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Abstract. Let G be a graph with the eigenvalues λ1(G) >
· · · > λn(G). The largest eigenvalue of G, λ1(G), is called the
spectral radius of G. Let β(G) = ∆(G) − λ1(G), where ∆(G) is
the maximum degree of vertices of G. It is known that if G is a
connected graph, then β(G) > 0 and the equality holds if and only
if G is regular. In this paper we study the maximum value and the
minimum value of β(G) among all non-regular connected graphs.
In particular we show that for every tree T with n > 3 vertices,
n − 1 −

√
n − 1 > β(T ) > 4 sin2( π

2n+2
). Moreover, we prove that in

the right side the equality holds if and only if T ∼= Pn and in the
other side the equality holds if and only if T ∼= Sn, where Pn and
Sn are the path and the star on n vertices, respectively.

1. Introduction

Throughout this paper all graphs are simple, that is finite and undi-
rected without loops and multiple edges. Let G = (V, E) be a simple
graph. The order of G denotes the number of vertices of G. For two
vertices u and v by e = uv we mean the edge e between u and v. For two
graphs G1 = (V1, E1) and G2 = (V2, E2), the disjoint union of G1 and
G2 denoted by G1 + G2 is the graph with vertex set V1 ∪ V2 and edge set
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E1 ∪ E2. The graph rG denotes the disjoint union of r copies of G. For
every vertex v ∈ V (G), the degree of v is the number of edges incident
with v and is denoted by degG(v). A regular graph is a graph that all
of its vertices have the same degree. By ∆(G) we mean the maximum
degree of vertices of G. For two vertices u and v of connected graph G, the
distance between u and v in G that is denoted by d(u, v), is the length of
a shortest path between u and v. The greatest distance between any two
vertices of G is the diameter of G, denoted by diam(G). The complete

graph, the cycle, and the path of order n, are denoted by Kn, Cn and Pn,
respectively. We denote the complete bipartite graph with part sizes m

and n, by Km,n. The star of order n that is denoted by Sn is the complete
bipartite graph K1,n−1.

Let G be a graph with vertex set {v1, . . . , vn}. The adjacency matrix

of G, A(G) = [aij ], is an n × n matrix such that aij = 1 if vi and vj are
adjacent, and otherwise aij = 0. Thus A(G) is a symmetric matrix with
zeros on the diagonal and all the eigenvalues of A(G) are real. By the
eigenvalues of G we mean those of its adjacency matrix. We denote the
eigenvalues of G by λ1(G) > · · · > λn(G). By the spectral radius of G we
mean λ1(G). We note that λ1(G) is also called the index of G. It is well
known that |λi(G)| 6 λ1(G), for i = 1, . . . , n. Many papers are devoted to
study the characteristic polynomials and spectra of the adjacency matrix
of graphs, in particular characterization of graphs by their eigenvalues
and finding the location of eigenvalues of graphs, see [1]–[17] and the
references therein. Studying the spectral radius of graphs has always been
of great interest to researchers in graph theory, for instance see [1], [3], [5],
[6], [11] and [13]–[17].

Let G be a graph. It is a well known fact that λ1(G) 6 ∆(G). Moreover
if G is connected, then the equality holds if and only if G is regular.
Therefore it is natural to ask about the value of ∆(G) − λ1(G). For
a graph G by β(G) we mean β(G) = ∆(G) − λ1(G). Hence for every
graph G, β(G) > 0. Also if G is connected, then G is regular if and
only if β(G) = 0. One can regard β(G) as a parameter that indicates
the measure of irregularity of G. There are some papers related this
parameter. Cioabă [3] has proved that if G is a non-regular connected
graph of order n, then ∆(G) − λ1(G) > 1

nd
, where d = diam(G). In this

paper we study the maximum value and the minimum value of β(G)
among all non-regular graphs. We show among all non-regular graphs
the stars have the maximum value of β. We prove that for every tree T

with n > 3 vertices, n − 1 −
√

n − 1 > β(T ) > 4 sin2( π
2n+2

). Moreover
we obtain that in the right side the equality holds if and only if T ∼= Pn
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and in the other side the equality holds if and only if T ∼= Sn. Finally we
conjecture that among all non-regular connected graph the paths have
the minimum value of β.

2. Results

In this section we obtain the maximum and the minimum value of
the difference between the spectral radius and the maximum degree of
non-regular connected graphs. We need the following result.

Theorem 1. [4] Let G be a connected graph. If H is a proper subgraph

of G, then λ1(G) > λ1(H).

Now we show that among all graphs the stars attain the maximum
value of β.

Theorem 2. Let G be a graph of order n. Then

β(G) 6 β(Sn) = n − 1 −
√

n − 1.

Moreover the equality holds if and only if G ∼= Sn.

Proof. First we prove the theorem for connected graphs. Let H be a
connected graph of order t. Suppose that H ≇ St. We show that β(H) <

β(St). For t = 1, there is noting to prove. So let t > 2. Let h = ∆(H).
Hence h > 1. Since Sh+1 is a proper subgraph of H, by Theorem 1 we
obtain that

λ1(H) > λ1(Sh+1) =
√

h. (1)

For every x > 0, let f(x) = x − √
x. This function is increasing on the

interval [1

4
, ∞). Since t − 1 > h > 1 by (1),

β(St) = t−1−
√

t − 1 = f(t−1) > f(h) = h−
√

h > h −λ1(H) = β(H).

So for connected graphs the result follows. Now assume that G ≇ Sn be
a non-connected graph of order n. So ∆(G) 6 n − 2. If ∆(G) = 0, there
is nothing to prove. Hence 1 6 ∆(G) 6 n − 2. On the other hand similar
to above, one can see that λ1(G) >

√

∆(G). Since n − 1 > ∆(G) > 1,

f(n − 1) > f(∆(G)) = ∆(G) −
√

∆(G) > ∆(G) − λ1(G) = β(G).

Therefore β(G) < f(n − 1) = n − 1 −
√

n − 1. The proof is complete.
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Remark 1. For every n > 2, let Hn = Kn+K1. Then ∆(Hn) = λ1(Hn) =
n − 1. Therefore β(Hn) = 0 while Hn is not regular. This example shows
that the minimum value of β(G) among all non-regular graphs G or order
n > 2 is zero.

In sequel we study the minim value of β(G) among the family of
non-regular connected graphs G. We need the following nice upper bound
on the spectral radius of trees.

Theorem 3. [14] Let T be a tree with maximum degree ∆. Then

λ1(T ) < 2
√

∆ − 1.

Theorem 4. Let T be a tree of order n > 3. Then

β(T ) > β(Pn) = 4 sin2

(

π

2n + 2

)

.

Moreover the equality holds if and only if T ∼= Pn.

Proof. Let n > 3. Since λ1(Pn) = 2 cos π
n+1

and ∆(Pn) = 2, β(Pn) =

2 − 2 cos π
n+1

= 4 sin2( π
2n+2

). For every x > 1, let f(x) = x − 2
√

x − 1.
It is easy to see that f is an increasing function on the interval [2, ∞).
Therefore for every x > 3, f(x) > 3 − 2

√
2. On the other hand it is not

hard to see that for every n > 7, 3 − 2
√

2 > 4 sin2( π
2n+2

). Hence for every
x > 3 and n > 7 we obtain that

f(x) > 4 sin2

(

π

2n + 2

)

. (2)

One can check the result for n 6 6. Now let n > 7. Let T ≇ Pn be a
tree of order n. We show that β(T ) > β(Pn). Since T ≇ Pn, ∆(T ) > 3.
On the other hand by Theorem 3, λ1(T ) < 2

√

∆(T ) − 1. Since ∆(T ) > 3
and n > 7, by (2),

β(T ) = ∆(T ) − λ1(T ) > ∆(T ) − 2
√

∆(T ) − 1

= f(∆(T )) > 4 sin2

(

π

2n + 2

)

= β(Pn).

This completes the proof.

Using Theorems 2 and 4 we obtain the following result.
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Theorem 5. Let T be a tree of order n. Then

β(Pn) 6 β(T ) 6 β(Sn).

Moreover in the left side the equality holds if and only if T ∼= Pn and in

the other side the equality holds if and only if T ∼= Sn.

We think that among all non-regular connected graphs G of order n

the path Pn has the minimum value of β. Hence we pose the following
conjecture.

Conjecture 1. Let G be a non-regular connected graph of order n. If
G ≇ Pn, then β(G) > β(Pn).

Now we show that the Conjecture 1 is valid for graphs with small
diameter.

Theorem 6. [3] Let G be a non-regular connected graph of order n. Then

∆(G) − λ1(G) >
1

nd
,

where d is the diameter of G.

Theorem 7. Let G be a non-regular connected graph of order n > 3. If

d = diam(G) 6 n
10

, then β(G) > β(Pn).

Proof. Since 10 > π2, for every n > 1, 10

π2 > ( n
n+1

)2. On the other hand

for n > 1, π
2n+2

> sin( π
2n+2

). Hence for every n > 1, 10

n2 > 4( π
2n+2

)2 >

4 sin2( π
2n+2

). This shows that 1

nd
>

10

n2 > 4 sin2( π
2n+2

). Therefore for every
n > 3, by Theorem 6 we obtain that

∆(G) − λ1(G) >
1

nd
> 4 sin2

(

π

2n + 2

)

= β(Pn).

The proof is complete.

Remark 2. One can see that for every n > 2, λ1(Kn\e) = n−3+
√

n2+2n−7

2

where e is an edge of Kn, see [8]. Therefore limn→∞(β(Kn \ e)) = 0.
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