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Classification of L-cross-sections of the finite

symmetric semigroup up to isomorphism

Eugenija Bondar∗
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Abstract. Let Tn be the symmetric semigroup of full trans-
formations on a finite set with n elements. In the paper we give
a counting formula for the number of L-cross-sections of Tn and
classify all L-cross-sections of Tn up to isomorphism.

Introduction

Let ρ be an equivalence relation on a semigroup S. A subsemigroup S′

of S is called a ρ-cross-section of S provided that S′ contains exactly one
representative from each equivalence class of ρ. Thus, the restriction ρ to
the subsemigroup S′ is the identity relation. It is natural to investigate
the cross-sections with respect to equivalences related somehow to the
semigroup operation: Green’s relations, conjugacy and various congruences.
In general, a semigroup need not to have a ρ-cross-section. It is possible,
for example, that a semigroup S has an R-cross-section, while L-cross-
sections of S do not exist at all. Thus, the existence of cross-sections of a
given semigroup is an essential and non-obvious fact.

The transformation semigroups are classical objects for investigations
in semigroup theory (see [1]). For the full finite symmetric semigroup Tn,
all H- and R-cross-sections have been described in [3]. It has been proved
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that there exists a unique R-cross-section up to isomorphism. A pair of
non-isomorphic L-cross-sections of T4 has been constructed in [4]. The
author has obtained a description of the L-cross-sections of Tn in [5] (see
Theorem 1).

In the present paper we continue to investigate L-cross-sections of Tn.
We give necessary information in Section 1. Section 2 is devoted to some
additional definitions. In Section 3 we show how to count all different
L-cross-sections of Tn (Theorem 2). In Section 4 we classify all L-cross-
sections up to isomorphism (Theorem 3).

1. Preliminaries

For any nonempty set X, the set of all transformations of X into
itself, written on the right, constitutes a semigroup under the composition
x(αβ) = (xα)β for all x ∈ X. This semigroup is denoted by T(X)
and called the symmetric semigroup. If |X| = n, then the symmetric
semigroup T(X) is also denoted by Tn. We write idX for the identity
transformation on X, and cx for the constant transformation whose image
is the singleton {x}, x ∈ X. For the image of a transformation α ∈ Tn

we write im (α). The cardinality | im (α)| of the image of α is called the
rank of this transformation and is denoted by rk (α). The kernel of α is
denoted by kerα. Recall that kerα = {(a, b) ∈ X ×X | aα = bα}. If X ′

is a subset of X, then α|X′ is the restriction α to X ′. We will assume X
is finite. As the nature of elements of X is not important for us, suppose
further that X = {1, 2, . . . , n}.

We recall that two elements in a semigroup S are called L-equivalent
provided that they generate the same principal left ideal in S. Transforma-
tions α, β ∈ Tn are L-equivalent if and only if im (α) = im (β) (see e.g. [2]).
The last means that an L-cross-section of Tn contains exactly one trans-
formation with the image M for each nonempty M ⊆ X. We will use the
last fact frequently. Suppose further that L is an L-cross-section in Tn.

First we isolate two trivial cases:
(i) L = {c1 = idX}, if n = 1;
(ii) L = {idX , c1, c2}, if n = 2.

For the rest of the paper we may and will assume that n > 3.
In order to present our description of L-cross-sections for an arbitrary

finite Tn [5], we need following definitions.
Let X be a nonempty finite set and let < be a strict total order on X.

We define a strict order ≺ on the family of all nonempty subsets of X by:
A ≺ B if for all a ∈ A and all b ∈ B, a < b.
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Denote by {1, 2}+ the free semigroup of words over the alphabet {1, 2},
and by {1, 2}∗ the free monoid over {1, 2}, with 0 as the empty word.
Recall, that a subsequence of b ∈ {1, 2}∗ is a word a that can be derived
from b by deleting some symbols without changing the order of the
remaining symbols. If a is a subsequence of b we will write a ⊆ b.

Definition 1. Let X be a finite set (possibly empty) and let < be a
strict total order on X. An indexed family {Aa}a∈{1,2}∗ of subsets of X
is called a Γ-family over (X,<) if for every a ∈ {1, 2}∗:

(a) A0 = X;
(b) if |Aa| 6 1, then Aa1 = Aa2 = ∅;
(c) if |Aa| > 1, then Aa1 and Aa2 are nonempty with Aa1 ≺ Aa2 and

Aa = Aa1 ∪Aa2.

We will say that {Aa}a∈{1,2}∗ is a Γ-family overX if {Aa}a∈{1,2}∗ is a Γ-
family over (X,<) for some strict total order < on X (necessarily unique).
For simplicity, we will write Γ = {Aa} instead of Γ = {Aa}a∈{1,2}∗ .

Recall that a tree is a connected graph without cycles. A full binary
tree is defined as a tree in which there is exactly one vertex of degree two
(referred to as the root) and each of the remaining vertices is of degree
one or three. Vertices of degree one are called leaves. Each vertex except
the root has a unique parent, that is, the vertex connected to it on the
path to the root. A child of a vertex v is a vertex of which v is the parent.
Thus, in a full binary tree each vertex v either is a leaf or has exactly two
children that we refer to as the left child of v and the right child of v.

It is easy to see that every Γ-family Γ = {Aa} over a nonempty set
can be represented by a rooted full binary tree T (Γ) whose vertices are
the nonempty sets from {Aa} and a pair {Aa, Ab}, for a, b ∈ {1, 2}∗, is
an edge if and only if a = bi or b = ai, where i ∈ {1, 2} (see Fig. 1). For
the full binary tree that represents a Γ-family Γ, we will write Γ instead
of T (Γ), and refer to the tree as a Γ-tree.

A0 = X

A1

A11

A111 A112

A12

A2

A21

A211 A212

A22

A221 A222

Figure 1. A Γ-tree.
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Definition 2. A Γ-family Γ = {Aa} over (X,<) is called an L-family
over (X,<) if for all a, b ∈ {1, 2}∗ and all i, j ∈ {1, 2} with i 6= j,

|Aaijb| 6 |Aajb|. (1)

We will say that {Aa}a∈{1,2}∗ is an L-family over X if {Aa}a∈{1,2}∗ is
an L-family over (X,<) for some strict total order < on X.

Example 1. Let {1, 2, 3, 4, 5} be naturally ordered. Consider the following
Γ-family {Aa} (see Fig. 2).

A0 = {1, 2, 3, 4, 5}

A1 = {1, 2}

A11 = {1} A12 = {2}

A2 = {3, 4, 5}

A21 = {3} A22 = {4, 5}

A221 = {4} A222 = {5}

Figure 2. Γ-family {Aa}.

This Γ-family satisfies condition (2) for all a, b ∈ {1, 2}∗ and all
i, j ∈ {1, 2} with i 6= j, hence {Aa} is an L-family by definition.

Figure 3 shows a Γ-family {Ba} that does not satisfy condition (2)
since |B21| > |B1|.

B0 = {1, 2, 3, 4, 5}

B1 = {1} B2 = {2, 3, 4, 5}

B21 = {2, 3}

B211 = {2} B212 = {3}

B22 = {4, 5}

B221 = {4} B222 = {5}

Figure 3. Γ-family {Ba}.

Let Γ be an L-family of subsets of X, M ⊆ X and M 6= ∅. Our
aim now is to construct a map αAa

M : Aa → M with im (αAa

M ) = M .
We construct this map inductively using partial transformations, whose
domains go through vertices of a Γ-tree bottom up. For the domain of a
partial transformation f we write dom (f).
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For functions f and g with disjoint domains, we denote by f ∪ g the
union of f and g (viewed as sets of pairs). In other words, if h = f ∪ g,
then dom (h) = dom (f) ∪ dom (g) and for all x ∈ dom (h), xh = xf if
x ∈ dom (f), and xh = xg if x ∈ dom (g).

Definition 3. Let Γ = {Aa} be an L-family over X and let M ⊆ X with
M 6= ∅. Denote by 〈M〉 the intersection of all Ac ∈ Γ such that M ⊆ Ac,
and note that 〈M〉 = Ab for some b ∈ {1, 2}∗. For every a ∈ {1, 2}∗, we
define the mapping αAa

M inductively as follows:
(a) if Aa = ∅ then αAa

M = ∅ (empty mapping);
(b) if M = {m} and Aa 6= ∅, then dom (xαAa

M ) = Aa and xαAa

M = m
for every x ∈ Aa;

(c) if |M | > 1 and Aa 6= ∅, then αAa

M = αAa1

M∩Ab1
∪ αAa2

M∩Ab2
.

Lemma 1. Let Γ = {Aa} be an L-family over X. If M ⊆ Aa or Aa 6= ∅

and M ∩Aa = ∅ then dom (xαAa

M ) = Aa and im (xαAa

M ) = M .

Proof. The proof is by induction on |M |. If M = {m}, then the statement
is true by (b) of Definition 3. Let |M | > 1 and suppose the statement is
true for every M ′ with 1 6 |M ′| < |M |. Assume M ⊆ Aa or Aa 6= ∅ and
M ∩Aa = ∅. By (c) of Definition 3, αAa

M = αAa1

M∩Ab1
∪ αAa2

M∩Ab2
. Consider

two possible cases.
Case 1. M ⊆ Aa. Then Ab ⊆ Aa since Ab is the intersection of all Ac

such that M ⊆ Ac. If Ab = Aa then

M ∩Ab1 = M ∩Aa1 ⊆ Aa1,

M ∩Ab2 = M ∩Aa2 ⊆ Aa2,

and |M ∩Ab1|, |M ∩Ab2| < |M | (since 〈M〉 = Ab). Thus, by the inductive
hypothesis, the statement is true for αAa1

M∩Ab1
and for αAa2

M∩Ab2
. Hence it is

true for αAa

M .
If Ab 6= Aa then, since Aa = Aa1 ∪ Aa2 and Aa1 ∩ Aa2 = ∅, we get

either Ab ⊆ Aa1 or Ab ⊆ Aa2. We may assume that Ab ⊆ Aa1. Then

M ∩Ab1 ⊆ Aa1,

(M ∩Ab2) ∩Aa2 = ∅.

Note that Aa2 6= ∅ (since M ⊆ Aa and |M | > 1) and |M ∩ Ab1|,
|M ∩ Ab2| < |M | (since 〈M〉 = Ab). Again, the statement follows by
the inductive hypothesis from αAa

M = αAa1

M∩Ab1
∪ αAa2

M∩Ab2
.

Case 2. Aa 6= ∅ and M ∩ Aa = ∅. Then (M ∩ Ab1) ∩ Aa1 = ∅ and
(M ∩Ab2) ∩Aa2 = ∅. As before, we get the statement by the inductive
hypothesis from αAa

M = αAa1

M∩Ab1
∪ αAa2

M∩Ab2
.
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Denote by LΓ
X the set of all transformations of the form αXM , where

M ⊆ X, M 6= ∅. We will denote the elements αXM also by αM .

Example 2. Let {1, 2, 3, 4, 5} be naturally ordered. We will construct
the transformation α = αM with M = {1, 2, 4, 5} for the L-family {Aa}
from Example 1. Clearly, 〈M〉 = A0, so by definition of αM

α = αA0

M = αA1

M∩A1
∪ αA2

M∩A2
= αA1

{1,2} ∪ αA2

{4,5}.

Since 〈{1, 2}〉 = A1, 〈{4, 5}〉 = A22, thus

αA1

{1,2} = αA11

{1,2}∩A11
∪ αA12

{1,2}∩A12
= αA11

{1} ∪ αA12

{2} ,

αA2

{4,5} = αA21

{4,5}∩A221
∪ αA22

{4,5}∩A222
= αA21

{4} ∪ αA22

{5} .

Thus, since A11 = {1}, A12 = {2}, A21 = {3}, and A22 = {4, 5}, we
have

α = αA11

{1} ∪ αA12

{2} ∪ αA21

{4} ∪ αA22

{5} =

(

12345
12455

)

.

The other transformations from LΓ
X can be obtained in the same way (see

[5, Example 3]).

The following theorem describes the L-cross-sections of Tn:

Theorem 1 ([5, Theorem 1]). For each L-family Γ of X, the set LΓ
X

is an L-cross-section of the symmetric semigroup Tn. Conversely, every
L-cross-section of the symmetric semigroup Tn is given by LΓ

X for a
suitable L-family Γ on X.

2. Alternative definition of L-family

Since the definition of an L-family may seem difficult to use and
understand, we try to find a way to make it easy and more visual. We
state a new definition in Proposition 1. But first we need some preparation.

Definition 4. Let Γ1, Γ2 be the full binary trees that represent Γ-families
{Aa} over X1 and {Ba} over X2 respectively. We say that Γ1 is less than
or equal to Γ2, written Γ1 6 Γ2, if |Aa| 6 |Ba| for all a ∈ {1, 2}∗.

Let Γ = {Aa}a∈{1,2}∗ be a Γ-family over X. For every a ∈ {1, 2}∗,
denote by Γ(a) the family {Bb}b∈{1,2}∗ of subsets of Aa such that Bb = Aab
for each b ∈ {1, 2}∗. It is clear that Γ(a) is a Γ-family over the set Aa and
that, if Aa 6= ∅, then Γ(a) is represented by the subtree Γ(a) of the full
binary tree Γ with the root Aa.
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Definition 5. Let Γ be a Γ-tree. For all a ∈ {1, 2}∗ and i ∈ {1, 2}, we
call the tree Γ(a) the parent tree of the subtree Γ(ai). We will say that Γ
is monotone if for all a ∈ {1, 2}∗ and i ∈ {1, 2}, Γ(ai) 6 Γ(a).

Proposition 1. A Γ-tree Γ with root X represents an L-family over X
if and only if Γ is monotone.

Proof. Necessity. Suppose that a Γ-tree Γ with root X represents an
L-family over X and let a ∈ {1, 2}∗. We aim to prove that Γ(a1) 6 Γ(a).
If |Aa1| = 1, then it is clear that Γ(a1) 6 Γ(a). Let |Aa1| > 1. To prove
Γ(a1) 6 Γ(a) we show first Γ(a12) 6 Γ(a2) and then Γ(a11) 6 Γ(a1).

Let Γ(a12) represent {Bb} and let Γ(a2) represent {Cb}. Then, for
every b ∈ {1, 2}∗,

|Bb| = |Aa12b| 6 |Aa2b| = |Cb|,

where 6 follows by (2). Thus, Γ(a12) 6 Γ(a2).

To prove that Γ(a11) 6 Γ(a1), denote by {Bb} and {Cb} the L-families
that are represented by Γ(a11) and Γ(a1), respectively. Denote by k, k > 0,
the empty word 0 if k = 0 and 11 . . . 1

︸ ︷︷ ︸

k

∈ {1, 2}∗ if k > 1. Then, for every

b ∈ {1, 2}∗, if b = k, k > 0, then

|Bb| = |A
a11k| 6 |A

a1k| = |Cb|,

since A
a11k ⊂ A

a1k; and if b = k2c (k > 0, c ∈ {1, 2}∗), then

|Bb| = |A
a11k2c| 6 |A

a1k2c| = |Cb|,

where 6 follows by (2).

Now, since |Aa1| < |Aa|, Γ(a11) 6 Γ(a1) and Γ(a12) 6 Γ(a2), we
get Γ(a1) 6 Γ(a). In dual way, one can show that Γ(a2) 6 Γ(a). So any
subtree of Γ is less than or equal to the parent tree of this subtree, thus
Γ is monotone.

Sufficiency. Let a ∈ {1, 2}∗ and i, j ∈ {1, 2} with i 6= j. Let the
subtrees Γ(ai) and Γ(a) of Γ represent {Bb}b∈{1,2}∗ and {Cb}b∈{1,2}∗ ,
respectively. Since Γ(ai) 6 Γ(a),

|Aaijb| = |Bjb| 6 |Cjb| = |Aajb|.

Hence (2) holds, that is, Γ is an L-family.



8 Classification of L-cross-sections of Tn

Definition 6. For n ∈ N we will write Γn to mean an L-family over
a set with n elements. Let Γn = {Aa} be an L-family with n > 2. Let
s, t ∈ {1, 2, . . . , n} with s+ t 6 n. We denote by Qs,t the set of all pairs
(Γs,Γt) of L-families Γs and Γt such that:

(a) Γs = Γn(a) and Γt = Γn(b) for a, b ∈ {1, 2}∗ such that Aa∩Ab = ∅;
(b) if s > 1 then Γs(2) 6 Γt, and if t > 1 then Γt(1) 6 Γs.

Example 3. Figure 4 shows a pair of L-families (Γ4, Γ5) that does not
belong to Q4,5. To simplify the picture we denote the nodes of the trees
by their cardinalities.

Γ4 : 4

1 3

1 2

1 1

Γ5 : 5

3

2

1 1

1

2

1 1

Γ5(1) : 3

2

1 1

1

Γ4(2) : 3

1 2

1 1

Figure 4. Γ4 and Γ5 such that (Γ4, Γ5) /∈ Q4,5.

As the picture shows, Γ4 and Γ5(1) do not satisfy the condition
Γ5(1) 6 Γ4 (2 > 1 in the first position). However, Γ5 and Γ4(2) satisfy
the condition Γ4(2) 6 Γ5.

Fix a total order < on an n-element set X and denote by Qn the
number of L-families over X.

Proposition 2. The number Qn of all distinct L-families Γ on the totally
ordered set (X,<), with |X| = n, is given by the formula:

Q1 = 1, Qn =
∑

s,t
s+t=n

|Qs,t| if n > 2.

Proof. Obviously, Q1 = 1. Let n > 2. Let Γn be an L-family over (X,<)
and let Γs = Γn(1) and Γt = Γn(2). It is clear that s + t = n. Using
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Proposition 1, we get Γs 6 Γn, Γt 6 Γn, whence Γs(2) 6 Γt, Γt(1) 6 Γs and
thus (Γs,Γt) ∈ Qs,t. It is then clear that the mapping Γn → (Γn(1),Γn(2))
is a bijection from the set of L-families over (X,<) onto the union of the
sets Qs,t with s+ t = n.

Second variant of proof, using the first definition of an L-family (con-
dition (2)): Since Γn is an L-family, if |A1| > 1 then |A12b| 6 |A2b| for all
b ∈ {1, 2}∗, therefore Γs(2) 6 Γt. Analogously we obtain Γt(1) 6 Γs.

Thus, Γs,Γt ∈ Qs,t and Qn =
∑

s+t=n |Qs,t|, for n > 2.

We give the initial values of Qn, n ∈ N below. To calculate them we
have used a computer programm.

n 1 2 3 4 5 6 7 8 9 10

Qn 1 1 2 3 6 10 18 32 58 101

3. The number of L-cross-sections of Tn

Suppose a ∈ {1, 2}∗ is an arbitrary word. The word obtained from a
by replacing each 1 by 2 and each 2 by 1, is denoted by ā.

Definition 7. Let Γ1 = {Aa}, Γ2 = {Ba} be L-families over X1 and X2,
respectively. We say that Γ1 and Γ2 are similar if

∀a ∈ {1, 2}∗ |Aa| = |Ba| or ∀a ∈ {1, 2}∗ |Aa| = |Bā|.

The similarity of L-families Γ1 and Γ2 is denoted by Γ1 ∼ Γ2.

The relation of similarity is clearly an equivalence and partitions the
set of all L-families over the n-element set into disjoint equivalence classes.

Lemma 2. Let <1, <2 be strict total orders on X, Γ1 = {Aa}, Γ2 = {Ba}
be arbitrary L-families over (X,<1) and (X,<2), respectively. If L1 = LΓ1

<1
,

L2 = LΓ2

<2
are corresponding L-cross-sections of Tn, then L1 = L2 if and

only if one of the following conditions is satisfied:

(i) Γ1 = Γ2 (i. e. Γ1 ∼ Γ2 and <1 = <2);

(ii) Γ1 ∼ Γ2 and <2 = <−1
1 .

Proof. Sufficiency. Obviously (i) implies L1 = L2. Suppose (ii) holds.
Then Aa = Ba for all a ∈ {1, 2}∗. To prove that L1 = L2, it suffices to show

that αAa

M = α
Ba

M for all a ∈ {1, 2}∗ and M ⊆ X with M 6= ∅. We proceed
by induction on |M |. Let M = {m}. If Aa = ∅, then Ba = Aa = ∅, and
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so αAa

M = ∅ = α
Ba

M . If Aa 6= ∅ then dom (αAa

M ) = Aa = Ba = dom (α
Ba

M )

and for all x in the common domain, xαAa

M = m = xα
Ba

M , which implies

αAa

M = α
Ba

M .

Let |M | > 1 and suppose that the statement is true for all M1 ⊆ X

with |M1|<M . Again, if Aa = ∅, then Ba=Aa=∅, and so αAa

M =∅=α
Ba

M .
Suppose that Aa 6=∅ and let 〈M〉 = Ab, b ∈ {1, 2}∗. Then B

b
= Ab = 〈M〉,

and so

αAa

M = αAa1

M∩Ab1
∪ αAa2

M∩Ab2
,

αBā

M = αBā1

M∩Ab̄1

∪ αBā2

M∩Ab̄2

= α
B

a2

M∩A
b2

∪ α
B

a1

M∩A
b1

.

By the inductive hypothesis, αAa1

M∩Ab1
= α

B
a1

M∩A
b1

and αAa2

M∩Ab2
= α

B
a2

M∩A
b2

.

Thus αAa

M = αBā

M .

Necessity. Let L1 = L2. According to [5, Corollary 4], Γ1 and
⋃

α∈L1
X/ kerα coincide as unindexed families of sets. The same result is

true for Γ2 and L2. Since L1 = L2, it follows that Γ1 and Γ2 are the same
as unindexed families of sets.

If <1 = <2, then Γ1 and Γ2 coincide as L-families, so (i) holds. Suppose
<2 = <−1

1 . Then Aa = Ba for all a ∈ {1, 2}∗, which implies Γ1 ∼ Γ2, so
(ii) holds.

To complete the proof we show that in all other cases one gets a
contradiction. Let <1 6= <2 6= <1

−1. Since Γ1 and Γ2 are the same
as unindexed families of sets, we have either A1 = B1 and A2 = B2 or
A1 = B2 and A2 = B1. First suppose that Ai = Bi, i ∈ {1, 2}. Let

x, y ∈ X such that x <1 y, y <2 x. Then
(
A1 A2
x y

)

∈ L1,
(
B1 B2
y x

)

=
(
A1 A2
y x

)

∈ L2 and we get a contradiction with L1 = L2.

Suppose now that A1 = B2, A2 = B1. Let x, y ∈ X such that x <1 y

and x <2 y. In this case we have
(
A1 A2
x y

)

∈ L1,
(
B1 B2
x y

)

=
(
A2 A1
x y

)

∈ L2.

The last is impossible since L1 = L2.

Theorem 2. The number of different L–cross-sections in the semigroup
Tn, n > 2, equals Qn · n!

2 .

Proof. Let AΓ and AL be the sets of L-families over X and L-cross-
sections in Tn, respectively. Since there are n! strict orders on X and
Qn L-families for each strict order <, |AΓ| = Qn · n! . Define a mapping
ω : AΓ → AL by Γω = LΓ. By Theorem 1, ω is onto. Suppose that
Γ1ω = Γ2ω with Γ1 6= Γ2. Let Γ1 = {Aa} and Γ2 = {Ba}. By Lemma 2,
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we have Ba = Aā for every a ∈ {1, 2}. Thus ω is two-to-one, and so

|AL| = |AΓ|
2 = Qn · n!

2 .

4. The classification of L-cross-sections of Tn

up to isomorphism

It is well known that not all L-cross-sections in semigroup T(X) are
isomorphic to each other (see [4]). We now investigate when two L-families
correspond to isomorphic L-cross-sections. Throughout this section let
L1 and L2 be two L-cross-sections of T(Xn); Γ1 = {Aa}, Γ2 = {Ba} be
the L-families associated with L1 and L2, i. e. L1 = LΓ1

X and L2 = LΓ2

X .
Note that if |X| 6 3 all the possible L-cross-sections are isomorphic

and all the possible L-families are similar. The following is true for an
arbitrary finite set X.

Lemma 3. If Γ1 ∼ Γ2, then L1
∼= L2.

Proof. If |Aa| = |Ba|, for all a ∈ {1, 2}∗, then set

θ : Γ1 → Γ2 : Aa 7→ Ba

and if |Aa| = |Bā| for all a ∈ {1, 2}∗, then set

θ : Γ1 → Γ2 : Aa 7→ Bā.

Without loss of generality we can assume that |Aa| = |Ba|, for all
a ∈ {1, 2}∗. Let x, y ∈ X be arbitrary elements and Aa = {x}, Aa ∈ Γ1,
a ∈ {1, 2}∗. Set

ψ : X → X : x 7→ y ⇔ Aaθ = {y}.

It is clear that this mapping is a bijection, and for all a ∈ {1, 2}∗, we
have Aaψ = Aaθ, where Aaψ = {xψ | x ∈ Aa}. Let

τ : L1 → L2 : ϕ 7→ ϕ′ = ψ−1ϕψ.

Now we verify that ϕ′ ∈ LΓ2

X . To be more precise, we show that ϕ′ =
α(imϕ)ψ for ϕ ∈ L1 with ϕτ = ϕ′. Let a ∈ {1, 2}∗ be an arbitrary element
such that Aa 6= ∅. Consider the image of Ba under the map ϕ′. Since ψ
is a bijection, we have

〈Baϕ
′〉 = 〈(Aaψ)(ψ−1ϕψ)〉 = 〈Aa(ϕψ)〉 = 〈(Aaϕ)ψ〉. (2)
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We denote byM the image of ϕ, so ϕ=αM . LetM={m1,m2, . . . ,mk}
for m1,m2, . . . ,mk ∈ X. By definition of αM we have

αM = α
Ab1

{m1} ∪ α
Ab2

{m2} ∪ . . . ∪ α
Abk

{mk}

for suitable b1, b2, . . . , bk ∈ {1, 2}∗. In virtue of arbitrariness of a ∈ {1, 2}∗

in (2) we obtain 〈Bbi
ϕ′〉 = 〈(Abi

ϕ)ψ〉 = 〈{miψ}〉, 1 6 i 6 k. Since Bbi, 1 6

i 6 k, are pairwise disjoint and |Bb1
∪Bb2

∪. . . Bbk
| = |Ab1

∪Ab2
∪. . . Abk

| =
|X|, we get Bb1

∪Bb2
∪ . . . Bbk

= X, consequently im (ϕ′) = (imϕ)ψ.
Now to prove ϕ′ = α(imϕ)ψ it suffices to show ϕ′|Ba

= αBa

(Aaϕ)ψ for

all a ∈ {1, 2}∗. We proceed by induction on |(Aaϕ)ψ|. If Ba = ∅, then
ϕ′|Ba

= ∅ = αBa

(Aaϕ)ψ. If |Ba| = |Aa| 6= 0 and (Aaϕ)ψ = {m} then

dom (αBa

(Aaϕ)ψ) = Ba = dom (ϕ′|Ba
) and by (2)

〈im (ϕ′|Ba
)〉 = 〈(Aaϕ)ψ〉 = 〈{m}〉,

thus, for all x in the common domain, xϕ′|Ba
= m = xαBa

(Aaϕ)ψ, which

implies ϕ′|Ba
= αBa

(Aaϕ)ψ.

Let |(Aaϕ)ψ| > 1 and suppose the statement is true for all M1 ⊆ X
with M1 6= ∅ and |M1| < |(Aaϕ)ψ|. Again, if Ba = ∅, then ϕ′|Ba

= ∅ =
αBa

(Aaϕ)ψ. Suppose Ba 6= ∅, then, clearly, ϕ′|Ba
= ϕ′|Ba1

∪ ϕ′|Ba2
. By the

inductive hypothesis ϕ′|Ba1
= αBa1

(Aa1ϕ)ψ and ϕ′|Ba2
= αBa2

(Aa2ϕ)ψ. Thus

ϕ′|Ba
= αBa1

(Aa1ϕ)ψ ∪ αBa2

(Aa2ϕ)ψ = αBa

(Aaϕ)ψ for all a ∈ {1, 2}∗.

Hence,

ϕ′ = αB1

(A1ϕ)ψ ∪ αB2

(A2ϕ)ψ = αB1∪B2

(A1ϕ∪A2ϕ)ψ = α(imϕ)ψ ∈ LΓ2

X .

Since αMτ = αMψ, M ⊆ X and ψ is bijective, we get τ is bijective too.
Finally, for all β, γ ∈ L1, we have

(β)τ(γ)τ = ψ−1(βγ)ψ = (βγ)τ.

To prove the converse we first need some preparations.
Let τ : L1 → L2 be an isomorphism. In both L1 and L2, the set

{cx | x ∈ X} of constant transformations is the minimum ideal. Thus,
τ maps {cx | x ∈ X} onto {cx | x ∈ X}. For x ∈ X, denote by x′ the
element of X such that cxτ = cx′ .

If Aa ∈ Γ1 and x ∈ Aa is an arbitrary fixed element, then denote
by ϕ(Aa, x) the transformation in L1 with the image (X \ Aa) ∪ {x}.
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Whenever we say that L1
∼= L2, we will assume that τ is an isomorphism

from L1 to L2.

It is clear, that if Γ1 ∼ Γ2, then |Aaθ| = |Ba| (|Aaθ̄| = |Ba|). Obviously,
if L1

∼= L2, then |Γ1| = |Γ2|. We show in following Lemma, that if L1
∼= L2,

then for every set in Γ1 there exists a unique set in Γ2 with the same
cardinality.

Lemma 4. Let L1
∼= L2. For every Aa ∈ Γ1, x ∈ Aa, the following

statements hold true:

(i) ϕ(Aa, x)|X\Aa
= idX\Aa

, ϕ(Aa, x)|Aa
= cx.

(ii) there exists Ba′ ∈ Γ2 such that |Aa| = |Ba′ | and ϕ(Aa, x)τ =
ϕ(Ba′ , x′), where cxτ = cx′ .

Proof. (i) For every Aa ∈ Γ1, x ∈ Aa, consider the elements ϕ(Aa, x) ∈ L1

such that

im (ϕ(Aa, x)) = (X \Aa) ∪ {x}.

If Aa = X we get ϕ(Aa, x) = cx, and ϕ(Aa, x) = idX if |Aa| = 1.

Suppose Aa 6= X, |Aa| > 1. In this case denote subsets of Γ1 as
follows: put X = X1 ⊎ X ′

1, if Aa ⊆ X ′
1; X ′

1 = X2 ⊎ X ′
2 if Aa ⊆ X ′

2; . . .,
etc., until we get, for a natural p, that X ′

p−1 = Xp ⊎ X ′
p and Aa = X ′

p,
where C = D ⊎ E means that C = D ∪ E and D ∩ E = ∅.

In the proof of [5, Lemma 4, (ii)] it was shown that

σp =

(
X1 X2 ... Xp X′

p

x1 x2 ... xp x′

p

)

∈ L1, (3)

where x′
p ∈ X ′

p, xj ∈ Xj , 1 6 j 6 p. Since X \ Aa = X1 ∪X2 ∪ . . . ∪Xp,
and x ∈ Aa = X ′

p with X ′
p ∩Xi = ∅ for all 1 6 i 6 p, we get

im (ϕ(Aa, x)σp) = im (σp).

From ϕ(Aa, x)σp, σp ∈ L1, we obtain ϕ(Aa, x)σp = σp. The last equality is
true for every σp as in (3), which is only possible if ϕ(Aa, x)|X\Aa

= idX\Aa
,

ϕ(Aa, x)|Aa
= cx.

(ii) Let x, t ∈ Aa, z ∈ X \Aa. On the one hand,

(czϕ(Aa, x))τ = czτ = cz′ and (czτ)(ϕ(Aa, x)τ) = cz′(ϕ(Aa, x)τ), (4)

so cz′(ϕ(Aa, x)τ) = cz′ . On the other hand,

(ctϕ(Aa, x))τ = cxτ = cx′ and (ctτ)(ϕ(Aa, x)τ) = ct′(ϕ(Aa, x)τ), (5)
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so ct′(ϕ(Aa, x)τ) = cx′ . Consider x′(ϕ(Aa, x)τ)−1 ∈ kerϕ(Aa, x)τ . For all
t ∈ Aa, z ∈ X \Aa we have cz′ 6= cx′ (since x 6= z), cz′(ϕ(Aa, x)τ) = cz′ ,
ct′(ϕ(Aa, x)τ) = cx′ . It follows that

x′(ϕ(Aa, x)τ)−1 = {t′ | t ∈ Aa},

and so {t′ | t ∈ Aa} ∈ X/ kerϕ(Aa, x)τ . By [5, Corollary 4], Γ2 and
∪α∈L2

X/ kerα are the same as unindexed families of sets, thus there
exists Ba′ ∈ Γ2, for some a′ ∈ {1, 2}∗, with Ba′ = {t′ | t ∈ Aa}. Due
to bijectivity of τ , we have |Aa| = |Ba′ |. Furthermore, by (4) and (5),
(ϕ(Aa, x)τ)|X\Ba′

= idX\Ba′
and (ϕ(Aa, x)τ)|Ba′

= cx′ , x′ ∈ Ba′ . Hence,
ϕ(Aa, x)τ = ϕ(Ba′ , x′) and cx′ = cxτ .

Denote the set of all nonempty subsets of X by U(X).

Lemma 5. Let L1
∼= L2, ψ : U(X) → U(X) : M 7→ M ′ ⇔ αMτ = αM ′ .

The following statements hold true:
(i) for all Aa ∈ Γ1, Aaψ ∈ Γ2;
(ii) for all Aa ∈ Γ1 and β ∈ L1, (Aaβ)ψ = Aaψ(βτ).

Proof. (i) It is clear that if |Aa| = 1, then Aaψ ∈ Γ2. Let |Aa| > 1
and α = αAa

∈ L1. Let x ∈ Aa be an arbitrary fixed element,
and ϕ(Aa, x)τ = ϕ(Ba′ , x′), Ba′ ∈ Γ2, x′ ∈ Ba′ , |Aa| = |Ba′ |. Since
αϕ(Aa, x) = cx, we have (ατ)ϕ(Ba′ , x′) = cx′ , therefore im (ατ) ⊆ Ba′ .
Suppose that rk (α) > rk (ατ) and denote by β′ the transformation from
L2 with im (β′) = Ba′ .

Let δ ∈ L1 such that im (δ) ⊆ Aa. Just as in [5, Lemma 4,(iv)] it can
be shown, that there exists γ ∈ L1 with im (γ|Aa

) = im (δ). We denote
this transformation by γδ. Thus, for all δ ∈ L1 with im (δ) ⊆ Aa, there
exists γδ ∈ L1 such that δ = αγδ.

Let β = β′τ−1. Since β′ϕ(Ba′ , x′) = c′
x, it follows that

(β′ϕ(Ba′ , x′))τ−1 = βϕ(Aa, x) = cx, hence im (β) ⊆ Aa. Thus, β = αδβ,
whence β′ = (ατ)(δβτ). But

rk (β′) = rk ((ατ)(δβτ)) 6 rk (ατ) < rk (α).

The latter contradiction proves that rk (α) = rk (ατ). Hence | im (ατ)| =
|Aa| = |Ba′ | and im (ατ) ⊆ Ba′ , which implies im (ατ) = Ba′ . Thus,
αAa

τ = αBa′
, hence Aaψ = Ba′ ∈ Γ2.

(ii) Suppose that Aa ∈ Γ1 and β ∈ L1. Let αAa
τ = αBa′

, Ba′ ∈ Γ2.
Denote βτ by β′. Then

(αAaβ)τ = (αAa
β)τ = (αBa′

)β′ = αAaψβ
′ = α(Aaψ)β′ ,

which implies (Aaβ)ψ = Aaψ(βτ) by the definition of ψ.
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Corollary 1. Let L1
∼= L2, ψ be the function from Lemma 5. Then, for

all Aa, Ab ∈ Γ1:
(i) |Aa| = |Aaψ|;
(ii) if Aa ⊆ Ab, then Aaψ ⊆ Abψ;
(iii) if Aa ∩Ab = ∅, then Aaψ ∩Abψ = ∅.

Proof. (i) Let Aa ∈ Γ1, x ∈ Aa, and (ϕ(Aa, x))τ = ϕ(Ba′ , x′) for Ba′ ∈ Γ2,
x′ ∈ Ba′ , with |Aa| = |Ba′ | (see Lemma 4, (ii)). The proof of Lemma 5,
(i) implies that Aaψ = Ba′ . So |Aa| = |Aaψ|.

(ii) Let Aa ⊆ Ab and z ∈ Ab be an arbitrary fixed element. Suppose
(ϕ(Ab, z))τ = ϕ(Bb′ , z′) with Bb′ ∈ Γ2, z′ ∈ Bb′ . By Lemma 4, (ii),
czτ = cz′ , consequently {z}ψ = {z′}. On the one hand,

(Aaϕ(Ab, z))ψ = {z}ψ = {z′}.

On the other hand, by Lemma 5, (ii),

(Aaϕ(Ab, z))ψ = (Aaψ)(ϕ(Ab, z)τ) = (Aaψ)ϕ(Bb′ , z′).

So (Aaψ)ϕ(Bb′ , z′) = {z′}, which is implies Aaψ ⊆ Bb′ = Abψ.
(iii) Let Aa∩Ab = ∅. Fix z ∈ Ab and let (ϕ(Ab, z))τ = ϕ(Bb′ , z′) with

Bb′ ∈ Γ2, z′ ∈ Bb′ . Suppose y ∈ Aa is an arbitrary element, and cyτ = cy′ .
By definition of ψ then we have {y}ψ = {y′}. On the one hand,

(yϕ(Ab, z))ψ = {y}ψ = {y′}, where y′ 6= z′.

On the other hand, by Lemma 5, (ii),

({y}ϕ(Ab, z))ψ = ({y}ψ)(ϕ(Ab, z)τ) = {y′}ϕ(Bb′ , z′).

So y′ϕ(Bb′ , z′) = y′, y′ 6= z′ for all y ∈ Aa. Thus

{y′ | cy′ = cyτ, y ∈ Aa} ∩Abψ = {y′ | cy′ = cyτ, y ∈ Aa} ∩Bb′ = ∅.

By (ii) of this Corollary {y′} = {y}ψ ⊆ Aaψ. Since τ is a bijection, we
have

|Aa| = |{y′ | cy′ = cyτ, y ∈ Aa}|.

By (i), we get |Aa| = |Aaψ|, thus Aaψ = {y′ | cy′ = cyτ, y ∈ Aa}. Hence
Aaψ ∩Abψ = ∅.

Now we are ready to prove

Lemma 6. If L1
∼= L2, then Γ1 ∼ Γ2.
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Proof. The result is clearly true if |X| = 1. Suppose that |X| > 2. Consider
the restriction of the function ψ from Lemma 5 to Γ1 (which we will also
call ψ). By (i) of Lemma 5, ψ : Γ1 → Γ2. It easily follows from Corollary 1
that either A1ψ = B1 and A2ψ = B2 or A1ψ = B2 and A2ψ = B1.
Suppose that A1ψ = B1 and A2ψ = B2. We will prove by induction on
|a| that for all a ∈ {1, 2}∗, Aaψ = Ba. We already know that this is true
if |a| = 1. Let k > 1 and suppose that Aaψ = Ba for every a ∈ {1, 2}∗

with |a| 6 k.
Note, that for all Tn, n ∈ N if |A1| = 1 or |A2| = 1, A1, A2 ∈ Γ1,

then the structure of Γ1 is uniquely determined in virtue of (2). Thus, if
L1 = LΓ1

X
∼= L2, then we get immediately that Γ1 ∼ Γ2.

Assume further that |A1|, |A2| > 1. We will prove by induction on |a|
that for all a ∈ {1, 2}∗ Aaψ = Ba or Aaψ = Bā.

Suppose, that condition Aaψ = Ba or Aaψ = Bā holds for all Aa ∈ Γ1,
|a| 6 k, k ∈ N. Without loss of generality set Aaψ = Ba, for all Aa ∈ Γ1,
Ba ∈ Γ2 if |a| 6 k, k ∈ N.

Let bi ∈ {1, 2}∗, |bi| = k and Abi ∈ Γ1. As has been shown in [5,
Lemma 4, (iv)], there exists a transformation γ ∈ L1 such that Abγ = Abi,
i.e., γ|Ab

= αAb

Abi
. According to Definition 3,

αAb

Abi
= αAb1

Abi∩Abi1
∪ αAb2

Abi∩Abi2
= αAb1

Abi1
∪ αAb2

Abi2
,

so Abjγ = Abij , j ∈ {1, 2}. Moreover, by the induction hypothesis, the
following conditions hold:

(αAb
γ)τ = (αAbi

)τ = αAbiψ = αBbi
,

(αAb
γ)τ = (αAb

τ)(γτ) = (αAbψ)(γτ) = αBb
(γτ).

Consequently, αBb
(γτ) = αBbi

, and so Bb(γτ) = Bbi. Since γτ ∈ L2, we

have (γτ)|Bb
= αBb

Bbi
. According to Definition 3,

αBb

Bbi
= αBb1

Bbi∩Bbi1
∪ αBb2

Bbi∩Bbi2
= αBb1

Bbi1
∪ αBb2

Bbi2
,

so Bbj(γτ) = Bbij , j ∈ {1, 2}.
Now, on the one hand, we have Abjψ(γτ)=(Abjγ)ψ=Abijψ, j∈{1, 2},

by (ii) of Lemma 5. On the other hand, using the induction hypothesis, we
get Abjψ(γτ) = Bbj(γτ) = Bbij , j ∈ {1, 2}. Thus, Abijψ = Bbij , j ∈ {1, 2}.
Since Abj is an arbitrary element with |bj| = k, we get Acψ = Bc for all
c ∈ {1, 2}∗, |c| = k + 1, Ac ∈ Γ1. So for all a ∈ {1, 2}∗ Aaψ = Ba.

In a dual way, we can prove that if A1ψ = B2 and A2ψ = B1, then
Aaψ = Bā for every a ∈ {1, 2}∗. Since |Aa| = |Aaψ| for every a ∈ {1, 2}∗

(by Corollary 1), it follows that Γ1 ∼ Γ2.
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Now Lemmas 3 and 6 yield

Theorem 3. Two L-cross-sections of Tn are isomorphic if and only if
the L-families associated with them are similar.
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