁰ MSC: Primary 05C20, 05C40, 05C63; Secondary 05C05, 05C60, 20H05.

Key words and phrases: modular group, congruence subgroups, suborbital graphs.

the suborbital G(v, w). Hence, there exists a directed edge from v_1 to v_2 , denoted by $v_1 \rightarrow v_2$, if $(v_1, v_2) \in G(v, w)$.

The concept of suborbital graphs was first introduced by Sims [14]. Then Jones, Singerman, and Wicks [8] used this idea to construct the suborbital graphs $\mathcal{G}_{u,n}$ for the modular group Γ acting on the extended set of rational numbers $\widehat{\mathbb{Q}} = \mathbb{Q} \cup \{\infty\}$. To examine the properties of $\mathcal{G}_{u,n}$, they applied the fact that the action of Γ on $\widehat{\mathbb{Q}}$ is *imprimitive*, i.e., there is a Γ -invariant equivalence relation other than the two trivial relations which form the partitions $\{\widehat{\mathbb{Q}}\}$ and $\{\{v\} : v \in \widehat{\mathbb{Q}}\}$. They used the congruence subgroup $\Gamma_0(n)$ to induce the nontrivial Γ -invariant equivalence relation on $\widehat{\mathbb{Q}}$, and studied the subgraphs $\mathcal{F}_{u,n}$ of the graphs $\mathcal{G}_{u,n}$ restricted on the block $[\infty]$, the equivalence class containing ∞ . Note that the graph $\mathcal{G}_{u,n}$ is the union of m copies of $\mathcal{F}_{u,n}$, where m is the index of $\Gamma_0(n)$ in Γ . Moreover, if $\mathcal{F}_{u,n}$ contains edges, it is actually a suborbital graph for $\Gamma_0(n)$ on the block $[\infty]$.

There are several studies related to the graphs for the modular group, see [1,4,5,7,11,13], and other papers about suborbital graphs for other groups, see [2,3,6,9,10,12]. In [11], the authors used the different Γ invariant equivalence relation obtained from another congruence subgroup $\Gamma_1(n)$ of Γ , and investigated the connectivity of subgraphs of $\mathcal{G}_{u,n}$ on the block containing ∞ .

Inspired by the results in [8,11], we introduce a Γ -invariant equivalence relation using the congruence subgroup $\Gamma_K(n)$ where K is a subgroup of the group of unit \mathbb{Z}_n^* . This group is a generalization of $\Gamma_0(n)$ and $\Gamma_1(n)$, so it provides a generalized Γ -invariant equivalence relation of those induced from $\Gamma_0(n)$ and $\Gamma_1(n)$. We denote by $\mathcal{F}_{u,n}^K$ the subgraph of $\mathcal{G}_{u,n}$ on the block $[\infty]_K$ with respect to the group $\Gamma_K(n)$, and demonstrate various properties of $\mathcal{F}_{u,n}^K$, such as, connectivity, forest conditions, including the relation between circuits of the graph and elliptic elements of the group $\Gamma_K(n)$. In the final section we provide a discussion of the relation of suborbital graphs for congruence subgroups. We show that the suborbital graphs for the group $\Gamma^0(n)$ studied in [7] is isomorphic to some graph $\mathcal{F}_{u,n}$. The result is also extended to the case of $\Gamma_K(n)$ and $\Gamma^K(n)$, a generalization of $\Gamma^0(n)$. Moreover, we discuss suborbital graphs for $\Gamma_K(n)$

This work can be restricted to the case of $\Gamma_1(n)$ be replacing the group K by the trivial subgroup $\{\overline{1}\}$ of \mathbb{Z}_n^* . This case was studied in [11] already; however, the results in there are different from ours because of

the definition of $\Gamma_1(n)$. The differences will be explained in another our publication.

1. Preliminaries

Let Γ be a set of all *linear fractional (Möbius) transformations* on the upper half-plane $\mathbb{H}^2 = \{z \in \mathbb{C} : \text{Im}(z) > 0\}$ of the form

$$z \mapsto \frac{az+b}{cz+d},\tag{1}$$

where $a, b, c, d \in \mathbb{Z}$, and ad - bc = 1. With the composition of functions, Γ forms a group which is called the *modular group*. The group Γ is isomorphic to $PSL(2,\mathbb{Z})$, the quotient group of the unimodular group $SL(2,\mathbb{Z})$ by its centre $\{\pm I\}$. Thus, every element of Γ of the form (1) can be referred to as the pair of matrices

$$\pm \begin{pmatrix} a & b \\ c & d \end{pmatrix} \in \mathrm{SL}(2, \mathbb{Z}).$$

For convenience, we may leave the sign of matrices representing elements of the group Γ and identify them with their negative sign.

Let n be any natural number. One can show that

$$\Lambda(n) = \left\{ \begin{pmatrix} a & b \\ c & d \end{pmatrix} \in \operatorname{SL}(2, \mathbb{Z}) : a \equiv 1 \mod n, \text{ and } b \equiv c \equiv 0 \mod n \right\}$$

is a subgroup of $SL(2, \mathbb{Z})$. The image of $\Lambda(n)$ in $\Gamma = PSL(2, \mathbb{Z})$ under the quotient mapping is called the *principal congruence subgroup of level n* and denoted by $\Gamma(n)$. We can see easily that

$$\Gamma(n) = \left\{ \begin{pmatrix} a & b \\ c & d \end{pmatrix} \in \Gamma : a \equiv \pm 1 \mod n, \text{ and } b \equiv c \equiv 0 \mod n \right\}.$$

A subgroup of Γ containing $\Gamma(n)$, for some *n*, is called a *congruence* subgroup of Γ . There are two well-known congruence subgroups of the modular group, that is,

$$\Gamma_0(n) = \left\{ \begin{pmatrix} a & b \\ c & d \end{pmatrix} \in \Gamma : c \equiv 0 \mod n \right\},$$

and

$$\Gamma_1(n) = \left\{ \begin{pmatrix} a & b \\ c & d \end{pmatrix} \in \Gamma : a \equiv \pm 1 \mod n, \text{ and } c \equiv 0 \mod n \right\}.$$

These two groups are mainly used in [8] and [11], respectively.

We now introduce some classes of congruence subgroups of the modular group. Let K be a subgroup of a group of units \mathbb{Z}_n^* , and \overline{a}_n denote a congruence class containing an integer a modulo n. Without the confusion, we may leave the subscript n and use \overline{a} instead. One can prove easily that

$$\Lambda_K(n) = \left\{ \begin{pmatrix} a & b \\ c & d \end{pmatrix} \in \operatorname{SL}(2, \mathbb{Z}) : \overline{a} \in K, \text{ and } c \equiv 0 \mod n \right\}$$

is a subgroup of $SL(2,\mathbb{Z})$ containing the group $\Lambda(n)$, so the image in Γ of this group is certainly a congruence subgroup of Γ . We let $\Gamma_K(n)$ denote the congruence subgroup of Γ obtained in this way. Obviously,

$$\Gamma_K(n) = \left\{ \begin{pmatrix} a & b \\ c & d \end{pmatrix} \in \Gamma : \overline{a} \in -K \cup K, \text{ and } c \equiv 0 \mod n \right\},\$$

where $-K = \{-\overline{a} : \overline{a} \in K\}$. In the case that K is a trivial subgroup of $\mathbb{Z}_n^*, \{\overline{1}\}$ or $\mathbb{Z}_n^*, \Gamma_K(n)$ is such $\Gamma_1(n)$ and $\Gamma_0(n)$, respectively.

We see that every coefficient of a transformation in the modular group is an integer. Then the action (1) can be extended to act on $\widehat{\mathbb{Q}} = \mathbb{Q} \cup \{\infty\}$. In [8], the authors represented every element in $\widehat{\mathbb{Q}}$ as reduced fractions $\frac{x}{y} = \frac{-x}{-y}$, where $x, y \in \mathbb{Z}$ and gcd(x, y) = 1. In the case of ∞ , it is represented by the fractions $\frac{1}{0} = \frac{-1}{0}$. Now the action (1) of Γ on $\widehat{\mathbb{Q}}$ can be rewritten as follows,

$$\frac{x}{y} \mapsto \frac{ax + by}{cx + dy}$$

Certainly, $\frac{ax+by}{cx+dy}$ is a reduced fraction. The action of Γ on $\widehat{\mathbb{Q}}$ is absolutely independent from the non-uniqueness of the representations of fractions. Note that the action of Γ on the set $\widehat{\mathbb{Q}}$ is *transitive*, that is, for every $v, w \in \widehat{\mathbb{Q}}$ there exists a transformation $\gamma \in \Gamma$ such that $\gamma(v) = w$, equivalently, for every $v \in \widehat{\mathbb{Q}}$ there exists $\gamma \in \Gamma$ such that $\gamma(\infty) = v$. This means that we can represent every element in $\widehat{\mathbb{Q}}$ by $\gamma(\infty)$, where $\gamma \in \Gamma$.

We see that $\Gamma_{\infty} < \Gamma_{K}(n) \leq \Gamma$ where Γ_{∞} is the stabilizer of ∞ , the set of all translations $z \to z + b$ with $b \in \mathbb{Z}$. The second inequality is strict if n > 1. Then a nontrivial Γ -invariant equivalence relation on $\widehat{\mathbb{Q}}$, see also [8, page 319] for a general definition, related to the group $\Gamma_{K}(n)$ is given by

$$\gamma(\infty) \sim \gamma'(\infty)$$
 if and only if $\gamma' \in \gamma \Gamma_K(n)$,

where $\gamma \Gamma_K(n)$ is a left coset of $\Gamma_K(n)$ in Γ . An equivalence class is called a *block* and denoted by $[v]_K$, the block containing an element v of $\widehat{\mathbb{Q}}$. From the relation obtained above, we see that the block $[\gamma(\infty)]_K$ is the set

$$\{\gamma\Gamma_K(n)\}(\infty) = \{\gamma\gamma_K(\infty) : \gamma_K \in \Gamma_K(n)\}.$$

In particular, the block $[\infty]_K$ is the $\Gamma_K(n)$ -orbit,

$$\{\Gamma_K(n)\}(\infty) = \{\gamma_K(\infty) : \gamma_K \in \Gamma_K(n)\}.$$

Therefore, $\Gamma_K(n)$ acts transitively on the block

$$[\infty]_K = \left\{ \frac{x}{y} \in \widehat{\mathbb{Q}} : \overline{x} \in -K \cup K, y \equiv 0 \mod n \right\}.$$

Proposition 1. Let n, m be positive integers, K and K' be subgroups of \mathbb{Z}_n^* and \mathbb{Z}_m^* , respectively. Then the following statements are equivalent,

- 1) $\Gamma_K(n) \leq \Gamma_{K'}(m)$,
- 2) $[\infty]_K \subseteq [\infty]_{K'}$,
- 3) $m \mid n \text{ and } \{k \in \mathbb{Z} : \overline{k}_n \in -K \cup K\} \subseteq \{k \in \mathbb{Z} : \overline{k}_m \in -K' \cup K'\}.$

Proof. 1) \Rightarrow 2) It is obvious from the fact that if $H \leq G$, the orbit H(x) is always contained in the orbit G(x).

2) \Rightarrow 3) Suppose that $[\infty]_K \subseteq [\infty]_{K'}$, and $a \in \{k \in \mathbb{Z} : \overline{k}_n \in -K \cup K\}$. Then $\frac{a}{n} \in [\infty]_K \subseteq [\infty]_{K'}$. This implies that $m \mid n$ and $\overline{a}_m \in -K' \cup K'$, that is, $a \in \{k \in \mathbb{Z} : \overline{k}_m \in -K' \cup K'\}$.

3) \Rightarrow 1) Suppose that the conditions hold, and $\begin{pmatrix} a & b \\ c & d \end{pmatrix}$ belongs to $\Gamma_K(n)$. Then $\overline{a}_n \in -K \cup K$ and $c \equiv 0 \mod n$. Since $m \mid n$, we have $c \equiv 0 \mod m$. The remaining condition implies that $\overline{a}_m \in -K' \cup K'$. Hence, $\begin{pmatrix} a & b \\ c & d \end{pmatrix} \in \Gamma_{K'}(m)$.

2. The graph $\mathcal{F}_{u,n}^{K}$

In this section we determine the graph $\mathcal{F}_{u,n}^{K}$ and describe general properties of the graph, for example, edge conditions and isomorphism results. Let $\mathcal{G}(v, w)$ be a suborbital graph for Γ on $\widehat{\mathbb{Q}}$. The directed graph $\mathcal{G}(v, w)$ and its arrow reversed graph $\mathcal{G}(w, v)$ are called *paired* suborbital graphs. In the case $\mathcal{G}(v, w) = \mathcal{G}(w, v)$, the graphs become undirected, we will call them *self-paired*. Since Γ acts transitively on the set $\widehat{\mathbb{Q}}$, there is a transformation $\gamma \in \Gamma$ mapping v to ∞ . Hence, a suborbital graphs $\mathcal{G}(v, w)$ and $\mathcal{G}(\infty, \gamma(w))$ are identical. If $\gamma(w) = \frac{u}{n}$ where $u, n \in \mathbb{Z}, n \ge 0$ and $\gcd(u, n) = 1$, the graph will be simply denoted by $\mathcal{G}_{u,n}$. This is a notation traditionally used in [8] and the related research. In the case $\frac{u}{n} = \infty$, the graph just contains loop at every vertex, and every vertex is not adjacent to others. This is a trivial case of the suborbital graphs, and need not be studied. We will consider only the nontrivial case, that is, $\frac{u}{n} \neq \infty$. In this case we let all edges be complete geodesics in the upper half-plane \mathbb{H}^2 joining between two vertices. We denote by $\mathcal{F}_{u,n}^K$ the subgraph of $\mathcal{G}_{u,n}$ whose vertex set is the block $[\infty]_K$. For the case $\Gamma_K(n) = \Gamma_0(n)$, the graph and the block will be simply denoted by $\mathcal{F}_{u,n}$ and $[\infty]_0$, respectively. The remark below demonstrates a trivial result immediate from Proposition 1 and the definition of $\mathcal{F}_{u,n}^K$.

Remark 1. If $K \leq K'$, then $\mathcal{F}_{u,n}^K$ is a subgraph of $\mathcal{F}_{u,n}^{K'}$. In particular, $\mathcal{F}_{u,n}^K$ is a subgraph of $\mathcal{F}_{u,n}$.

For n = 1, we obtain $\Gamma_K(n) = \Gamma$ and $[\infty]_K = \widehat{\mathbb{Q}}$. Hence $\mathcal{G}_{1,1} = \mathcal{F}_{1,1} = \mathcal{F}_{1,1}^K$. We call this graph the *Farey graph*. The following are some basic results of suborbital graphs for Γ which were obtained in [8].

Lemma 1. Γ acts on vertices and edges of $\mathcal{G}_{u,n}$ transitively.

Lemma 2. $\mathcal{G}_{u,n} = \mathcal{G}_{u',n'}$ if and only if n = n' and $u \equiv u' \mod n$.

Lemma 3. $\mathcal{G}_{u,n}$ is self-paired if and only if $u^2 \equiv -1 \mod n$.

Lemma 4. No edges of $\mathcal{F}_{1,1}$ cross in \mathbb{H}^2 .

Proposition 2. There is an edge $\frac{r}{s} \to \frac{x}{y}$ in $\mathcal{G}_{u,n}$ if and only if one of the following conditions holds,

- 1) $x \equiv ur \mod n, y \equiv us \mod n \text{ and } ry sx = n$,
- 2) $x \equiv -ur \mod n, y \equiv -us \mod n \text{ and } ry sx = -n.$

Next we state the first result for the graph $\mathcal{F}_{u,n}^K$, the edge conditions. Let us consider the fractions $\frac{r}{s}$ and $\frac{x}{y}$ in the previous proposition. If they are in the block $[\infty]_K$, then $s \equiv r \equiv 0 \mod n$, so $s \equiv \pm ur \mod n$. We now have the following proposition immediately.

Proposition 3. There is an edge $\frac{r}{s} \to \frac{x}{y}$ in $\mathcal{F}_{u,n}^{K}$ if and only if it satisfies one of the following conditions,

- 1) $x \equiv ur \mod n \text{ and } ry sx = n$,
- 2) $x \equiv -ur \mod n \text{ and } ry sx = -n.$

Suppose that $v \to w$ is an edge of $\mathcal{F}_{u,n}^K$. Then there exists a transformation $\gamma \in \Gamma$ such that $\gamma(\infty \to \frac{u}{n}) = v \to w$. Since v are in $[\infty]_K$, we can see easily that $\gamma \in \Gamma_K(n)$, and so $\frac{u}{n} = \gamma^{-1}(w) \in (\Gamma_K(n))(\infty) = [\infty]_K$. This means that if $\mathcal{F}_{u,n}^K$ contains edges, it also contains the vertex $\frac{u}{n}$. The converse is also true that if $\frac{u}{n}$ is a vertex of $\mathcal{F}_{u,n}^{K}$, the graph contains edges including the edge $\infty \to \frac{u}{n}$. We conclude this fact in the following corollary.

Corollary 1. $\mathcal{F}_{u,n}^K$ contains edges if and only if $\frac{u}{n} \in [\infty]_K$, i.e., $\overline{u} \in -K \cup K$.

We have known that $\Gamma_K(n)$ acts transitively on the vertex set of $\mathcal{F}_{u,n}^K$, the block $[\infty]_K$. We will show that it also acts transitively on edges of $\mathcal{F}_{u,n}^K$. We may suppose that the graph contains edges. Then Corollary 1 implies that $\frac{u}{n} \in [\infty]_K$. Thus, $\mathcal{F}_{u,n}^K$ is really a suborbital graph for $\Gamma_K(n)$ on the block $[\infty]_K$. We now obtain a trivial consequences coming from [8, Proposition 3.1] that $\Gamma_K(n)$ acts transitively on edges of $\mathcal{F}_{u,n}^K$.

Corollary 2. $\Gamma_K(n)$ acts on vertices and edges of $\mathcal{F}_{u,n}^K$ transitively.

The next corollary provides the sufficient and necessary conditions for $\mathcal{F}_{u,n}^{K}$ to be a self-paired suborbital graph for $\Gamma_{K}(n)$.

Corollary 3. $\mathcal{F}_{u,n}^K$ is self-paired if and only if $\overline{u} \in K$ and $u^2 \equiv -1 \mod n$.

Proof. Suppose that $\mathcal{F}_{u,n}^{K}$ is self-paired. By using Lemma 1, $\mathcal{G}_{u,n}$ is selfpaired. Then Lemma 3 implies that $u^{2} \equiv -1 \mod n$, and so, $\overline{u} \in K$ if and only if $-\overline{u} \in K$. Since $\mathcal{F}_{u,n}^{K}$ contains edges, Corollary 1 implies that $\overline{u} \in -K \cup K$. If $\overline{u} \in -K$, we have $-\overline{u} \in K$, and so, $\overline{u} \in K$. For the converse, Lemma 3 implies that $G_{u,n}$ is self-paired. By Corollary 1, $\mathcal{F}_{u,n}^{K}$ contains edges, so it is a self-paired suborbital graph on $[\infty]_{K}$. \Box

Next we verify the isomorphism results for the graph $\mathcal{F}_{u,n}^{K}$. The first one shows that the reflection of $\mathcal{F}_{u,n}^{K}$ across the imaginary axis is another suborbital graph $\mathcal{F}_{-u,n}^{K}$. For the second one, let us consider the case of the graph $\mathcal{F}_{u,n}$ first. Suppose that n is a multiple of a positive integer m. [8, Lemma 5.3 (ii)] shows that $\mathcal{F}_{u,n}$ is an isomorphic subgraph of $\mathcal{F}_{u,m}$. We know by Remark 1 that $\mathcal{F}_{u,n}^{K}$ is a subgraph of $\mathcal{F}_{u,n}$. Hence, $\mathcal{F}_{u,n}^{K}$ becomes an isomorphic subgraph of $\mathcal{F}_{u,m}$. Certainly, the graph $\mathcal{F}_{u,m}$ may not be smallest, so we can find the smaller graph $\mathcal{F}_{u,m}^{K'}$ containing $\mathcal{F}_{u,n}^{K}$ as an isomorphic subgraph.

Let $K' = \{\overline{k}_m : \overline{k}_n \in K\}$. It is not difficult to see that K' is closed under the multiplication modulo m, so $K' \leq \mathbb{Z}_m^*$. We use K' to obtain the general version of [8, Lemma 5.3 (ii)]. We are now ready to prove the proposition.

Proposition 4.

- 1) $\mathcal{F}_{u,n}^K$ is isomorphic to $\mathcal{F}_{-u,n}^K$ by the mapping $v \mapsto -v$.
- 2) If $m \mid n$, then $\mathcal{F}_{u,n}^{K}$ is an isomorphic subgraph of $\mathcal{F}_{u,m}^{K''}$ by the mapping $v \mapsto \frac{nv}{m}$, where K'' is a supergroup of $K' = \{\overline{k}_m : \overline{k}_n \in K\}$. In particular, $\mathcal{F}_{u,n}^{K}$ is an isomorphic subgraph of $\mathcal{F}_{u,m}^{K'}$

Proof. 1) We can see easily that $\frac{r}{s} \in [\infty]_K$ if and only if $\frac{-r}{s} \in [\infty]_K$. Clearly, the mapping is bijective. We need to check that the mapping is edge-preserving so that it is an isomorphism. Let $\frac{r}{s} \to \frac{x}{y}$ be an edge in $\mathcal{F}_{u,n}^K$. Then by Proposition 3, $x \equiv \pm ur \mod n$ and $ry - sx = \pm n$. This implies that $-x \equiv \mp (-u)(-r) \mod n$ and $(-r)y - s(-x) = \mp n$. Therefore, $\frac{-r}{s} \to \frac{-x}{y}$ is an edge of $\mathcal{F}_{-u,n}^K$.

2) We will prove only the particular case, the general case will be obtained directly after applying Remark 1 which implies that $\mathcal{F}_{u,m}^{K'}$ is a subgraph of $\mathcal{F}_{u,m}^{K''}$. Let $m \mid n$, and $v = \frac{r}{sn}$ be a vertex of $\mathcal{F}_{u,n}^{K}$, $s \in \mathbb{Z}$. We then have $v \mapsto \frac{nv}{m} = \frac{r}{sm}$. Since $\gcd(r, sn) = 1$ and $m \mid n, \gcd(r, sm) = 1$. Since $\overline{r}_n \in -K \cup K$, we have $\overline{r}_m \in -K' \cup K'$. Thus, $\frac{r}{sm}$ is a vertex of $\mathcal{F}_{u,n}^{K'}$. The injective property is obvious, so we prove only the edge-preserving property. Suppose that $\frac{r}{sn} \to \frac{x}{yn}$ be an edge of $\mathcal{F}_{u,n}^{K}$. Proposition 3 implies that $x \equiv \pm ur \mod n$, and $r(yn) - (sn)x = \pm n$. Since $m \mid n, x \equiv \pm ur \mod m$. We see that $ry - sx = \pm 1$, so $r(ym) - (sm)x = \pm m$. Therefore, there is an edge $\frac{r}{sm} \to \frac{x}{ym}$ in $\mathcal{F}_{u,n}^{K_m}$.

Corollary 4. No edges of $\mathcal{F}_{u,n}^K$ cross in \mathbb{H}^2

Proof. By using the second result of Proposition 4 with m = 1, $\mathcal{F}_{u,n}^K$ becomes an isomorphic subgraph of $\mathcal{F}_{1,1}$. Lemma 4 said that there are no edges of $\mathcal{F}_{1,1}$ crossing in \mathbb{H}^2 . Then so does $\mathcal{F}_{u,n}^K$.

3. Connectivity of graphs

In this section we investigate connectivity of the graph $\mathcal{F}_{u,n}^{K}$. The goal of this section is to show the following theorem.

Theorem 1. The graph $\mathcal{F}_{u,n}^K$ is connected if and only if $n \leq 4$.

To prove this theorem we consider each case of n. Proposition 5 and Proposition 7 will result the conclusion when $n \leq 4$ and $n \geq 5$, respectively. Now let us consider the graph $\mathcal{F}_{u,n}^K$. We have known from Remark 1 that $\mathcal{F}_{u,n}^K$ is a subgraph of $\mathcal{F}_{u,n}$. The connectivity of $\mathcal{F}_{u,n}$ was already concluded in [8, Theorem 5.10]. However, results for the subgraph does not depend on its supergraph in general. Thus, it is worth examining the connectivity of $\mathcal{F}_{u,n}^{K}$. One can verify that $\mathcal{F}_{u,n}^{K} = \mathcal{F}_{u,n}$ if and only if $-K \cup K = \mathbb{Z}_{n}^{*}$, that is, $\Gamma_{K}(n) = \Gamma_{0}(n)$. Then we prove only the case $-K \cup K \subset \mathbb{Z}_{n}^{*}$. The cases $n \leq 4$ or n = 6 need not be proved since $\mathcal{F}_{u,n}^{K} = \mathcal{F}_{u,n}$ for every subgroup K of \mathbb{Z}_{n}^{*} . For completeness, we conclude them again in the proposition below using the notation $\mathcal{F}_{u,n}^{K}$, and then prove the remaining cases.

Proposition 5. $\mathcal{F}_{u,6}^{K}$ is not connected, but $\mathcal{F}_{u,n}^{K}$ is connected for every $n \leq 4$.

Lemma 5. Let $\frac{j}{k}$ be a reduced fraction where $k \mid n$. Then there are not adjacent vertices v and w of $\mathcal{F}_{u,n}^K$ such that $v < \frac{j}{k} < w$.

Proof. We assume by contrary that v and w are adjacent vertices of $\mathcal{F}_{u,n}^K$. By using Proposition 4 with m = 1, the vertices nv and nw are adjacent in $\mathcal{F}_{1,1}$. Then the edge joining these two vertices crosses an edge $\frac{nj}{k} \to \infty$ of $\mathcal{F}_{1,1}$ in \mathbb{H}^2 that provides a contradiction to Lemma 4. Thus, v and wcannot be adjacent \Box

Lemma 6. Let $a, b, k \in \mathbb{Z}$, and $b \neq 0 \neq k$. Then $\frac{1+2abk}{4b^2k}$ is a reduced fraction.

Proof. Let $p = \gcd(1 + 2abk, 4b^2k)$ and $q = \gcd(p, 2bk)$. Then $q \mid 1 + 2abk$ and $q \mid 2bk$. Thus $q \mid 1$, so q = 1. Hence, $p = \gcd(p, 4b^2k) = 1$.

Proposition 6. If $n \ge 5$, the graph $\mathcal{F}_{u,n}^K$ with $u \equiv \pm 1 \mod n$ is not connected.

Proof. The case n = 6 is concluded in Proposition 5. Then we suppose that $n \neq 6$. By using Lemma 2 and Lemma 4, we can consider only the case u = 1. We see that the block $[\infty]_K$ always contains all fractions $\frac{r}{s}$ with $r \equiv \pm 1 \mod n$ and $s \equiv 0 \mod n$. If the block $[\infty]_K$ contains another fraction $\frac{x}{y}$ with $x \not\equiv \pm 1 \mod n$, by using Proposition 3, $\frac{x}{y}$ is never joined to $\frac{r}{s}$. This provides disconnectedness of the graph. Next we suppose that the block $[\infty]_K$ contains only fractions $\frac{r}{s}$ where $r \equiv \pm 1$ mod n and $s \equiv 0 \mod n$. Since $n \ge 5$ and $n \ne 6$, there are at least two proper fractions $\frac{z}{n}$ and $\frac{z'}{n}$ such that $\frac{1}{n} < \frac{z}{n} < \frac{z'}{n} < \frac{n-1}{n}$. We will show that the interval $(\frac{z}{n}, \frac{z'}{n})$ contains some vertices of $\mathcal{F}_{u,n}^K$. Certainly, every vertex of the graph in this interval is not adjacent to ∞ . By using Lemma 6 with a = z + z' and b = n, we obtain that $\frac{1+2(z+z')nk}{4n^{2}k}$ is a reduced fraction. Obviously, it is contained in $[\infty]_K$ for every $k \in \mathbb{N}$. If we consider this fraction as an infinite sequence over the index k, the sequence converges to the fraction $\frac{z+z'}{2n}$, the middle value of the open interval $(\frac{z}{n}, \frac{z'}{n})$. Thus, the interval contains vertices of $\mathcal{F}_{u,n}^K$. We now replace $\frac{j}{k}$ in Lemma 5 by $\frac{z}{n}$ and $\frac{z'}{n}$. Hence, vertices of $\mathcal{F}_{u,n}^K$ in the interval $(\frac{z}{n}, \frac{z'}{n})$ is separated from others outside the interval providing disconnectedness of the graph. \Box

Lemma 7. If $u \not\equiv \pm 1 \mod n$, then there are not adjacent vertices v and w of $\mathcal{F}_{u,n}^K$ such that $v < \frac{1}{2} < w$.

Proof. The case that n is even follows from Lemma 5. We then suppose that n is odd. Assume that v is adjacent to w. Then Lemma 4 implies that nv and nw are adjacent vertices in $\mathcal{F}_{1,1}$. By using [8, Lemma 4.1], nv and nw are adjacent term in some \mathcal{F}_m , the Farey sequence of order m. Since $nv < \frac{n}{2} < nw$, we obtain m = 1. Then nv = (n-1)/2 and nw = (n+1)/2, so $v = \frac{(n-1)/2}{n}$ and $w = \frac{(n+1)/2}{n}$. If $v \to w$ is an edge in $\mathcal{F}_{u,n}^K$, Proposition 3 implies that $(n+1)/2 \equiv -u(n-1)/2 \mod n$. Then $1 \equiv -u(-1) \equiv u$ mod n which contradicts to the assumption. For the case that $w \to v$ is an edge of $\mathcal{F}_{u,n}^K$, we will obtain $u \equiv -1 \mod n$. This also provides a contradiction. Therefore, v and w are not adjacent in $\mathcal{F}_{u,n}^K$.

Proposition 7. $\mathcal{F}_{u,n}^{K}$ is not connected for every $n \ge 5$.

Proof. In this proposition we prove the remaining cases. Here, we can assume that $-K \cup K \subset \mathbb{Z}_n^*$ and $u \not\equiv \pm 1 \mod n$. Since $-K \cup K \subset \mathbb{Z}_n^*$, there exists $\frac{t}{n} \in (0,1)$ such that $\frac{t}{n} \notin [\infty]_K$. By using Proposition 3, one can compute that there are at most two vertices of $\mathcal{F}_{u,n}^K$ in the interval (0,1) adjacent to ∞ . Hence, there is at least one interval $(\frac{r}{s}, \frac{x}{y})$, where $\frac{r}{s}, \frac{x}{y} \in \{0, \frac{1}{2}, \frac{t}{n}, 1\}$, not containing these two vertices. We now put a = ry + sx, b = sy, and apply Lemma 6 with the same step used in Proposition 6. We finally obtain at least one vertex of $\mathcal{F}_{u,n}^K$ contained in $(\frac{r}{s}, \frac{x}{y})$. Certainly, every vertex of $\mathcal{F}_{u,n}^K$ in $(\frac{r}{s}, \frac{x}{y})$ is not adjacent to ∞ . By applying Lemma 5, some cases may require Lemma 7, the vertices in $(\frac{r}{s}, \frac{x}{y})$ is not adjacent to other vertices this interval. Thus $\mathcal{F}_{u,n}^K$ is not connected. \Box

4. Circuits of graphs

This section discusses circuits of the graph $\mathcal{F}_{u,n}^K$. A *circuit* of $\mathcal{F}_{u,n}^K$ is a sequence of $m \ge 3$ different vertices $v_1, v_2, \ldots, v_m \in \mathcal{F}_{u,n}^K$ such that $v_1 \to v_2 \to \cdots \to v_m \to v_1$ and some arrows may be reversed. If m = 3,

we call it a *triangle*. A *directed triangle* is a triangle whose arrows are in the same direction. Otherwise, called an *anti-directed triangle*. The next two statements, Proposition 8 and Remark 2, provide sufficient and necessary conditions for the graph $\mathcal{F}_{u,n}^{K}$ to contain triangles.

Proposition 8. $\mathcal{F}_{u,n}^K$ contains directed triangles if and only if $\frac{u}{n} \in [\infty]_K$ and $u^2 \pm u + 1 \equiv 0 \mod n$.

Proof. Let $\mathcal{F}_{u,n}^K$ contains directed triangles. Then so does $\mathcal{F}_{u,n}$ since $\mathcal{F}_{u,n}^K$ is a subgraph $\mathcal{F}_{u,n}$. By [8, Theorem 5.11] we have $u^2 \pm u + 1 \equiv 0 \mod n$. Since $\mathcal{F}_{u,n}^K$ contains edges, Corollary 1 implies that $\frac{u}{n} \in [\infty]_K$. For the converse implication, we suppose that the conditions hold. Then $\overline{u} \in -K \cup K$. Since $u^2 \pm u + 1 \equiv 0 \mod n$, $\overline{u \pm 1} = \mp \overline{u}^2 \in -K \cup K$. We now obtain $\frac{u \pm 1}{n} \in [\infty]_K$. By Proposition 3, one can easily check that the graph $\mathcal{F}_{u,n}^K$ contains the directed triangle of the form $\infty \to \frac{u}{n} \to \frac{u \pm 1}{n} \to \infty$. \Box

It is not difficult to see that $\mathcal{F}_{u,1} = \mathcal{F}_{1,1}$ is a self-paired graph containing directed triangles. Then, it contains anti-directed triangles. [8, Theorem 5.11 (ii)] said that $\mathcal{F}_{u,n}$ contains no anti-directed triangles if $n \ge 1$. Since $\mathcal{F}_{u,n}^{K}$ is a subgraph of $\mathcal{F}_{u,n}$ and they are identical if n = 1, it is worth to remark that,

Remark 2. $\mathcal{F}_{u,n}^K$ contains anti-directed triangles if and only if n = 1.

The next proposition was proved in [1, Theorem 10] for the case of $\mathcal{F}_{u,n}$ that the graph is a *forest*, a graph contains no circuits, if and only if it contains no triangles. The general case can be proved by using this fact together with Proposition 8.

Theorem 2. $\mathcal{F}_{u,n}^K$ is a forest if and only if it contains no triangles, i.e., $\frac{u}{n} \notin [\infty]_K$ or $u^2 \pm u + 1 \not\equiv 0 \mod n$.

Proof. The forward implication is clear by the definition of a forest. For the converse we assume the contrary that $\mathcal{F}_{u,n}^{K}$ contains circuits. Then so does $\mathcal{F}_{u,n}$. By the proof of [1, Theorem 10], $\mathcal{F}_{u,n}$ contains triangles. Thus, we have $u^2 \pm u + 1 \equiv 0 \mod n$. Since there is an edge in $\mathcal{F}_{u,n}^{K}$, Corollary 1 implies that $\frac{u}{n} \in [\infty]_K$. By Proposition 8, $\mathcal{F}_{u,n}^{K}$ contains triangles. \Box

We know from Theorem 1 that $\mathcal{F}_{u,n}^K$ is connected if and only if $n \leq 4$. Combine with Theorem 2, we obtain the following corollary.

Corollary 5. $\mathcal{F}_{u,n}^K$ is a tree if and only if n = 2, 4.

In Section 2 we have proved that $\Gamma_K(n)$ acts transitively on vertices and edges of $\mathcal{F}_{u,n}^K$, see Corollary 2. This situation also occurs for directed triangles. The proof can be done by using the transitivity of the action of $\Gamma_K(n)$ on edges of $\mathcal{F}_{u,n}^K$.

Proposition 9. $\Gamma_K(n)$ acts on directed triangles of $\mathcal{F}_{u,n}^K$ transitively.

Proof. By Proposition 8, we see that if $\mathcal{F}_{u,n}^K$ contains triangles, it always contains the triangle $\frac{1}{0} \to \frac{u}{n} \to \frac{u\pm 1}{n} \to \frac{1}{0}$. Suppose that $v_1 \to v_2 \to v_3 \to v_1$ is an arbitrary directed triangle in $\mathcal{F}_{u,n}^K$. It is sufficient to show that there is a transformation $\gamma \in \Gamma_K(n)$ such that $\gamma(\infty \to \frac{u}{n} \to \frac{u\pm 1}{n} \to \infty) = v_1 \to v_2 \to v_3 \to v_1$.

Since $v_1 \to v_2$ is an edge of the graph $\mathcal{F}_{u,n}^K$, Corollary 2 implies that there is an element $\gamma \in \Gamma_K(n)$ such that $\gamma(\infty \to \frac{u}{n}) = v_1 \to v_2$. One can verify that γ is unique. Next we prove $\gamma(\frac{u\pm 1}{n}) = v_3$. Since $v_3 \to v_1$ and $v_2 \to v_3$ are edges of $\mathcal{F}_{u,n}^K$, we obtain that $\gamma^{-1}(v_3 \to v_1) = \gamma^{-1}(v_3) \to \infty$ and $\gamma^{-1}(v_2 \to v_3) = \frac{u}{n} \to \gamma^{-1}(v_3)$ are edges of $\mathcal{F}_{u,n}^K$. First, we apply edge conditions, Proposition 3, to the first identity and obtain $\gamma^{-1}(v_3) = \frac{x}{n}$ for some $x \in \mathbb{Z}$. Next we replace $\gamma^{-1}(v_3)$ in the second identity by $\frac{x}{n}$ and apply Proposition 3 again. Then $un - xn = \pm n$, and so $x = u \pm 1$. Thus, $\gamma(\frac{u\pm 1}{n}) = v_3$. The proof is now complete. \Box

In the proof of the previous proposition, the triangle $v_1 \rightarrow v_2 \rightarrow v_3 \rightarrow v_1$ is arbitrary. If we replace v_1, v_2 and v_3 by $\frac{u}{n}, \frac{u\pm 1}{n}$ and ∞ , respectively, then there is a unique transformation $\gamma_1 \in \Gamma_K(n)$ rotating the triangle $\infty \rightarrow \frac{u}{n} \rightarrow \frac{u\pm 1}{n} \rightarrow \infty$ in such a way that $\gamma_1(\infty \rightarrow \frac{u}{n} \rightarrow \frac{u\pm 1}{n} \rightarrow \infty) = \frac{u}{n} \rightarrow \frac{u\pm 1}{n} \rightarrow \infty \rightarrow \frac{u}{n}$. One can show easily that

$$\gamma_1 = \begin{pmatrix} u & -(u^2 \pm u + 1)/n \\ n & -(u \pm 1) \end{pmatrix}.$$

Therefore, γ_1 and γ in the proof above induce a unique transformation $\gamma\gamma_1\gamma^{-1}$ rotating another given directed triangle in $\mathcal{F}_{u,n}^K$. We provide the lemma below after concluding this result with more precisely.

Lemma 8. Let $\gamma = \begin{pmatrix} a & b \\ c & d \end{pmatrix}$ is an elliptic element of the modular group Γ , that is |a + d| < 2. if |a + d| = 0, then γ has order 2, otherwise, γ has order 3.

Proof. Suppose that |a + d| = 0. Then $\gamma = \begin{pmatrix} a & b \\ c & -a \end{pmatrix}$, so $-a^2 - bc = 1$. We see that

$$\gamma^{2} = \begin{pmatrix} a^{2} + bc & ab - ab \\ ac - ac & a^{2} + bc \end{pmatrix} = \begin{pmatrix} -1 & 0 \\ 0 & -1 \end{pmatrix}$$

becomes the identity transformation. Hence, γ has order 2.

Next suppose that |a + d| = 1. Then $d = -(a \pm 1)$. We will prove only the case d = -a - 1. The other case can be proved similarly. Now we have $\gamma = \begin{pmatrix} a & b \\ c & -a - 1 \end{pmatrix}$ and $-a^2 - a - bc = 1$. Consider

$$\gamma^{2} = \begin{pmatrix} a^{2} + bc & ab - ab - b \\ ac - ac - c & a^{2} + 2a + 1 + bc \end{pmatrix} = \begin{pmatrix} -a - 1 & -b \\ -c & a \end{pmatrix}.$$

We see that γ^2 is the inverse transformation of γ . Then γ has order 3. \Box

Remark 3. Elements of Γ which are conjugate to elliptic elements are elliptic, so $\gamma \gamma_1 \gamma^{-1}$ is elliptic.

Corollary 6. There is a unique elliptic element γ of order 3 in $\Gamma_K(n)$ rotating a triangle $v_1 \rightarrow v_2 \rightarrow v_3 \rightarrow v_1$ of $\mathcal{F}_{u,n}^K$ in such a way that $\gamma(v_1 \rightarrow v_2 \rightarrow v_3 \rightarrow v_1) = v_2 \rightarrow v_3 \rightarrow v_1 \rightarrow v_2$.

The above corollary and the two consequences below are all about relations between elliptic elements in the group $\Gamma_K(n)$ and its suborbital graph $\mathcal{F}_{u,n}^K$. All of them were proved already in [1] for the version of $\Gamma_0(n)$ and $\mathcal{F}_{u,n}$. The proofs of the two results below follow from the former.

Theorem 3. $\Gamma_K(n)$ contains an elliptic element of order 3 if and only if there exists $\overline{u} \in -K \cup K$ such that $\mathcal{F}_{u,n}^K$ contains a triangle.

Proof. Suppose that

$$\gamma = \begin{pmatrix} a & b \\ c & d \end{pmatrix}$$

is an elliptic element of order 3 contained in $\Gamma_K(n)$. Then Lemma 8 implies that |a + d| = 1. Since $\gamma \in \Gamma_K(n)$, $ad \equiv 1 \mod n$. Thus $a^2 \pm a + 1 \equiv 0 \mod n$. Certainly, $\overline{a} \in -K \cup K$. If we choose $u \equiv a \mod n$, Theorem 8 implies that $\mathcal{F}_{u,n}^K$ contains a triangle. Conversely, suppose that the conditions hold. Again, by using Theorem 8, we obtain $u^2 \pm u + 1 \equiv 0 \mod n$. Now let γ be the transformation

$$\gamma_1 = \begin{pmatrix} u & -(u^2 \pm u + 1)/n \\ n & -(u \pm 1) \end{pmatrix}$$

defined before Lemma 8. It is certainly an elliptic element of order 3 in $\Gamma_K(n)$.

Theorem 4. $\Gamma_K(n)$ contains an elliptic element of order 2 if and only if there exists $\overline{u} \in K$ such that $\mathcal{F}_{u,n}^K$ is self-paired. *Proof.* Suppose that

$$\gamma = \begin{pmatrix} a & b \\ c & d \end{pmatrix}$$

is an elliptic element of order 2 contained in $\Gamma_K(n)$. Then Lemma 8 implies that a + d = 0. Since $\gamma \in \Gamma_K(n)$, $ad \equiv 1 \mod n$. Then $a^2 \equiv -1 \mod n$. Certainly, $\overline{a} \in -K \cup K$. If $\overline{a} \in K$, we choose $u \equiv a \mod n$. If $\overline{a} \in -K$, we choose $u \equiv -a \mod n$. Thus, we have $\overline{u} \in K$ and $u^2 \equiv -1 \mod n$. Now apply Corollary 3, we obtain that $\mathcal{F}_{u,n}^K$ is self-paired. Conversely, suppose that the conditions hold. Again, by using Corollary 3, we obtain $u^2 \equiv -1 \mod n$, that is, $u^2 + 1 \equiv 0 \mod n$. Hence by computation, the transformation

$$\begin{pmatrix} u & -(u^2+1)/n \\ n & -u \end{pmatrix}$$

belongs to $\Gamma_K(n)$. Lemma 8 implies that it is an elliptic element of order 2.

5. Graphs for conjugate subgroups of Γ

This section is inspired by [5,7] which studied suborbital graphs for the groups $\Gamma_0(n)$ and $\Gamma^0(n)$, respectively. As subgroups of the modular group Γ , they are considered to act on $\widehat{\mathbb{Q}}$, and their specific suborbital graphs were determined on their orbits whom they act transitively. We extend the topic to the case of $\Gamma_K(n)$ and $\Gamma^K(n)$. The discussion shows that we can study only the suborbital graph $\mathcal{F}_{u,n}^K$ to conclude some general properties of a suborbital graph for $\Gamma^K(n)$ through a graph isomorphism.

We start with the spacial case of the groups $\Gamma_0(n)$ and $\Gamma^0(n)$. The group $\Gamma^0(n)$ is another congruence subgroup of Γ determined by,

$$\Gamma^{0}(n) = \left\{ \begin{pmatrix} a & b \\ c & d \end{pmatrix} \in \Gamma : b \equiv 0 \mod n \right\}.$$

It is conjugate to the group $\Gamma_0(n)$. More precisely, $\Gamma^0(n) = \gamma \Gamma_0(n) \gamma^{-1}$ where $\gamma = \begin{pmatrix} 0 & -1 \\ 1 & 0 \end{pmatrix} \in \Gamma$. In [5], the authors determined the suborbital graphs of $\Gamma_0(n)$ on its orbit containing ∞ , $(\Gamma_0(n))(\infty) = \{\frac{x}{y} \in \widehat{\mathbb{Q}} : y \equiv 0 \mod n\}$. They assumed and studied for the case that n is a prime number p. Suborbital graphs whom they studied are, in fact, the graph $\mathcal{F}_{u,p}$ on the block $[\infty]_0$. Likewise, in [7], the authors studied suborbital graphs for $\Gamma^0(p)$. In this case the graphs were determined on the orbit of 0, $(\Gamma^0(p))(0) = \{\frac{x}{y} \in \widehat{\mathbb{Q}} : x \equiv 0 \mod p\}$. We shall roughly denote it by $\bar{\mathcal{F}}_{p,u}$, the suborbital graph for $\Gamma^0(p)$ whose edges from the suborbital $(\Gamma^0(p))(0, \frac{p}{u})$. What is the relation between the graphs $\mathcal{F}_{u,p}$ and $\bar{\mathcal{F}}_{p,u}$?

We see that $(\Gamma^0(p))(0, \frac{p}{u}) = (\gamma \Gamma_0(n))(\infty, \frac{-u}{p})$. Then $\overline{\mathcal{F}}_{p,u}$ is actually a subgraph of $\mathcal{G}_{-u,p}$ on the block $[0]_0 = [\gamma(\infty)]_0$. It is certainly isomorphic to the graph $\mathcal{F}_{-u,p}$, and so, isomorphic to the graph $\mathcal{F}_{u,p}$ after applying Proposition 4. This fact can be directly extended to the case of $\Gamma_K(n)$ and $\Gamma^K(n)$ where $\Gamma^K(n)$ is a congruence subgroup of Γ defined by

$$\Gamma^{K}(n) = \left\{ \begin{pmatrix} a & b \\ c & d \end{pmatrix} \in \Gamma : \overline{a} \in -K \cup K, \text{ and } b \equiv 0 \mod n \right\}$$

Certainly, $\Gamma^0(n) = \gamma \Gamma_0(n) \gamma^{-1}$. We let $\overline{\mathcal{F}}_{n,u}^K$ denote the suborbital graph for $\Gamma^K(n)$ on the orbit $(\Gamma^K(n))(0) = [0]_K$ where the suborbital $(\Gamma^K(p))(0, \frac{n}{u})$ is the set of edges.

Proposition 10. $\mathcal{F}_{u,n}^{K}$, $\mathcal{F}_{-u,n}^{K}$, $\bar{\mathcal{F}}_{n,u}^{K}$ and $\bar{\mathcal{F}}_{n,-u}^{K}$ are isomorphic.

Next we discuss the more general suborbital graph for $\Gamma_K(n)$ on $[\infty]_K$. We have known that if $\mathcal{F}_{u,n}^K$ contains edges, it is certainly a suborbital graph for $\Gamma_K(n)$. However, not all suborbital graphs for $\Gamma_K(n)$ can be represented by some $\mathcal{F}_{u,m}^{K'}$. We need to introduce some notations before clarifying this claim by a trivial example on $\Gamma_0(2)$.

Notation. We denote by $\mathcal{F}_n^K(\infty, v)$ the suborbital graph for $\Gamma_K(n)$ on $[\infty]_K$ whose edges from the suborbital $(\Gamma_K(n))(\infty, v)$, and denote by $\overline{\mathcal{F}}_n^K(0, v)$ the suborbital graph for $\Gamma^K(n)$ on $[0]_K$ whose edges from the suborbital $(\Gamma^K(n))(0, v)$. For the case of $\Gamma_0(n)$ and $\Gamma^0(n)$ we will leave the letter K for the notation of graphs and replace K by 0 for the notation of blocks.

Let us consider the block $[\infty]_0$ of the group $\Gamma_0(2)$. It certainly contains the fraction $\frac{1}{4}$. We show that $\mathcal{F}_2(\infty, \frac{1}{4})$ cannot be written as the graph $\mathcal{F}_{u,n}^K$ for some $\frac{u}{n} \in \widehat{\mathbb{Q}}$, and some $K \leq \mathbb{Z}_n^*$. If $\mathcal{F}_2(\infty, \frac{1}{4}) = \mathcal{F}_{u,n}^K$, then $\frac{1}{4} \in [\infty]_K$, and so $n \mid 4$. Thus n = 1, 2, 4. It is obvious that $n \neq 1$ and $n \neq 4$ because they provide vertex sets which are larger and smaller than $[\infty]_0$, respectively. For the remaining case, it is clear that $\mathcal{F}_2(\infty, \frac{1}{4}) \neq \mathcal{F}_{1,2}$ since $\mathcal{F}_{1,2}$ does not contain the edge $\infty \to \frac{1}{4}$. Surely, the same situation occurs on the graphs for $\Gamma^K(n)$. However, we see that $\mathcal{F}_n^K(\infty, \frac{u}{m})$ and $\overline{\mathcal{F}}_n^K(0, -\frac{m}{u})$ are subgraphs of $\mathcal{G}_{u,m}$ restricted on the blocks $[\infty]_K$ and $[0]_K$, respectively. Then the following result is still true.

Proposition 11. $\mathcal{F}_n^K(\infty, \frac{u}{m})$ and $\bar{\mathcal{F}}_n^K(0, -\frac{m}{u})$ are isomorphic.

We have shown that some suborbital graph for $\Gamma_K(n)$ on the block $[\infty]_K$ can not be written as $\mathcal{F}_{u,m}^{K'}$. However, the graph is, in fact, the disjoint union of copies of some graph $\mathcal{F}_{u,m}^{K'}$. This is the reason why we can study only the graph which is represented by $\mathcal{F}_{u,n}^K$ to obtain the results for this general case.

Let us consider the graph $\mathcal{F}_{n}^{K}(\infty, \frac{u}{m})$. Certainly, $n \mid m$ and $\overline{u}_{n} \in -K \cup K$. We may assume that $\overline{u}_{n} \in K$, and define $K' = \langle \overline{u}_{m} \rangle$, the cyclic subgroup of \mathbb{Z}_{m}^{*} generated by \overline{u}_{m} . One can verify easily that the union of all congruence classes in K' is a subset of the union of those congruence classes in K. Thus, Proposition 1 implies that $\Gamma_{K'}(m) \leq \Gamma_{K}(n)$. We now have $\Gamma_{K}(n)_{\infty} < \Gamma_{K'}(m) \leq \Gamma_{K}(n)$, where $\Gamma_{K}(n)_{\infty}$ is the stabilizer subgroup of $\Gamma_{K}(n)$ fixing ∞ . Similar to the case of Γ and its congruence subgroup, this provides the $\Gamma_{K}(n)$ -invariant equivalence relation on the block $[\infty]_{K}$ related to $\Gamma_{K'}(m)$, and the partition $\{(\gamma \Gamma_{K'}(m))(\infty) : \gamma \in \Gamma_{K}(n)\}$ on $[\infty]_{K'}$ is formed. We see that the orbit $(\Gamma_{K'}(m))(\infty)$ is, in fact, the block $[\infty]_{K'}$ and the restriction of the graph $\mathcal{F}_{K}(\infty, \frac{u}{m})$ on $[\infty]_{K'}$ is actually the graph $\mathcal{F}_{u,m}^{K'}$. Therefore $\mathcal{F}(\infty, \frac{u}{m})$ is the disjoint union of j copies of the graph $\mathcal{F}_{u,m}^{K'}$ and $\mathcal{F}_{-u,m}^{K'}$ are isomorphic, then $\mathcal{F}(\infty, \frac{u}{m})$ and $\mathcal{F}(\infty, \frac{-u}{m})$ are isomorphic. After applying this result together with the previous proposition, we now have the following consequences immediately.

Theorem 5. $\mathcal{F}^{K}(\infty, \frac{u}{m}), \mathcal{F}^{K}(\infty, -\frac{u}{m}), \bar{\mathcal{F}}^{K}(0, \frac{m}{u}), \bar{\mathcal{F}}^{K}(0, -\frac{m}{u})$ are isomorphic.

Corollary 7. $\mathcal{F}(\infty, \frac{u}{m})$, $\mathcal{F}(\infty, -\frac{u}{m})$, $\overline{\mathcal{F}}(0, \frac{m}{u})$, $\overline{\mathcal{F}}(0, -\frac{m}{u})$ are isomorphic.

Acknowledgement

This research was supported by Chiang Mai University.

References

- M. Akbas. On suborbital graphs for the modular group, Bull. London Math. Soc., Vol. 33, N. 6, 2001, pp. 647–652.
- [2] Mehmet Akbaş, Tuncay Kör, Yavuz Kesicioğlu. Disconnectedness of the subgraph F³ for the group Γ³, J. Inequal. Appl., Vol. 2013:283, 2013.
- [3] Murat Beşenk, Bahadır Ö. Güler, Ali H. Değer, Yavuz Kesicioğlu. Circuit lengths of graphs for the Picard group, J. Inequal. Appl., Vol. 2013:106, 2013.
- [4] Ali H. Değer, Murat Beşenk, Bahadır Ö. Güler, On suborbital graphs and related continued fractions, Appl. Math. Comput., Vol. 218, N. 3, 2011, pp.746–750.

- [5] Bahadir O. Guler, Serkan Kader, Murat Besenk, On suborbital graphs of the congruence subgroup Γ₀(N), Int. J. Comput. Math. Sci., Vol. 2, N. 3, 2008, pp. 153–156.
- [6] Bahadır Ö. Güler, Murat Beşenk, Yavuz Kesicioğlu, Ali Hikmet Değer, Suborbital graphs for the group Γ², Hacettepe Journal of Mathematics and Statistics, Vol. 44, N. 5, 2015, pp. 1033–1044.
- [7] Bahadır Ö. Güler, Serkan Kader, On the action of Γ⁰(N) on Q, Note Mat., Vol. 30, N. 2, 2010, pp. 141–148.
- [8] G. A. Jones, D. Singerman, K. Wicks, *The modular group and generalized Farey graphs*, Groups–St. Andrews 1989, Vol. 2, London Math. Soc. Lecture Note Ser., 160, Cambridge Univ. Press, Cambridge, 1991, pp. 316–338.
- [9] Serkan Kader, Bahadır Ö. Güler, On suborbital graphs for the extended modular group Γ̂, Graphs Combin., Vol. 29, N. 6, 2013, pp. 1813–1825.
- [10] I. N. Kamuti, E. B. Inyangala, J. K. Rimberia, Action of Γ_{∞} on \mathbb{Z} and the corresponding suborbital graphs, Int. Math. Forum, Vol. 7, N. 30, 2012, pp. 1483–1490.
- [11] Yavuz Kesicioğlu, Mehmet Akbaş, Murat Beşenk. Connectedness of a suborbital graph for congruence subgroups, J. Inequal. Appl., Vol. 2013:117, 2013.
- [12] Refik Keskin, On suborbital graphs for some Hecke groups, Discrete Math., Vol. 234, 2001, pp. 53–64.
- [13] R. Sarma, S. Kushwaha, R. Krishnan, Continued fractions arising from F_{1,2}, J. Number Theory, Vol. 154, 2015, pp. 179–200.
- [14] Charles C. Sims. Graphs and finite permutation groups, Mathematische Zeitschrift, Vol. 95, N. 1, 1967, pp. 76–86.

CONTACT INFORMATION

Pradthana Jaipong	Research Center in Mathematics and Applied Mathematics, Department of Mathematics, Faculty of Science, Chiang Mai University, Chiang Mai, 50200, Thailand <i>E-Mail(s)</i> : pradthana.j@cmu.ac.th
Wanchai Tapanyo	Division of Mathematics and Statistics, Faculty of Science and Technology, Nakhon Sawan Rajabhat University, Nakhon Sawan, 60000, Thailand <i>E-Mail(s)</i> : wanchai.t@nsru.ac.th

Received by the editors: 13.10.2016.