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Abstract. Let G be a graph with vertex set V (G) and

edge set E(G). Denote by dG(u) the degree of a vertex u ∈ V (G).
The general sum-connectivity index of G is defined as χα(G) =
∑

u1u2∈E(G)(dG(u1) + dG(u2))
α, where α is a real number. In this

paper, we compute the bounds for general sum-connectivity index of

several graph operations. These operations include corona product,

cartesian product, strong product, composition, join, disjunction

and symmetric difference of graphs. We apply the obtained results

to find the bounds for the general sum-connectivity index of some

graphs of general interest.

Introduction

Let G be an undirected, simple, finite and connected graph whose
vertex set is V (G) and edge set is E(G). The distance between two vertices
u1 and u2 in G, denoted by dG(u1, u2), is the length of a shortest path
between them. For a vertex u ∈ V (G), dG(u) denotes the degree of u.
An edge between two vertices u1 and u2 of G is denoted by u1u2. The
order and size of G is denoted by nG and mG, respectively. The maximum
vertex degree of G is denoted by △G and the minimum vertex degree of
G is denoted by δG. A complete graph of order n is denoted by Kn.
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A topological index is designed on the ground of transformation of a
molecular graph into a number which characterizes the topology of that
graph. In chemical graph theory, the degree based topological indices are
very important. A topological index, denoted by Top(G), of a graph G is
equal to the topological index Top(H) of a graph H if and only if G and
H are isomorphic.

In the theoretical point of view and applications, the Wiener index is
the first and most studied topological index. Initially, Wiener index was
known as path index but after some time it was renamed as Wiener index.
In 1947, the Wiener index was introduced by the chemist Harold Wiener
[18] and is defined as follows:

W (G) =
1

2

∑

u1∈V (G)

∑

u2∈V (G)

dG(u1, u2).

The hyper Wiener index is the extension of Wiener index. The hyper

Wiener index WW (G) of a graph G is defined as

WW (G) =
1

2

∑

u∈V (G)

∑

v∈V (G)

(dG(u, v) + dG(u, v)
2).

The Randić index (or product connectivity index) was introduced by
Randić [14] in 1975. It is the one of the most used molecular descriptors
in structure property and structure activity relationship studies and is
defined as follows:

R(G) =
∑

u1u2∈E(G)

1
√

dG(u1)dG(u2)
.

The general Randić connectivity index (or general product-connectivity
index) Rα was defined by Kier and Hall [12] in 1976 and is defined as
follows:

Rα(G) =
∑

u1u2∈E(G)

(dG(u1)dG(u2))
α,

where α is a real number. Then R−1/2 is the Randić connectivity index.
Another variant of the Randić index of G is the harmonic index, denoted
by H(G) and is defined as follows:

H(G) =
∑

ab∈E(G)

2

dG(a) + dG(b)
= 2χ−1(G).
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In 2009, the sum-connectivity index χ(G) was introduced by Zhou and
Trinajestić [19] and is defined as follows:

χ(G) =
∑

u1u2∈E(G)

1
√

dG(u1) + dG(u2)
.

A generalized form of the sum-connectivity index was introduced by Zhou
and Trinajstić [20] in 2010. It is called general sum-connectivity index
χα(G) and is defined as:

χα(G) =
∑

u1u2∈E(G)

(dG(u1) + dG(u2))
α, (1)

where α is a real number. Then χ−1/2 is the sum-connectivity index. The
first general Zagreb index of G is introduced by Li and Gutman [13] and
is defined as:

Mα
1 (G) =

∑

u1∈V (G)

dG(u1)
α =

∑

u1u2∈E(G)

(dG(u1)
(α−1) + dG(u2)

(α−1)),

where α is a real number with α 6= 0 and α 6= 1. If α = 2 then M2
1 (G)

becomes first Zagreb index and if α = 3 then M3
1 (G) is called F -index.

Some chemical graphs that are very interesting in chemical graph theory,
can be obtained by the use of different graph operations (graph products).
It is important to understand that how the topological indices and topo-
logical invariants of such graph operations are related to the topological
indices and topological invariants of components of these graph products.

Recently, Khalifeh et al. [10, 11] gave the exact expressions for hyper
Wiener index and, first and second Zagreb indices of several graph op-
erations. In 2015, Shetty et al. [15] derived formulae for harmonic index
of some graph operations. For a detailed study on topological indices of
graph operations, we refer to [2–8, 16]. Very recently, Wang et al. [17]
computed the lower and upper bounds for different indices of tricyclic
graphs. Gao et al. [9] gave some exact expressions for the hyper-Zagreb
index of some graph operations. Akhter et al. [1] gave exact formulae of
general sum-connectivity index for some graph operations.

In this paper, we give some bounds for the general sum-connectivity
index of several graph operations when α < 0. These graph operations
include corona product, cartesian product, strong product, join, compo-
sition, disjunction and symmetric difference of graphs. We apply these
results to find the bounds for the general sum-connectivity index of some
graphs of general interest.
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1. Bounds for the general sum-connectivity index

In this section, we derive some bounds for general sum-connectivity
index of several graph operations. Let G and H be two simple connected
graphs whose vertex sets are disjoint. For each u ∈ V (G) and v ∈ V (H),
we have

△G > dG(u), δG 6 dG(u), (2)

△H > dH(v), δH 6 dH(v). (3)

The equality holds if and only if G and H are regular graphs.

1.1. The corona product

The corona product of G and H , denoted by G⊙H , is a graph obtained
by taking one copy of G and nG copies of H and joining the vertex u that
is on i-th position in G to every vertex in i-th copy of H. The order and
size of G⊙H are nG(1+nH) and mG+nGmH +nGnH , respectively. The
degree of a vertex u ∈ V (G⊙H) is given by

dG⊙H(u) =

{

dG(u) + nH if u ∈ V (G),
dH(u) + 1 if u ∈ V (H).

(4)

In the following theorem, the bounds on the general sum-connectivity
index of corona product of two graphs are computed.

Theorem 1. Let α < 0. Then β1 6 χα(G⊙H) 6 β2, where

β1 = 2αmG(△G + nH)α + 2αnGmH(△H + 1)α

+ nGnH(△G +△H + nH + 1)α,

β2 = 2αmG(δG + nH)α + 2αnGmH(δH + 1)α

+ nGnH(δG + δH + nH + 1)α.

The equality holds if and only if G and H are regular graphs.
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Proof. Using (2) and (4) in equation (1), we obtain

χα(G⊙H) =
∑

uv∈E(G)

(dG(u) + dG(v) + 2nH)α

+ nG

∑

uv∈E(H)

(dH(u) + dH(v) + 2)α

+
∑

u∈V (G)

∑

v∈V (H)

(dG(u) + nH + dH(v) + 1)α

>
∑

uv∈E(G)

(2△G +2nH)α + nG

∑

uv∈E(H)

(2△H +2)α

+
∑

u∈V (G)

∑

v∈V (H)

(△G + nH +△H + 1)α

= 2αmG(△G + nH)α + 2αnGmH(△H + 1)α

+ nGnH(△G +△H + nH + 1)α.

(5)

Similarly, we can compute

χα(G⊙H) 6 2αmG(δG + nH)α + 2αnGmH(δH + 1)α

+ nGnH(δG + δH + nH + 1)α.
(6)

The equality in (5) and (6) holds if and only if G and H are regular
graphs.

Let t > 1 and Kt be the complement of Kt. Then t-thorny graph of
G is the corona product of G and Kt. The following corollary is an easy
consequence of Theorem 1.

Corollary 1. For α < 0, the following holds:

2αmG(△G + t) + nGt(△G + t+ 1) 6 χα(G⊙Kt)

6 2αmG(δG + t) + nGt(δG + t+ 1).

1.2. The cartesian product

The cartesian product of G and H , denoted by G�H , is a graph whose
vertex set is V (G�H) = V (G) × V (H) and two vertices (u1, v1) and
(u2, v2) are adjacent in G�H whenever [v1 and v2 are adjacent in H and
u1 = u2] or [u1 and u2 are adjacent in G and v1 = v2]. The order of the
cartesian product of two graphs is the product of number of vertices of G
and H, and the size is mGnH +mHnG. If G and H are regular graphs
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then G�H is also regular graph. The degree of a vertex (u, v) ∈ V (G�H)
is

dG�H((u, v)) = dG(u) + dH(v). (7)

In the following theorem, we compute bounds on the general sum- con-
nectivity index of G�H.

Theorem 2. Let α < 0. Then β1 6 χα(G�H) 6 β2, where

β1 = 2αmG�H(△G +△H)α,β2 = 2αmG�H(δG + δH)α.

The equality holds if and only if G and H are regular graphs.

Proof. Using (2) and (7) in equation (1), we obtain

χα(G�H) =
∑

u1∈V (G)

∑

v1v2∈E(H)

(2dG(u1) + dH(v1) + dH(v2))
α

+
∑

v1∈V (H)

∑

u1u2∈E(G)

(dG(u1) + dG(u2) + 2dH(v1))
α

>
∑

u1∈V (G)

∑

v1v2∈E(H)

2α(△G +△H)α

+
∑

v1∈V (H)

∑

u1u2∈E(G)

2α(△G +△H)α

= 2α (nGmH + nHmG) (△G +△H)α

= 2αmG�H(△G +△H)α.

(8)

One can analogously compute the following for α < 0:

χα(G�H) 6 2αmG�H(δG + δH)α. (9)

The equality in (8) and (9) obviously holds if and only if G and H are
regular graphs.

1.3. The strong product

The strong product of G and H , denoted by G⊠H , is a graph whose
vertex set is V (G ⊠ H) = V (G) × V (H) and two vertices (u1, v1) and
(u2, v2) are adjacent in G⊠H whenever [v1 and v2 are adjacent in H and
u1 = u2] or [u1 and u2 are adjacent in G and v1 = v2] or [u1u2 ∈ E(G)
and v1v2 ∈ E(H)]. The order of G⊠H is the product of number of vertices
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of G and H, and the size is nGmH + nHmG + 2mGmH . The degree of a
vertex (u, v) ∈ V (G⊠H) is

dG⊠H((u, v)) = dG(u) + dH(v) + dG(u)dH(v). (10)

We compute bounds on the general sum-connectivity index of G⊠H in
the following theorem.

Theorem 3. Let α < 0. Then β1 6 χα(G⊠H) 6 β2, where

β1 = 2αmG⊠H(△G +△H +△G△H)α,

β2 = 2αmG⊠H(δG + δH + δGδH)α.

The equality holds if and only if G and H are regular graphs.

Proof. Using (2) and (10) in equation (1), we obtain

χα(G⊠H) =
∑

u1∈V (G)

∑

v1v2∈E(H)

(2dG(u1) + (dH(v1) + dH(v2))

+ dG(u1)(dH(v1) + dH(v2)))
α

+
∑

v1∈V (H)

∑

u1u2∈E(G)

((dG(u1) + dG(u2)) + 2dH(v1)

+ dH(v1)(dG(u1) + dG(u2)))
α

+ 2
∑

u1u2∈E(G)

∑

v1v2∈E(H)

((dG(u1) + dG(u2)) + (dH(v1)

+ dH(v2)) + dG(u1)dH(v1) + dG(u2)dH(v2)))
α

>
∑

u1∈V (G)

∑

v1v2∈E(H)

2α(△G +△H +△G△H)α

+
∑

v1∈V (H)

∑

u1u2∈E(G)

2α(△G +△H +△G△H)α

+ 2
∑

u1u2∈E(G)

∑

v1v2∈E(H)

2α(△G +△H +△G△H)α

= 2α(nGmH + nHmG + 2mGmH)(△G +△H +△G△H)α

= 2αmG⊠H(△G +△H +△G△H)α.

(11)

Analogously, one can compute the following:

χα(G⊠H) 6 2αmG⊠H(δG + δH + δGδH)α. (12)

If G and H are regular graphs then the equality in (11) and (12) holds.
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1.4. The join

The join of G and H, denoted by G+H, is a union of graphs G and
H together with all the edges joining the sets of vertices of G and H . The
order and size of G+H are nGnH and mG +mH + nGnH , respectively.
The degree of a vertex u in G+H is given by

dG+H(u) =

{

dG(u) + nH if u ∈ V (G),
dH(u) + nG if u ∈ V (H).

(13)

We compute bounds on the general sum-connectivity index for join of two
graphs in the following theorem.

Theorem 4. Let α < 0. Then β1 6 χα(G+H) 6 β2, where

β1 = 2αmG(△G + nH)α + 2αmH(△H + nG)
α

+ nGnH(△G +△H + nG + nH)α,

β2 = 2αmG(δG + nH)α + 2αmH(δH + nG)
α

+ nGnH(δG + δH + nG + nH)α.

The equality holds if and only if G and H are regular graphs.

Proof. Using (2) and (13) in equation (1), we get

χα(G+H) =
∑

uv∈E(G)

(dG(u) + dG(v) + 2nH)α

+
∑

uv∈E(H)

(dH(u) + dH(v) + 2nG)
α

+
∑

u∈V (G)

∑

v∈V (H)

(dG(u) + nH + dH(v) + nG)
α

>
∑

uv∈E(G)

2α(△G + nH)α +
∑

ab∈E(H)

2α(△H + nG)
α

+
∑

u∈V (G)

∑

v∈V (H)

(△G +△H + nG + nH)α

= 2αmG(△G + nH)α + 2αmH(△H + nG)
α

+ nGnH(△G +△H + nG + nH)α.

(14)

Similarly, we can show that

χα(G+H) 6 2αmG(δG + nH)α + 2αmH(δH + nG)
α

+ nGnH(δG + δH + nG + nH)α.
(15)

If G and H are regular graphs then we obtain the equality in (14) and
(15).
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1.5. The composition

The composition or lexicographic product of G and H, denoted by
G[H ], is the graph whose vertex set is V (G[H ]) = V (G)× V (H) and two
vertices (u1, v1) and (u2, v2) are adjacent in G[H ] whenever [u1u2 ∈ E(G)]
or [v1 and v2 are adjacent in H and u1 = u2]. The order of G[H] is the
product of number of vertices of G and H, and size is mGn

2
H + nGmH .

The degree of a vertex (u, v) ∈ V (G[H]) is

dG[H]((u, v)) = nHdG(u) + dH(v). (16)

In the following theorem, we calculate bounds on the general sum- con-
nectivity index for composition of two graphs.

Theorem 5. Let α < 0. Then β1 6 χα(G[H]) 6 β2, where

β1 = 2αmG[H](nH △G +△H)α,β2 = 2αmG[H](nHδG + δH)α.

The equality holds if and only if G and H are regular graphs.

Proof. Using (2) and (16) in equation (1), we obtain

χα(G[H]) =
∑

u1∈V (G)

∑

v1v2∈E(H)

(2nHdG(u1) + dH(v1) + dH(v2))
α

+
∑

v1∈V (H)

∑

v2∈V (H)

∑

u1u2∈E(G)

(nH(dG(u1) + dG(u2))

+ dH(v1) + dH(v2))
α

>
∑

u1∈V (G)

∑

v1v2∈E(H)

2α(nH △G +△H)α

+
∑

v1∈V (H)

∑

v2∈V (H)

∑

u1u2∈E(G)

2α(nH △G +△H)α

= 2α(nGmH + n2
HmG)(nH △G +△H)α

= 2αmG[H](nH △G +△H)α.

(17)

Analogously, one can compute the upper bound

χα(G[H]) 6 2αmG[H](nHδG + δH)α. (18)

The equality in (17) and (18) obviously holds if and only if G and H are
regular graphs.
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1.6. The disjunction

The disjunction of G and H, denoted by G ∨ H, is a graph whose
vertex set is V (G ∨ H) = V (G) × V (H) and two vertices (u1, v1) and
(u2, v2) are adjacent in G ∨H whenever [v1v2 ∈ E(H)] or [u1u2 ∈ E(G)].
The order of G ∨ H is the product of number of vertices of graphs G

and H, and size is mGn
2
H + mHn2

G − 2mGmH . The degree of a vertex
(u, v) ∈ G ∨H is

dG∨H((u, v)) = nHdG(u) + nGdH(v)− dG(u)dH(v). (19)

In the following theorem, we compute lower and upper bounds on the
general sum-connectivity index for G ∨H.

Theorem 6. Let α < 0. Then β1 6 χα(G ∨H) 6 β2, where

β1 = 2αmG∨H(nH △G +nG△H)α,β2 = 2αmG∨H(nHδG + nGδH)α.

The equality holds if and only if G and H are regular graphs.

Proof. Using (2) and (19) in equation (1), we obtain

χα(G ∨H) =
∑

u1∈V1

∑

u2∈V (G)

∑

v1v2∈E(H)

(nH(dG(u1) + dG(u2)) + nG(dH(v1)

+ dH(v2))− (dG(u1)dH(v1) + dG(u2)dH(v2)))
α

+
∑

v1∈V (H)

∑

v2∈V (H)

∑

u1u2∈E(G)

(nH(dG(u1) + dG(u2)) + nG(dH(v1)

+ dH(v2))− (dG(u1)dH(v1) + dG(u2)dH(v2)))
α

− 2
∑

u1u2∈E(G)

∑

v1v2∈E(H)

(nH(dG(u1) + dG(u2)) + nG(dH(v1)

+ dH(v2))− (dG(u1)dH(v1) + dG(u2)dH(v2)))
α

>
∑

u1∈V (G)

∑

u2∈V (G)

∑

v1v2∈E(H)

2α(nH △G +nG △H −△G △H)α

+
∑

v1∈V (H)

∑

v2∈V (H)

∑

u1u2∈E(G)

2α(nH △G +nG △H −△G △H)α

− 2
∑

u1u2∈E(G)

∑

v1v2∈E(H)

2α(nH △G +nG △H −△G △H)α

= 2α(nGmH + nHmG − 2mGmH)(nH △G +nG △H −△G △H)α

= 2αmG∨H(nH △G +nG△H)α.
(20)
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Similarly, we can compute,

χα(G ∨H) 6 2αmG∨H(nHδG + nGδH)α. (21)

The equality in (20) and (21) obviously holds if and only if G and H are
regular.

1.7. The symmetric difference

The symmetric difference of G and H, denoted by G⊕H, is a graph
whose vertex set is V (G⊕H) = V (G)×V (H) and two vertices (u1, v1) and
(u2, v2) are adjacent in G⊕H whenever [u1u2 ∈ E(G)] or [v1v2 ∈ E(H)]
but not both. The order of G⊕H is the product of number of vertices
graphs of G and H, and size is mGn

2
H +mHn2

G − 4mGmH . The degree
of a vertex (u, v) ∈ V (G⊕H) is dG⊕H((u, v)) = nHdG(u) + nGdH(v)−
2dG(u)dH(v). In the following theorem, we compute bounds for the general
sum-connectivity index for symmetric difference of two graphs. The proof
is similar to the proof of Theorem 6, hence omitted.

Theorem 7. Let α < 0. Then β1 6 χα(G⊕H) 6 β2, where

β1 = 2αmG⊕H(nH △G +nG △H −2△G △H)α,

β2 = 2αmG⊕H(nHδG + nGδH − 2δGδH)α.

The equality holds if and only if G and H are regular graphs.

Remark. In Theorems 1−7, we assumed that α < 0. However, if α > 0
then all inequalities in Theorems 1−7 will be reversed.

2. Few examples

A path Pn of length n− 1 is a graph with vertex set {ui|i = 1, . . . , n}
and edge set {uiui+1 | i = 1, . . . , n − 1}. A cycle Cn of length n is a
graph with vertex set {ui | i = 1, . . . , n} and edge set {uiui+1 | i =
1, . . . , n− 1} ∪ {unu1}. In this section, we apply the results of Section 1
to find bounds of some particular graphs.

The bottleneck graph, denoted by B, of a graph G is the hydrogen sup-
pressed molecular graph. It is defined as B = K2⊙G. LetG1, G2, . . . , Gn be
the pairwise disjoint graphs. The bridge graph with respect to the vertices
vj ∈ Gj where j = 1, 2, . . . , n, denoted by B(G1, G2, .., Gn, v1, v2, .., vn)
is the graph obtained by connecting the vertices vj ∈ V (Gj) and vj+1 ∈
V (Gj+1) by an edge vjvj+1, where j = 1, 2, . . . , n. Taking n copies of
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the graph G, n > 2, and a vertex v ∈ V (G), a special case of the bridge
graph is defined by Gn(G, v) = B(G,G, . . . , G, v, v, v, . . . , v). Note that
G1(G, v) = G for any vertex v ∈ V (G). Let v be a vertex of P3 of degree
2. Then it is known that Gn(P3, v) ∼= Pn ⊙K2. Also, for any u ∈ V (Ck),
we know that Gn(Ck, u) ∼= Pn ⊙ K2. Using Theorem 1, the upper and
lower bounds on the general sum-connectivity index of B, Pn ⊙K2 and
Pn ⊙K2 for n > 2 are as follows:

2α(nG + 1)α + 2α+1mG(△G + 1)α + 2nG(△G + n+ 2)α

6 χα(B) 6 2α(nG + 1)α + 2α+1mG(δG + 1)α + 2nG(δG + n+ 2)α,

2αn(4α + 2× 5α)− 8α 6 χα(Pn ⊙K2) 6 2αn(3α + 2α+1)− 6α,

2αn(4α + 2α + 2× 3α)− 8α 6 χα(Pn ⊙K2) 6

n(6α + 4α + 2× 5α)− 6α.

The graph G = Pn�Cm and S = Cn�Cm denote a nanotube and
nanotrous, respectively, where m > 3 and n > 2. Using Theorem 2, we
can compute bounds on the general sum-connectivity index of nanotube
G as follows:

m(2n− 1)8α 6 χα(G) 6 m(2n− 1)6α.

The nanotrous S is a regular graph. Using Theorem 2, we can compute
the exact formula for the general sum-connectivity index of S as follows:

χα(S) = 23α+1mn.

The suspension of a graph G, denoted by K1 + G, is the join of K1

and G. The complete bipartite graph Kn1,n2
is defined as Kn1

+Kn2
. The

wheel graph is defined by Wn = K1 + Cn and cone graph is defined by
Cn1,n2

= Cn1
+Kn2

. Using Theorem 4, we can compute the bounds on
the general sum-connectivity index of K1 +G as follows:

2αmG(△G + 1)α + nG(△G + nG + 1)α

6 χα(K1 +G) 6 2αmG(δG + 1)α + nG(δG + nG + 1)α.

Using Theorem 4, we can compute the exact formulae for the general
sum-connectivity index of Kn1,n2

, Wn and Cn1,n2
as follows:

χα(Kn1,n2
) = n1n2(n1 + n2)

α,

χα(Wn) = 6αn+ n(n+ 3)α,

χα(Cn1,n2
) = 2αn1(n2 + 2)α + n1n2(n1 + n2 + 2)α.
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The fence graph, denoted by Pn[P2], is the composition of Pn and
P2. Using Theorem 5, we can compute the bounds on the general sum-
connectivity index of Pn[Pm].

10α(5n− 4) 6 χα(Pn[P2]) 6 6α(5n− 4).

The closed fence graph, denoted by Cn[P2], is the composition of Cn

and P2. The graph Cn[P2] is a regular graph. Using Theorem 5, we can
compute the exact formula for the general sum-connectivity index of
Cn[P2] as follows:

χα(Cn[P2]) = 5× 10αn.

By using Theorems 3, 6 and 7, the bounds on the general sum-
connectivity index of Pn ⊠ Pm, Pn ∨ Pm and Pn ⊕ Pm are given below:

1) 42α(4mn− 3m− 3n+2) 6 χα(Pn⊠Pm) 6 6α(4mn− 3m− 3n+2),
2) 4α[mn(m + n − 2) + m(2 − m) + n(2 − n) − 2](m + n − 2)α 6

χα(Pn∨Pm) 6 4α[mn(m+n−2)+m(2−m)+n(2−n)−2](m+n−2)α,
3) 4α[mn(m + n − 4) + m(4 − m) + n(4 − n) − 4](m + n − 4)α 6

χα(Pn⊕Pm) 6 2α[mn(m+n−4)+m(4−m)+n(4−n)−4](m+n−2)α.
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