On the difference between the spectral radius and the maximum degree of graphs^{*}

Mohammad Reza Oboudi

Communicated by V. Mazorchuk

ABSTRACT. Let G be a graph with the eigenvalues $\lambda_1(G) \ge \cdots \ge \lambda_n(G)$. The largest eigenvalue of G, $\lambda_1(G)$, is called the spectral radius of G. Let $\beta(G) = \Delta(G) - \lambda_1(G)$, where $\Delta(G)$ is the maximum degree of vertices of G. It is known that if G is a connected graph, then $\beta(G) \ge 0$ and the equality holds if and only if G is regular. In this paper we study the maximum value and the minimum value of $\beta(G)$ among all non-regular connected graphs. In particular we show that for every tree T with $n \ge 3$ vertices, $n - 1 - \sqrt{n-1} \ge \beta(T) \ge 4 \sin^2(\frac{\pi}{2n+2})$. Moreover, we prove that in the right side the equality holds if and only if $T \cong P_n$ and in the other side the equality holds if and only if $T \cong S_n$, where P_n and S_n are the path and the star on n vertices, respectively.

1. Introduction

Throughout this paper all graphs are simple, that is finite and undirected without loops and multiple edges. Let G = (V, E) be a simple graph. The *order* of G denotes the number of vertices of G. For two vertices u and v by e = uv we mean the edge e between u and v. For two graphs $G_1 = (V_1, E_1)$ and $G_2 = (V_2, E_2)$, the *disjoint union* of G_1 and G_2 denoted by $G_1 + G_2$ is the graph with vertex set $V_1 \cup V_2$ and edge set

^{*}This research was in part supported by a grant from IPM (No. 95050012). **2010 MSC:** 05C31, 05C50, 15A18.

Key words and phrases: tree, eigenvalues of graphs, spectral radius of graphs, maximum degree.

 $E_1 \cup E_2$. The graph rG denotes the disjoint union of r copies of G. For every vertex $v \in V(G)$, the *degree* of v is the number of edges incident with v and is denoted by $deg_G(v)$. A regular graph is a graph that all of its vertices have the same degree. By $\Delta(G)$ we mean the maximum degree of vertices of G. For two vertices u and v of connected graph G, the distance between u and v in G that is denoted by d(u, v), is the length of a shortest path between u and v. The greatest distance between any two vertices of G is the diameter of G, denoted by diam(G). The complete graph, the cycle, and the path of order n, are denoted by K_n , C_n and P_n , respectively. We denote the complete bipartite graph with part sizes mand n, by $K_{m,n}$. The star of order n that is denoted by S_n is the complete bipartite graph $K_{1,n-1}$.

Let G be a graph with vertex set $\{v_1, \ldots, v_n\}$. The adjacency matrix of G, $A(G) = [a_{ij}]$, is an $n \times n$ matrix such that $a_{ij} = 1$ if v_i and v_j are adjacent, and otherwise $a_{ij} = 0$. Thus A(G) is a symmetric matrix with zeros on the diagonal and all the eigenvalues of A(G) are real. By the eigenvalues of G we mean those of its adjacency matrix. We denote the eigenvalues of G by $\lambda_1(G) \ge \cdots \ge \lambda_n(G)$. By the spectral radius of G we mean $\lambda_1(G)$. We note that $\lambda_1(G)$ is also called the *index of* G. It is well known that $|\lambda_i(G)| \le \lambda_1(G)$, for $i = 1, \ldots, n$. Many papers are devoted to study the characteristic polynomials and spectra of the adjacency matrix of graphs, in particular characterization of graphs, see [1]–[17] and the references therein. Studying the spectral radius of graphs has always been of great interest to researchers in graph theory, for instance see [1], [3], [5], [6], [11] and [13]–[17].

Let G be a graph. It is a well known fact that $\lambda_1(G) \leq \Delta(G)$. Moreover if G is connected, then the equality holds if and only if G is regular. Therefore it is natural to ask about the value of $\Delta(G) - \lambda_1(G)$. For a graph G by $\beta(G)$ we mean $\beta(G) = \Delta(G) - \lambda_1(G)$. Hence for every graph G, $\beta(G) \geq 0$. Also if G is connected, then G is regular if and only if $\beta(G) = 0$. One can regard $\beta(G)$ as a parameter that indicates the measure of irregularity of G. There are some papers related this parameter. Cioabă [3] has proved that if G is a non-regular connected graph of order n, then $\Delta(G) - \lambda_1(G) > \frac{1}{nd}$, where d = diam(G). In this paper we study the maximum value and the minimum value of $\beta(G)$ among all non-regular graphs. We show among all non-regular graphs the stars have the maximum value of β . We prove that for every tree T with $n \geq 3$ vertices, $n - 1 - \sqrt{n-1} \geq \beta(T) \geq 4 \sin^2(\frac{\pi}{2n+2})$. Moreover we obtain that in the right side the equality holds if and only if $T \cong P_n$ and in the other side the equality holds if and only if $T \cong S_n$. Finally we conjecture that among all non-regular connected graph the paths have the minimum value of β .

2. Results

In this section we obtain the maximum and the minimum value of the difference between the spectral radius and the maximum degree of non-regular connected graphs. We need the following result.

Theorem 1. [4] Let G be a connected graph. If H is a proper subgraph of G, then $\lambda_1(G) > \lambda_1(H)$.

Now we show that among all graphs the stars attain the maximum value of β .

Theorem 2. Let G be a graph of order n. Then

$$\beta(G) \leqslant \beta(S_n) = n - 1 - \sqrt{n - 1}.$$

Moreover the equality holds if and only if $G \cong S_n$.

Proof. First we prove the theorem for connected graphs. Let H be a connected graph of order t. Suppose that $H \ncong S_t$. We show that $\beta(H) < \beta(S_t)$. For t = 1, there is noting to prove. So let $t \ge 2$. Let $h = \Delta(H)$. Hence $h \ge 1$. Since S_{h+1} is a proper subgraph of H, by Theorem 1 we obtain that

$$\lambda_1(H) > \lambda_1(S_{h+1}) = \sqrt{h}.$$
(1)

For every x > 0, let $f(x) = x - \sqrt{x}$. This function is increasing on the interval $[\frac{1}{4}, \infty)$. Since $t - 1 \ge h \ge 1$ by (1),

$$\beta(S_t) = t - 1 - \sqrt{t - 1} = f(t - 1) \ge f(h) = h - \sqrt{h} > h - \lambda_1(H) = \beta(H).$$

So for connected graphs the result follows. Now assume that $G \ncong S_n$ be a non-connected graph of order n. So $\Delta(G) \le n-2$. If $\Delta(G) = 0$, there is nothing to prove. Hence $1 \le \Delta(G) \le n-2$. On the other hand similar to above, one can see that $\lambda_1(G) \ge \sqrt{\Delta(G)}$. Since $n-1 > \Delta(G) \ge 1$,

$$f(n-1) > f(\Delta(G)) = \Delta(G) - \sqrt{\Delta(G)} \ge \Delta(G) - \lambda_1(G) = \beta(G).$$

Therefore $\beta(G) < f(n-1) = n - 1 - \sqrt{n-1}$. The proof is complete. \Box

Remark 1. For every $n \ge 2$, let $H_n = K_n + K_1$. Then $\Delta(H_n) = \lambda_1(H_n) = n - 1$. Therefore $\beta(H_n) = 0$ while H_n is not regular. This example shows that the minimum value of $\beta(G)$ among all non-regular graphs G or order $n \ge 2$ is zero.

In sequel we study the minim value of $\beta(G)$ among the family of non-regular connected graphs G. We need the following nice upper bound on the spectral radius of trees.

Theorem 3. [14] Let T be a tree with maximum degree Δ . Then

$$\lambda_1(T) < 2\sqrt{\Delta - 1}.$$

Theorem 4. Let T be a tree of order $n \ge 3$. Then

$$\beta(T) \ge \beta(P_n) = 4\sin^2\left(\frac{\pi}{2n+2}\right).$$

Moreover the equality holds if and only if $T \cong P_n$.

Proof. Let $n \ge 3$. Since $\lambda_1(P_n) = 2 \cos \frac{\pi}{n+1}$ and $\Delta(P_n) = 2$, $\beta(P_n) = 2 - 2 \cos \frac{\pi}{n+1} = 4 \sin^2(\frac{\pi}{2n+2})$. For every x > 1, let $f(x) = x - 2\sqrt{x-1}$. It is easy to see that f is an increasing function on the interval $[2, \infty)$. Therefore for every $x \ge 3$, $f(x) \ge 3 - 2\sqrt{2}$. On the other hand it is not hard to see that for every $n \ge 7$, $3 - 2\sqrt{2} > 4 \sin^2(\frac{\pi}{2n+2})$. Hence for every $x \ge 3$ and $n \ge 7$ we obtain that

$$f(x) > 4\sin^2\left(\frac{\pi}{2n+2}\right). \tag{2}$$

One can check the result for $n \leq 6$. Now let $n \geq 7$. Let $T \ncong P_n$ be a tree of order n. We show that $\beta(T) > \beta(P_n)$. Since $T \ncong P_n$, $\Delta(T) \geq 3$. On the other hand by Theorem 3, $\lambda_1(T) < 2\sqrt{\Delta(T) - 1}$. Since $\Delta(T) \geq 3$ and $n \geq 7$, by (2),

$$\beta(T) = \Delta(T) - \lambda_1(T) > \Delta(T) - 2\sqrt{\Delta(T) - 1}$$
$$= f(\Delta(T)) > 4\sin^2\left(\frac{\pi}{2n+2}\right) = \beta(P_n).$$

This completes the proof.

Using Theorems 2 and 4 we obtain the following result.

Theorem 5. Let T be a tree of order n. Then

$$\beta(P_n) \leqslant \beta(T) \leqslant \beta(S_n).$$

Moreover in the left side the equality holds if and only if $T \cong P_n$ and in the other side the equality holds if and only if $T \cong S_n$.

We think that among all non-regular connected graphs G of order n the path P_n has the minimum value of β . Hence we pose the following conjecture.

Conjecture 1. Let G be a non-regular connected graph of order n. If $G \ncong P_n$, then $\beta(G) > \beta(P_n)$.

Now we show that the Conjecture 1 is valid for graphs with small diameter.

Theorem 6. [3] Let G be a non-regular connected graph of order n. Then

$$\Delta(G) - \lambda_1(G) > \frac{1}{nd};$$

where d is the diameter of G.

Theorem 7. Let G be a non-regular connected graph of order $n \ge 3$. If $d = diam(G) \le \frac{n}{10}$, then $\beta(G) > \beta(P_n)$.

Proof. Since $10 > \pi^2$, for every $n \ge 1$, $\frac{10}{\pi^2} > (\frac{n}{n+1})^2$. On the other hand for $n \ge 1$, $\frac{\pi}{2n+2} \ge \sin(\frac{\pi}{2n+2})$. Hence for every $n \ge 1$, $\frac{10}{n^2} > 4(\frac{\pi}{2n+2})^2 \ge 4\sin^2(\frac{\pi}{2n+2})$. This shows that $\frac{1}{nd} \ge \frac{10}{n^2} > 4\sin^2(\frac{\pi}{2n+2})$. Therefore for every $n \ge 3$, by Theorem 6 we obtain that

$$\Delta(G) - \lambda_1(G) > \frac{1}{nd} > 4\sin^2\left(\frac{\pi}{2n+2}\right) = \beta(P_n)$$

 \square

The proof is complete.

Remark 2. One can see that for every $n \ge 2$, $\lambda_1(K_n \setminus e) = \frac{n-3+\sqrt{n^2+2n-7}}{2}$ where e is an edge of K_n , see [8]. Therefore $\lim_{n\to\infty} (\beta(K_n \setminus e)) = 0$.

References

- R.A. Brualdi, A.J. HoIman, On the spectral radius of a (0,1) matrix, Linear Algebra and its Applications, 65 (1985) 133–146.
- [2] D. Cao, Y. Hong, The distribution of eigenvalues of graphs, Linear Algebra and its Applications, 216 (1995) 211–224.

- [3] S.M. Cioabă, The spectral radius and the maximum degree of irregular graphs, The Electronic Journal of Combinatorics 14 (2007), #R38.
- [4] D.Cvetković, P. Rowlinson, S. Simić, An introduction to the theory of graph spectra, London Mathematical Society Student Texts, 75, Cambridge University Press, Cambridge, 2010.
- K.Ch. Das, P. Kumar, Some new bounds on the spectral radius of graphs, Discrete Mathematics 281 (2004) 149–161.
- [6] G.J. Ming, T.Sh.Wang, On the spectral radius of trees, Linear Algebra and its Applications **329** (2001) 1–8.
- [7] M.R. Oboudi, Bipartite graphs with at most six non-zero eigenvalues, Ars Mathematica Contemporanea 11 (2016) 315–325.
- [8] M.R. Oboudi, Characterization of graphs with exactly two non-negative eigenvalues, Ars Mathematica Contemporanea 12 (2017) 271–286.
- [9] M.R. Oboudi, Cospectrality of complete bipartite graphs, Linear and Multilinear Algebra 64 (2016) 2491–2497.
- [10] M.R. Oboudi, Energy and Seidel energy of graphs, MATCH Communications in Mathematical and in Computer Chemistry 75 (2016) 291–303.
- M.R. Oboudi, On the eigenvalues and spectral radius of starlike trees, Aequationes Mathematicae. DOI: 10.1007/s00010-017-0533-4.
- [12] M.R. Oboudi, On the third largest eigenvalue of graphs, Linear Algebra and its Applications 503 (2016) 164–179.
- [13] L. Shi, Bounds on the (Laplacian) spectral radius of graphs, Linear Algebra and its Applications 422 (2007) 755–770.
- [14] D. Stevanović, Bounding the largest eigenvalue of trees in terms of the largest vertex degree, Linear Algebra and its Applications 360 (2003) 35–42.
- [15] D. Stevanović, I. Gutman, M.U. Rehman, On spectral radius and energy of complete multipartite graphs, Ars Mathematica Contemporanea 9 (2015) 109– 113.
- [16] B. Wu, E. Xiao, Y. Hong, The spectral radius of trees on k pendant vertices, Linear Algebra and its Applications **395** (2005) 343–349.
- [17] A. Yu, M.Lu, F. Tian, On the spectral radius of graphs, Linear Algebra and its Applications 387 (2004) 41–49.

CONTACT INFORMATION

M. R. Oboudi	Department of Mathematics, College of Sciences,
	Shiraz University, Shiraz, 71457-44776, Iran;
	School of Mathematics, Institute for Research in
	Fundamental Sciences (IPM), P.O. Box: 19395-
	5746, Tehran, Iran
	$E\text{-}Mail(s): \texttt{mr_oboudi@yahoo.com}$,
	mr_oboudi@shirazu.ac.ir

Received by the editors: 27.09.2016 and in final form 09.11.2016.