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Abstract. In this paper, we discuss the sparing number of

the power graphs of the Mycielski graphs of certain graph classes.

1. Introduction

For all terms and definitions, not defined specifically in this paper, we
refer to [1, 3, 14]. In this paper, by a graph we mean a simple, connected,
finite and non-trivial graph G = (V (G);E(G)) with the set of vertices
V (G) and the set of edges E(G). Given an integer m > 2, we denote by
Pm the path on m vertices and by Cm the cycle on m vertices.

If r is a positive integer, the r-th power of G, denoted by Gr, is a
graph with the same vertex set such that two vertices are adjacent in Gr

if only if the distance between them is at most r.
The following theorem on graph powers is an important and a very

useful result in our present study.

Theorem 1.1. If d is the diameter of a graph G, then Gd is a complete
graph.

An independent set of a graph G is a subset I of the vertex set V (G),
such that no two elements (vertices) in I are adjacent. An independence
set I of G is said to have maximum incidence in G if the number of edges
in G having one of their end vertices in I is maximum when compared to
the other independent sets of G.
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1.1. Mycielski graph of a graph

Consider a graph G with V (G) = {v1, v2, v3, . . . , vn}. Apply the fol-
lowing steps to the graph G.

(i) Take the set of new vertices U = {u1, u2, u3, . . . , un} and add edges
from each vertex ui of U to the vertices vj if the corresponding
vertex vi is adjacent to vj in G,

(ii) Take another new vertex u and add edges to all elements in U .

The new graph thus obtained is called the Mycielski graph of G and
is denoted by µ(G) (see [4]). For the ease of the notation in context of
graph powers, we denote the Mycielski graph of a graph G by Ĝ.

The following figures illustrate the Mycielski graphs of a path and a
cycle.

1.2. Sparing number of a graph

The sumset of two sets A and B of integers, denoted by A + B, is
defined as A+B = {a+ b : a ∈ A, b ∈ B} (see [5]). If A or B is countably
infinite, then their sumset A+B will also be countably infinite. Hence,
all sets we consider here are finite sets of non-negative integers.

Let X be a non-empty finite set of non-negative integers and let
P(X) be its power set. An integer additive set-labeling (IASL) of a graph
G (see [2, 6]) is an injective function f : V (G) → P(X) − {∅} such
that the induced function f+ : E(G) → P(X) − {∅} is defined by
f+(uv) = f(u) + f(v) ∀uv ∈ E(G). A graph G which admits an IASL is
called an integer additive set-labeled graph (IASL-graph).

The cardinality of the set-label of an element (vertex or edge) of a
graph G is called the set-indexing number of that element. An element of a

(a) Mycielski graph of P7. (b) Mycielski graph of C6.

Figure 1.
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given graph G is said to be a mono-indexed element of G if its set-indexing
number is 1.

A weak integer additive set-labeling of a graph G is an IASL f :
V (G) → P(X)−{∅}, where induced function f+ : E(G) → P(X)−{∅}
is defined by f+(uv) = f(u) + f(v) such that either |f+(uv)| = |f(u)| or
|f+(uv)| = |f(v)| , where f(u) + f(v) is the sumset of f(u) and f(v).

Lemma 1.2. [8] An IASI f : V (G) → P(X)− {∅} of a given graph G

is a weak IASI of G if and only if at least one end vertex of every edge of
G is mono-indexed.

Hence, it can be seen that both end vertices of some edges of a given
graph can be (must be) mono-indexed and hence those edges are also
mono-indexed. The minimum number of mono-indexed edges required in
a graph G so that G admits a WIASL is called the sparing number of G,
denoted by ϕ(G) (see [8]).

Note that an independence set I is said to have maximal incidence
in G if maximum number of edges in G have their one end vertex in I.
Then, the sparing number of any given graph can be determined using
the following theorem.

Theorem 1.3. [7] LetG be a given WIASL-graph and I be an independent
set in G which has the maximal incidence in G. Then, the sparing number
of G is ϕ(G) = |E(G− I)|.

As a new graph parameter, the studies on the sparing number of
graphs have been much interesting for us. Certain studies on WIASL-
graphs and their sparing numbers have been done in [2,6–11]. The sparing
number of certain graph powers has also been studied in [12] and a
comprehensive survey on weak integer additive set-labeling of graphs and
the corresponding sparing number of different graph classes have been
done in [13]. The following are the relevant results, we use from these
studies.

Theorem 1.4. Let G be a graph on n vertices. Then, we have the following
results.

(i) If G is bipartite, then ϕ(G) = 0,
(ii) If G is an odd cycle, then ϕ(G) = 1,
(iii) If G is a complete graph, then ϕ(G) = 1

2
(n− 1)(n− 2).

In this paper, we investigate the sparing number of integer powers of
Mycielski graphs of certain graph classes.
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2. Sparing number of Mycielski graphs

First, the relation between the sparing number of an arbitrary graph
G and that of its Mycielski graph is explained in the following result.

Theorem 2.1. The sparing number of the Mycielski graph of any graph
G is ϕ(Ĝ) = ϕ(G) + |V (G)| − |I|, where I is an independence set in G

with maximal incidence in G.

Proof. Let G be a graph with vertex set V (G) = {v1, v2, v3, . . . , vn}. Let
I = {v′1, v

′

2, v
′

3, . . . , v
′

k} be an independence set with the maximal incidence
in G, where v′i = vj for some 1 6 j 6 n.

Let Ĝ be the Mycielski graph of a given graph G. Let V be the vertex
set of G and let U = {u1, u2, u3, . . . , un} and {u} be the sets of newly
introduced vertices in Ĝ. Note that all mono-indexed edges in G are
mono-indexed in Ĝ also.

Since I is an independent set in G, the corresponding set I∗ =
{u′1, u

′

2, u
′

3, . . . , u
′

k}, where u′i = uj for some 1 6 j 6 n, is an independent

set in U such that I∪I∗ is an independence set in Ĝ with maximal incidence
in Ĝ. Hence, all the vertices in the set U−I∗ must have singleton set-labels.
Since some vertices in U have non-singleton set-labels, the vertex u must
also have a singleton set-label. Therefore, all edges connecting the vertex
u to the vertices in U − I∗ are mono-indexed. Hence, the sparing number
of Ĝ is ϕ(Ĝ) = ϕ(G)+ |U−I∗| = ϕ(G)+ |U |−|I∗| = ϕ(G)+ |V |−|I|.

Invoking Theorem 1.1 and Theorem 1.4, we can establish the following
result.

Theorem 2.2. Let G be a graph on n vertices with diameter d. Then,
(i) if d 6 2, the sparing number of Ĝr is n(2n − 1) for any positive

integer r > 2.
(ii) if d = 3, the sparing number of Ĝr is n(2n − 1) for any positive

integer r > 3.
(iii) if d > 4, the sparing number of Ĝr is n(2n − 1) for any positive

integer r > 4.

Proof. Let V be the vertex set of G and let U = {u1, u2, u3, . . . , un} and
{u} be the sets of newly introduced vertices in Ĝ. Here, we have to consider
the following cases.

(i) Let d < 3. Then, in the graph Ĝ, the vertex u is at a distance 2
from every vertex of V and the distance between a vertex in V and a
vertex in U is at most 2. Also, the distances between any two vertices in
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V and the distances between any two vertices in U are also 2. Hence, the
diameter of Ĝ is 2 and by Theorem 1.1, Ĝ2 is a complete graph. Therefore,
by Theorem 1.4, we have ϕ(Ĝr) = n(2n − 1), for any positive positive
integer r > 2.

(ii) Let d = 3. Then, in the graph Ĝ, as mentioned above, the vertex u

is at a distance 2 from every vertex of V and the distance between any two
vertices of U is also 2. The distance between a vertex in V and a vertex in
U is at most 3. Hence, the diameter of Ĝ is 3 and by Theorem 1.1, Ĝ3 is a
complete graph. Therefore, by Theorem 1.4, we have ϕ(Ĝr) = n(2n− 1),
for any positive positive integer r > 3.

(iii) Let d > 4. Then, in addition to the facts mentioned in (i), it can
be noted that, in Ĝ, the distance between any two vertices in V is at most
4. Hence, the diameter of Ĝ is 4 and by Theorem 1.1, we have Ĝ4 is a
complete graph. Therefore, by Theorem 1.4, we have ϕ(Ĝr) = n(2n− 1),
for any positive integer r > 4.

In view of Theorem 2.2, the diameter of the Mycielski graph of any
graph with large diameter (greater than 3) is 4 and hence we need only to
discuss the sparing number of squares and cubes of the Mycielski graphs
of various graph classes.

3. Sparing number of powers of Mycielski graphs of paths

We recall that, given an integer n > 2, we denote by Pn the path on n

vertices and by Cn the cycle on n vertices. Illustrations to different powers
of the Mycielski graphs of the first few paths are given below (see Figures
2, 3, and 4).

First, we discuss the sparing number of different powers of the Mycielski
graphs of paths. In view of Proposition 2.1, we have

Proposition 3.1. The sparing number of P̂n is given by ϕ(P̂n) = ⌊n
2
⌋.

Proof. We know that an independent set of Pn with maximal incidence in
Pn consists of ⌈n

2
⌉ vertices. Therefore, by Theorem 2.1, ϕ(P̂n) = ϕ(Pn) +

n− ⌈n
2
⌉ = ⌊n

2
⌋, since ϕ(Pn) = 0.

Figures 2, (a), 3, (a), and 4, (a), depict the above proposition. In Figure
2, (a), the vertices {v2, u2, u} must be mono-indexed and hence the edge
u2u is a mono-indexed edge in P̂2. In Figure 3, (a), the vertices v1, v3 in V

and u1, u3 in U are in the independence set with maximal incidence and
hence can have non-singleton set-labels. Therefore, the vertices v2, u2, u
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(a) P̂2. (b) P̂2

2
.

Figure 2.

P̂3. P̂3

2
.

Figure 3.

P̂4. P̂4

2
.

P̂4

3
.

Figure 4.



“adm-n4” — 2020/1/24 — 13:02 — page 297 — #147

N. K. Sudev, K. P. Chithra, K. A. Germina 297

are mono-indexed vertices and the edge u2u is the mono-indexed edge
in P̂3. In Figure 4, (a), the vertices v1, v3 in V and u1, u3 in U are in
the independence set with maximal incidence and hence can have non-
singleton set-labels. Then, the vertices v2, v4 in V and u2, u4 in U and
the vertex u must be mono-indexed. Hence, the edges uu2 and uu4 are
mono-indexed edges in P̂4.

Also, note that if n = 2, 3, the diameter of P̂n is 2 (see Figures 3, (b),
and 4, (b)) and hence invoking Theorem 1.4, we have the sparing number

of P̂2

2
is 6 and that of P̂3

2
is 15.

Now, it remains to investigate the sparing number of the square and
cube of the Mycielski graphs of paths Pn, where n > 5. The following
theorem discusses the sparing number of the square of P̂n, for n > 4.

Theorem 3.2. For n > 4, the sparing number of P̂n
2

is

ϕ(P̂n
2
) =











1

6
(3n2 + 25n− 12) if n ≡ 0(mod 3)

1

6
(3n2 + 25n− 28) if n ≡ 1(mod 3)

1

6
(3n2 + 25n− 20) if n ≡ 2(mod 3)

Proof. First, we have to identify the number of edges in P̂n
2
. For this

purpose, we analyse the adjacency pattern in P̂n
2

in the following way.

The vertex u is adjacent to every vertex in U and V . Hence, d(u) = 2n.
Also, any two vertices ui and uj in U , there exists a path uiuuj in P̂n.

Therefore, any two vertices in U are adjacent in P̂n
2
. In addition to this,

the adjacency between the vertices in U and V in P̂n
2

can be determined
as follows.

(i) The vertex u1 is adjacent to v1, v2 and v3, and un is adjacent to
vn−2, vn−1 and vn. Therefore, d(u1) = d(un) = n+ 3.

(ii) The vertex u2 is adjacent to v1, v2, v3 and v4, and un−1 is adjacent
to vn−3, vn−2, vn−1 and vn. Therefore, d(un) = d(un−1) = n+ 4.

(iii) For 3 6 i 6 n−2, ui is adjacent to vi−2, vi−1, vi, vi+1 and vi+2. That
is, d(ui) = n+ 5, for 3 6 i 6 n− 2.

Now, we find the degree of the vertices in the set V . As mentioned
earlier, we note that every element of V is adjacent to the vertex u.
Remaining adjacencies of the vertices in V can be written as follows.

(i) The vertex v1 is adjacent to v2, v3 in V and u1, u2, u3 in U . Similarly,
vn is adjacent to vn−2, vn−1 in V and un−2, un−1, un. Therefore,
d(v1) = d(vn) = 6.
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(ii) The vertex v2 is adjacent to v1, v3, v4 in V and u1, u2, u3, u4 in U .
Similarly, vn−1 is adjacent to vn−3, vn−2, vn in V and un−3, un−2,
un−1, un in U . Therefore, d(un) = d(un−1) = 8.

(iii) For 3 6 i 6 n− 2, vi is adjacent to vi−2, vi−1, vi+1, vi+2 in V and
ui−2, ui−1, ui, ui+1, ui+2 in U . That is, d(vi) = 10, for 3 6 i 6 n−2.

Therefore, the number of edges in P̂n
2

is given by

|E(P̂n
2
)| =

1

2
d
v∈P̂n

2(v)

=
1

2
[2n+ 2 ((n+ 3) + (n+ 4) + 6 + 8) + ((n− 4)(n+ 5) + 10)]

=
1

2

(

n2 + 17n− 18
)

.

Now, we need to identify the independence set I of P̂n
2

with maximal

incidence in P̂n
2
. We note that if u ∈ I, then no other vertex can be

included in I and in this case, we have 2n edges with non-singleton set-
labels. This satisfy the condition of an independent set with maximum
incidence.

Also, note that only one vertex, say vn from U , can be included into I,
but there are some other vertices in V which are not adjacent to vn,
which can also be included into I. As d(ui) > d(vi) for all i, we need to
consider an independence set containing one element from U , rather than
considering an independence set, all whose elements are taken from V .

Since independent vertices in V are at a distance 3 in P̂n
2
, we have to

consider the following cases.

Case 1. If n ≡ 0(mod 3), then the independence set with maximal incidence,
which consist of exactly one element from U is I={v3, v6, v9, . . . , vn−3, un}.
The number of edges incident on each of the above independent set can be
found out by adding the degree of vertices in them. Hence, the number of
edges incident on I is given by ǫ1 = 10+ 10(n−6

3
) + (n+3) = 1

3
(13n− 21).

Therefore, I3 is the required independence set with maximum incidence

in P̂n
2
.

Hence, all vertices in I can be labeled by distinct non-singleton subsets
of the ground set X and all the 1

3
(13n− 21) edges incident on I have non-

singleton set-labels in P̂n
2
. Therefore, by Theorem 1.4, the sparing number

of P̂n
2

is ϕ(P̂n
2
) = 1

2

(

n2 + 17n− 18
)

− 1

3
(13n− 21) = 1

6
(3n2 + 25n− 12).

Case 2. If n ≡ 1(mod 3), note that the set I = {v1, v4, v7, . . . , vn−3, un} is
the required independence set with maximum incidence and the number
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of edges incident on the set I is ǫ1 = 6 + 10(n−4

3
+ (n+ 3)) = 13

3
(n− 1).

Therefore, by Theorem 1.4, we have ϕ(P̂n
2
) = 1

2

(

n2 + 17n− 18
)

− 1

3
(13n−

13) = 1

6
(3n2 + 25n− 28).

Case 3. If n ≡ 2(mod 3), the required independence set with maximal
incidence is I = {v2, v5, v8, . . . , vn−3, un} and the number of edges incident
with I is ǫ1 = 8+10(n−5

3
)+(n+3) = 1

3
(13n−17). Therefore, by Theorem

1.4, ϕ(P̂n
2
) = 1

2

(

n2 + 17n− 18
)

− 1

3
(13n− 17) = 1

6
(3n2 + 25n− 20).

Now, we have the diameter P̂4 is 3. Then, P̂4

3
is a complete graph,

(see Figure 4, (c)) and hence by Theorem 1.4, P̂4

3
has 28 mono-indexed

edges.
The following theorem discusses the sparing number of the cube of

Mycielski graph of paths on n > 5 vertices.

Theorem 3.3. For n > 5, the sparing number of P̂n
3

is

ϕ(P̂n
3
) =























1

4
(5n2 + 11n− 12) if n ≡ 0(mod 4)

1

4
(5n2 + 8n− 18) if n ≡ 1(mod 4)

1

4
(5n2 + 9n− 18) if n ≡ 2(mod 4)

1

4
(5n2 + 10n− 15) if n ≡ 3(mod 4).

Proof. As in the previous theorem, first we analyse adjacency pattern in

P̂n
3

to find its number of edges. Note that the vertex u in the graph P̂n
3
,

is adjacent to all the vertices in U and V . Since the distance between any
two vertices in U is 2 and the distances between any vertex in U and V

is at most 3, every vertex of U is also adjacent to all other vertices in P̂n
3
.

Hence, for any vertex v in U ∪ {u}, we have d(v) = 2n.
Also, each vertex in V is adjacent to all vertices in U and to the vertex

u. Now, what remains is to find the adjacency between the vertices in V .
This can be analysed as follows.

(i) The vertex v1 is adjacent to v2, v3 and v4. Similarly, vn is adjacent
to vn−3, vn−2 and vn−1. Therefore, d(v1) = d(vn) = n+ 4.

(ii) The vertex v2 is adjacent to v1, v3, v4 and v5. Similarly, vn is adjacent
to vn−4, vn−3, vn−2 and vn. Therefore, d(v2) = d(vn−1) = n+ 5.

(iii) The vertex v3 is adjacent to v1, v2, v4, v5 and v6. Similarly, vn is ad-
jacent vn−5, vn−4, vn−3, vn−2 and vn. Therefore, d(v3) = d(vn−2) =
n+ 6.

(iv) For 4 6 i 6 n− 3, vi is adjacent vi−3, vi−2, vi−1, vi+1, vi+2 and vi+3.
Hence, d(vi) = n+ 7, for 4 6 i 6 n− 3.
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Hence, the number of edges in P̂n
3

is given by

|E(P̂n
3
)| =

1

2
d
v∈P̂n

3(v)

=
1

2
[(n+ 1)2n+ 2 ((n− 4) + (n+ 5) + (n+ 6)) + (n− 6)(n+ 7)]

=
1

2

(

3n2 + 9n− 12
)

.

Now, as in the previous theorem, we proceed to determine an inde-

pendence set I of P̂n
3

with maximal incidence in P̂n
3

as explained below.

An independence set in P̂n
3

can have at most one vertex from U ∪{u}

and if such a vertex is in an independent set S of P̂n
3
, then S must be a

singleton set. If we label this vertex by a non-singleton set, then 2n edges

in P̂n
3

will have non-singleton set-labels. Clearly, this does not satisfy

the requirements of maximal incidence in P̂n
3
. Hence, we need to choose

such an independent set from the vertex set V . In this case, we need to
consider the following cases.

Case 1. If n ≡ 0 (mod 4), we can see that the set I1 = {v2, v6, v10, . . . ,
vn−6, vn−2} is one of the independent sets with maximum incidence and
the number of edges incident on I1 is ǫ1 = (n+ 5) + (n−8

4
)(n+ 7) + (n+

6) = 1

4
(n2 + 7n − 8). The set I2 = {v3, v7, v11, . . . vn−5, vn−1} is also an

independent sets with maximum incidence and with 1

4
(n2 + 7n− 8) edges

incident with it. Hence, either all the vertices in I1 or those in I2 can
be labeled by distinct non-singleton subsets of the ground set X so that
1

4
(n2 + 7n− 8) edges in P̂n

3
have non-singleton set-labels. Therefore, the

sparing number of P̂n
3

is ϕ(P̂n
3
) = 1

2

(

3n2 + 9n− 12
)

− 1

4
(n2 +7n− 8) =

1

4
(5n2 + 11n− 12).

Case 2. If n ≡ 1 (mod 4), note that the set I1 = {v2, v6, v10, . . . , vn−7, vn−3}
is one of the independent sets with maximum incidence and the number of
edges incident on I1 is ǫ1 = (n+5)+(n−5

4
)(n+7)+(n+6) = 1

4
(n2+6n−15).

The set I2 = {v4, v8, v12, . . . vn−5, vn−1} is also an independent set with
maximum incidence and with 1

4
(n2 + 6n − 15) edges incident with it.

Hence, either all the vertices in I1 or those in I2 can be labeled by distinct
non-singleton subsets of the ground set X so that the number of edges

in P̂n
3
, having non-singleton set-labels is 1

4
(n2 + 6n− 15). Therefore, the

sparing number of P̂n
3

is ϕ(P̂n
3
) = 1

2

(

3n2 + 9n− 12
)

− 1

4
(n2+6n−15) =

1

4
(5n2 + 8n− 18).
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Case 3. If n ≡ 2 (mod 4), we have the set I1 = {v1, v5, v9, . . . , vn−5, vn−1}

is one of the independent sets with maximum incidence in P̂n
3

and the
number of edges incident on I1 is ǫ1 = (n+ 4) + (n−6

4
)(n+ 7) + (n+ 5) =

1

4
(n2+9n−6). The set I2 = {v2, v6, v10, . . . vn−4, vn} is also an independent

set with maximum incidence and with 1

4
(n2+9n−6) edges incident with it.

Hence, either all the vertices in I1 or those in I2 can be labeled by distinct
non-singleton subsets of the ground set X so that the number of edges

in P̂n
3
, having non-singleton set-labels is 1

4
(n2 + 9n− 6). Therefore, the

sparing number of P̂n
3

is ϕ(P̂n
3
) = 1

2

(

3n2 + 9n− 12
)

− 1

4
(n2 +9n− 6) =

1

4
(5n2 + 9n− 18).

Case 4. If n ≡ 3 (mod 4), we have the set I1 = {v1, v5, v9, . . . , vn−6, vn−2}

is one of the independent sets with maximum incidence in P̂n
3

and the
number of edges incident on I1 is ǫ1 = (n + 4) + (n−7

4
)(n + 7) + (n +

6) = 1

4
(n2 + 8n − 9). The sets I2 = {v2, v6, v10, . . . vn−5, vn−1} and I3 =

{v3, v7, v11, . . . vn−4, vn} are also the independent sets with maximum
incidence and with 1

4
(n2 + 8n− 9) edges incident with it. Hence, either

all the vertices in I1 or I2 or I3 can be labeled by distinct non-singleton

subsets of the ground set X so that the number of edges in P̂n
3
, having non-

singleton set-labels is 1

4
(n2+8n−9). Therefore, the sparing number of P̂n

3

is ϕ(P̂n
3
) = 1

2

(

3n2 + 9n− 12
)

− 1

4
(n2 +8n− 9) = 1

4
(5n2 +10n− 15).

4. Sparing number of powers of Mycielski graphs of cycles

In this section, we discuss the sparing number of different powers of
Mycielski graphs of cycles. The following result is on the sparing number
of the Mycielski graphs of cycles.

Proposition 4.1. The sparing number of the Mycielski graph of a cycle
Cn is

ϕ(Ĉn) =

{

n
2

if n is even,
n+3

2
if n is odd.

Proof. First note that an even cycle need not have any mono-indexed
edges, while odd cycle must have at least one mono-indexed edge That is,
ϕ(Cn) = 0 for an even cycle Cn and ϕ(Cn) = 1 for an even cycle Cn. Also,
we have any independence set with maximal incidence in a cycle Cn consists
of ⌊n

2
⌋ elements. Then, by Theorem 2.1, we have ϕ(Ĉn) = ϕ(Cn)+n−⌊n

2
⌋.

Therefore, if n is even, then ϕ(Ĉn) = n − ⌊n
2
⌋ = n

2
and if n is odd,

then ϕ(Ĉn) = 1 + n− ⌊n
2
⌋ = 1 + ⌈n

2
⌉ = n+3

2
.
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Next, we proceed to determine the sparing number of different powers
of the Mycielski graphs of cycles. First, recall that the diameter of a cycle
C2 is ⌊n

2
⌋. Hence, the square of the Mycielski graphs of the cycles C3 and

C4 and C5 are the complete graphs K7, K9 and K11 respectively. Hence,
by Theorem 1.4, we have ϕ(Ĉ2

3 ) = 15, ϕ(Ĉ2
4 ) = 28 and ϕ(Ĉ2

5 ) = 45.
Now, we determine the sparing number of the square of the Mycielski

graphs of the cycles for n > 6 in the following theorem.

Theorem 4.2. For n > 6, the sparing number of Ĉ2
n is

ϕ(Ĉ2
n) =











1

6
(3n2 + 25n+ 30) if n ≡ 0(mod 3)

1

6
(3n2 + 25n+ 50) if n ≡ 1(mod 3)

1

6
(3n2 + 25n+ 70) if n ≡ 2(mod 3).

Proof. First, we analyse the adjacency pattern in Ĉ2
n in the following

way. In this proof, we use the convention that vn+r = vr, for any positive
integer r 6 n.

In Ĉ2
n, the vertex u is adjacent to every vertex in U ∪ V . Hence,

d(u) = 2n. As explained in previous theorems, any two vertices ui and uj
in U are adjacent in Ĉ2

n. In addition to this, each vertex ui is adjacent to the
vertices vi−2, vi−1, vi, vi+1 and vi+2. That is, d(ui) = n+5, where 1 6 i 6 n.
Now, any vertex vi is adjacent to the vertices vi−2, vi−1, vi+1, vi+2 in
V and ui−2, ui−1, ui, ui+1, ui+2 in U . That is, d(vi) = 10, where 1 6

i 6 n. Therefore, the number of edges in Ĉ2
n is given by |E(Ĉ2

n)| =
1

2
[2n+ n(n+ 5) + 10n] = 1

2
(n2 + 17n).

Now, we need to find out an independence set I of Ĉ2
n with maximal

incidence in Ĉ2
n. As mentioned in previous theorems, we can see that if

the vertex u, belongs to the set I, then it will be a singleton set with 2n
incidences. Also, at most one vertex of U can belong to any independent
set of Ĉ2

n. Since, d(vi) < d(ui) for all 1 6 i 6 n, every independent set
with maximal incidence consists of one vertex from U .

Note that the independent vertices in V are at the distance 3. Then,
we have the following cases.

Case 1. If n ≡ 0(mod 3), then the set I = {v1, v4, v7, . . . , vn−5, un−2} is
one of the required independence set with maximal incidence. The number
of edges incident with I is ǫ1 = 10

(

n−3

3

)

+ (n+ 5) = 1

3
(13n− 15). (Note

that the sets {v5, v5, v8, . . . , vn−4, un−1} and {v3, v6, v9, . . . , vn−4, un} are
also the independent sets with the same number 1

3
(13n−15) of incidences).

Hence, the sparing number of Ĉ2
n = 1

2
(n2 + 17n)− 1

3
(13n− 15) = 1

6
(3n2 +

25n+ 30).
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Case 2. If n ≡ 1(mod 3), then the set I = {v1, v4, v7, . . . , vn−6, un−3} is
one of the required independence set with maximal incidence. The number
of edges incident with I is ǫ1 = 10

(

n−4

3

)

+ (n+ 5) = 1

3
(13n− 25). Hence,

the sparing number of Ĉ2
n = 1

2
(n2+17n)− 1

3
(13n−25) = 1

6
(3n2+25n+50).

Case 3. If n ≡ 1(mod 3), then the set I = {v1, v4, v7, . . . , vn−7, un−4} is one
of the required independence set with maximal incidence. The number of
edges incident with I is ǫ1 = 10

(

n−5

3

)

+(n+5) = 1

3
(13n− 35). Hence, the

sparing number of Ĉ2
n = 1

2
(n2+17n)− 1

3
(13n−35) = 1

6
(3n2+25n+70).

Next, we proceed to determine the sparing number of the cubes of the
Mycielski graphs of the cycles. We know that the cycles C6 and C7 have
diameter 3 and hence by Theorem 1.1, the Mycielski graphs Ĉ3

6 and Ĉ3
7 are

complete graphs. Hence, by Theorem 1.4, ϕ(Ĉ3
6 ) = 66 and ϕ(Ĉ3

7 ) = 91.

For n > 8, the Mycielski graphs Ĉ3
n are not complete graphs and we

determine the sparing number of the graphs Ĉ3
n for n > 8 in the following

theorem.

Theorem 4.3. For n > 8, the sparing number of Ĉ3
n is

ϕ(Ĉ3
n) =























1

4
(5n2 + 11n) if n ≡ 0(mod 4)

1

4
(5n2 + 12n+ 7) if n ≡ 1(mod 4)

1

4
(5n2 + 13n+ 14) if n ≡ 2(mod 4)

1

4
(5n2 + 14n+ 21) if n ≡ 3(mod 4).

Proof. In Ĉ3
n, vertex u is adjacent to all vertices in U ∪ V . Since the

distance between any two vertices in U is 2 and the distances between
a vertex in U and a vertex in V is at most 3,every vertex of U is also
adjacent to all other vertices in Ĉ3

n. Hence, for any vertex v in U ∪ {u},
we have d(v) = 2n. Also, each vertex in V is also adjacent to every vertex
in U ∪ {u}. In addition to this, for 1 6 i 6 n, the vertex vi is adjacent to
the vertices vi−3, vi−2, vi−1, vi+1, vi+2 and vi+3. Hence, d(vi) = n+ 7 for
all vi ∈ V . Hence, the number of edges in Ĉ3

n is given by |E(Ĉ3
n)| =

1

2
=

2n(n+ 1) + n(n+ 7) = 1

2
(3n2 + 9n).

As pointed out in earlier results, the independence set containing the
vertex u is a singleton set with 2n incidences, which does not meet the
requirements of an independence set with maximum incidence. As, at most
one vertex of U can belong to any independent set of Ĉ2

n and d(vi) < d(ui)
for all 1 6 i 6 n, every independent set with maximal incidence consists
of exactly one vertex from U and all other vertices (which are independent
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in U ∪ V ) from V . Now, note that, in Ĉ3
n, the independent vertices are at

the distance 4. Hence we need to consider the following cases.

Case 1. If n ≡ 0 (mod 4), then the set I = {v1, v5, v9, . . . , vn−3} is one
of the independent sets with maximum incidence and the number of
edges incident on I is ǫ1 = (n

4
)(n+ 7) = 1

4
(n2 + 7n). (Also, note that the

sets {v2, v6, v10, . . . , vn−2}, {v3, v7, v11, . . . , vn−1} and {v4, v8, v12, . . . , vn}
are also the independence sets the same number of incidences). Hence,
all vertices in I can be labeled by distinct non-singleton subsets of the
ground set X so that 1

4
(n2 + 7n) edges in Ĉ3

n have non-singleton set-

labels. Therefore, in this case, the sparing number of Ĉ3
n is ϕ(Ĉ3

n) =
1

2

(

3n2 + 9n
)

− 1

4
(n2 + 7n) = 1

4
(5n2 + 11n).

Case 2. If n ≡ 1 (mod 4), then the set I = {v1, v5, v9, . . . , vn−4} is one of
the independent sets with maximum incidence and the number of edges
incident on I is ǫ1 = (n−1

4
)(n+7) = 1

4
(n2+6n−7). Hence, all vertices in I

can be labeled by distinct non-singleton subsets of the ground set X so that
1

4
(n2+6n−7) edges in Ĉ3

n have non-singleton set-labels. Therefore, in this

case, the sparing number of Ĉ3
n is ϕ(Ĉ3

n) =
1

2

(

3n2 + 9n
)

− 1

4
(n2+6n−7) =

1

4
(5n2 + 12n+ 7).

Case 3. If n ≡ 2 (mod 4), then the set I = {v1, v5, v9, . . . , vn−5} is one
of the independent sets with maximum incidence and the number of
edges incident on I is ǫ1 = (n−2

4
)(n + 7) = 1

4
(n2 + 5n − 14). Hence,

all vertices in I can be labeled by distinct non-singleton subsets of the
ground set X so that 1

4
(n2 + 5n − 14) edges in Ĉ3

n have non-singleton

set-labels. Hence, in this case, the sparing number of Ĉ3
n is ϕ(Ĉ3

n) =
1

2

(

3n2 + 9n
)

− 1

4
(n2 + 5n− 14) = 1

4
(5n2 + 13n+ 14).

Case 4. If n ≡ 3 (mod 4), then the set I = {v1, v5, v9, . . . , vn−6} is one of
the independent sets with maximum incidence and the number of edges
incident on I is ǫ1 = (n−3

4
)(n+7) = 1

4
(n2+4n−21). Hence, if we label all

vertices in I by distinct non-singleton subsets of the ground set X, then
1

4
(n2+4n−21) edges in Ĉ3

n have non-singleton set-labels. Therefore, in this

case, the sparing number of Ĉ3
n is ϕ(Ĉ3

n) =
1

2

(

3n2 + 9n
)

− 1

4
(n2+4n−21) =

1

4
(5n2 + 14n+ 21).

5. Sparing number of powers of the Mycielski graphs of

some related graphs

Another two interesting graph classes related to paths and cycles are
fan graphs and wheel graphs. A fan graph Fn+1 is the graph obtained by
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drawing edges from all vertices of a path Pn to an external vertex, while a
wheel graph Wn is the graph obtained by drawing edges from all vertices
of a cycle Cn to an external vertex. Then, we have the following results.

Proposition 5.1. For a fan graph Fn+1, we have

(i) ϕ(F̂n+1) =

{

n+ 1 if n is even,

n if n is odd.

(ii) ϕ(F̂ 2
n+1) = 2n2 + 3n+ 1.

Proof. (i) Note that ϕ(Fn+1) = ⌊n
2
⌋ (see [13]). Also, we have the indepen-

dence set with maximal incidence in a fan graph Fn+1 is ⌈n
2
⌉ and hence

by Theorem 2.1, we have

ϕ(F̂n+1) = ϕ(Fn+1) + |V (Fn+1)| − |I| = ⌊
n

2
⌋+ n+ 1− ⌈

n

2
⌉

=

{

n+ 1 if n is even,

n if n is odd.

(ii) We know that the diameter of the fan graph Fn+1 is 2 and hence
F̂ 2
n+1 is a complete graph on 2n+ 3 vertices. Therefore, by Theorem 1.4,

ϕ(F̂ 2
n+1) = 2n2 + 3n+ 1.

In a similar way, the sparing number of the wheel graph Wn+1 is also
determined in the following proposition.

Proposition 5.2. For a wheel graph Wn+1, we have

(i) ϕ(Ŵn+1) =

{

n+ 1 if n is even,

n+ 2 if n is odd.

(ii) ϕ(Ŵ 2
n+1) = 2n2 + 3n+ 1.

Proof. (i) Note that ϕ(Wn+1) = ⌈n
2
⌉ (see [13]). Also, we have the inde-

pendence set with maximal incidence in a wheel graph Wn+1 is ⌈n
2
⌉ and

hence by Theorem 2.1, we have

ϕ(Ŵn+1) = ϕ(Wn+1) + |V (Wn+1)| − |I| = ⌈
n

2
⌉+ (n+ 1)− ⌊

n

2
⌋

=

{

n+ 1 if n is even,

n+ 2 if n is odd.

(ii) We know that the diameter of the wheel graph Wn+1 is also 2
and hence Ŵ 2

n+1 is a complete graph on 2n + 3 vertices. Therefore, by

Theorem 1.4, ϕ(Ŵ 2
n+1) = 2n2 + 3n+ 1.
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6. Conclusion

In this paper, we study sparing number of the Mycielski graphs of
paths and cycles. This study can be extended to many path and cycle
related graphs like sun graphs, sunlet graphs, web graphs, helm graphs,
dragon graphs etc. Further studies on the sparing number of the Mycielski
graphs of several other well-known graph classes remain open.

Studies on the sparing number of the Mycielski graphs of the line
graphs and total graphs of certain standard graphs classes seem to be
promising for future investigations. Similar studies on other associated
graphs such as the subdivisions, super-subdivisions, homeomorphic graphs
etc. of some graph classes are also possible.

Further studies on many other parameters of the different parameters
of the Mycielski graphs of different graph classes are also interesting and
challenging. All these facts highlight the scope for further studies in this
area.
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