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ABSTRACT. The binary Reed-Muller code RM(m — k, m)
corresponds to the k-th power of the radical of GF(2)[G], where G
is an elementary abelian group of order 2™ (see [2]). Self-dual RM-
codes (i.e. some powers of the radical of the previously mentioned
group algebra) exist only for odd m.

The group algebra approach enables us to find a self-dual code
for even m = 2k in the radical of the previously mentioned group
algebra with similarly good parameters as the self-dual RM codes.

In the group algebra

GF(2)[G] 2 GF(2)[x1,29,. .., Tm]/(zF — 1,25 —1,...2%, — 1)

we construct self-dual binary C = [22¥ 22k=1 2k] codes with prop-
erty
RM(k —1,2k) ¢ C C RM(k, 2k)

for an arbitrary integer k.

In some cases these codes can be obtained as the direct product
of two copies of RM(k—1, k)-codes. For k > 2 the codes constructed
are doubly even and for k = 2 we get two non-isomorphic [16, 8, 4]-
codes. If k > 2 we have some self-dual codes with good parameters
which have not been described yet.
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Introduction and Notation

Let K be a finite field of characteristic p and let V' be a vector space
over K, and C be a subspace of V. Then C is called a linear code. Let
x,y € C, then the Hamming weight of x is the number of its non-zero
coordinates and the Hamming distance of x and y is the weight of = — y.
The Hamming distance (or weight) of a linear code C' is the minimum of
all Hamming distances of its codewords.

In the study of binary codes C' C V it is convenient that the space
V' has an additional algebraic structure. For example, if V' is a group
algebra K[G], where G is a finite abelian p-group and C' is an ideal of
such a group algebra, then C is called an abelian group code.

The Hamming distance of a linear code determines the ability of
error-correcting property of the code. The authors in [6] proved that for

any 1 < d < {WT‘H} there exists an Abelian 2-group G4 that a power

of the radical is a self-dual code with parameters (27,2771, 29). These
codes are ideals in the group algebra GF(2)[G4] and they are “monomial
codes” in the sense of [5] as defined below.

Throughout, p will denote a prime and K a field of p elements. Let
G = (g1) X -+ X (gm) = C}' be an elementary abelian p-group of order
p™ i.e. K[G] is a modular group algebra, then the group algebra K|[G]|
and K™ are isomorphic as vector spaces by the mapping

¢ : K[G] — K", where ¢ (Zaigi> — (ai,a2,...,ay) :=ceC.
i=1

Reed-Muller (RM) binary codes were introduced in [12] as binary functions.
These codes are frequently used in applications and have good error
correcting properties. Now we are looking for self-dual codes in the radical
of K[G] with similarly good parameters as the RM codes.

If K is a field of characteristic 2 Berman [2] and in the general case
Charpin [3] proved that all Generalized Reed-Muller (GRM) codes coincide
with powers of the radical of the modular group algebra of K[G], where G
is an elementary abelian p-group. This group algebra is clearly isomorphic
with the quotient algebra

GF(p)|z1, 22, ... xm] /(2] —=1,... 2P —1).

m

Self-dual RM-codes (i.e. some power of the radical of the group algebra
GF(2)[G]) exist only for odd m. They are (2™,2m~1, 2mTH)—codes.
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For any basis {g1, 92, ...gm} of such a group G consider the algebra
isomorphism g mapping g; — z; (1 < j < m), and therefore we have the
algebra isomorphism

Apm = GF(p)[x1, 22, ..., xp) /(] — 1,25 —1,... 2P — 1),

where GF(p)[x1,22,...,%,] denotes the algebra of polynomials in m
variables with coefficients in GF(p).
It is known ([7]) that the set of monomial functions (k; € NUO0)

{1_[(33Z — 1)k where 0 < k; < p}

i=1
form a linear basis of the radical 7, ,,. Clearly the nilpotency index of
Jpm (i-e. the smallest positive integer ¢, such that 7, = 0) is equal to
t=m(p—1)+1.
Introducing the notation

(which will be used from now on) we have the following isomorphism
Tpm = GF (p)[ X1, Xa, ..., Xp] /(X7 XF, ... XP). (1)

The k-th power of the radical consists of reduced m-variable (non-
constant) polynomials of degree at least k, where 0 < k <t — 1, where
t=m(p—1)+1.

T =GRM(t =1 —k,m) = (JI(X)¥ | Y ki >k (0< k; <p)). (2)
i=1 i=1
Such a basis was exploited by Jennings [7].
By (2) the quotient space JF,,/TF}! has a basis

m m
{foi+jp’f;1, where 0 < k; < p and Z/@-:k:}. (3)

i=1 =1
Remark 1. It is known [15] that the dual code C* of an ideal C in A,

coincides with the annihilator of C*, where C* is the image of C' by the
involution * defined on A, ,, by

x: g+ g ! forall g€ G from Ay m to itself.

The annihilator of jp’fm is obviously Jp%(lp “DHE Thus the dual codes
of GRM-codes are GRM-codes and

GRM(k,m)* = GRM(m(p—1) — k — 1,m).
It follows that for m = 2k + 1 and p = 2 the code GRM(k, m) is self-dual.
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1. Construction of binary self-dual codes
Let us consider the group algebra
Az = GF(2)[z1, ... 2] /(23 — 1,25 — 1,... 22, — 1) ~ GF(2)[CY"]
as a vector space with basis
xtag? . ooxlea; € {0,1}. (4)

It is known ([7]) that the radical 3y, of this group algebra is generated
by the monomials X; = x; — 1 = x; + 1.

Definition 1 ([5]). The code C in Ja,, (see (1)) is said to be a monomial
code if it is an ideal in Ajg,, generated by some monomials of the form

Xhxhe o xkn o where 0 < k; < 1 (5)

The codes we intend to study are monomial codes.

For p = 2 using the usual polynomial product in the Boolean monomial
XPXP2 . XFm (k; € {0,1}) we have

XPxhe Xk = () 4 1R (@ + )R (g, 4+ 1)Fm

and the Hamming weight in the basis (4) of this monomial equals H(l +ki).

Example. Let G be an elementary abelian group of order 2m m = 2.
Define the codes C; as ideals in K[G] generated by X; = z; — 1. These
codes are binary self-dual [2™,2™~1 2] codes and they are self- dual since
C; = CL = (Xj). Further, this code is a direct sum of (2,1, 2]-codes.
The dlmensmn of the code C is 2™~ 1 the same as the dlmensmn of the
radical of the group algebra GF( )[H], where H is an elementary abelian
2-group of rank m — 1. The minimal distance of C; is d = 2. This follows
from the fact that the element X; = z; 41 is included in the basis of C}.
Thus, Cj is a self-dual [2™, 2™~ 2]-code.

By Remark 1 one can see that a power of the radical of a modular
group algebra is self-dual if and only if the nilpotency index of the radical
is even. In our case (when G is elementary abelian of order p™) the
nilpotency index is even if and only if p = 2 and m is odd.

If m is odd, the binary RM-codes with parameters [2, 271 2m
are self-dual and they are the m;r L_th powers of the radical Ag,m.

+1

]
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For m = 2k where k is an arbitrary integer, we have a new method to
construct a doubly-even class of binary self-dual C' codes with parameters
(2 2m=1 2k For this code C' we have RM(k — 1,2k) € C € RM(k, 2k).
In the case of m = 4, we get two known extremal [16, 8, 4] codes (listed
in [14]) and for m > 4 these codes are not extremal. A doubly-even (i.e.
its minimum distance is divisible by 4) self-dual code is called extremal,
if we have for its minimum distance d = 4 [3%] + 4, where n denotes the
code length (see Definition 39 and Lemma 40 in [8]).

To abbreviate the description of our codes, we shall refer to the mono-
mial Xfl ... XEm as the m-tuple (k1,k2,...,kn) € {0,1,...,p— 1}™ of
exponents.

Using Plotkin’s construction of RM-codes (see Theorem 2 [13], Ch. 13,
§3) we obtain the following property of RM-codes.

Lemma 1. Ifm is even and m = 2k, then RM(k—1,m) = ij’;rll contains
a proper subspace which is isomorphic to RM(k —1,m — 1).

Proof. Recall, that the set of monomials in the basis (2) of Jf# is
invariant under the permutations of the variables X;, i.e. the set of binary
m-tuples (ki, ka, ..., ky,) assigned to the basis (2) is invariant under the
permutation of all elements of the symmetric group S,,. Take the basis
elements with k,, = 1. Then the monomials Xt ... X%m of degree m can
be projected by 7 : (k1, k2, ..., km—1,1) — (k1,k2, ..., km—1). In this way
we get a basis of jQIfm_l =RM(k—1,m—1). O

For m = 2k denote the set of all k-subsets of {1,2,...,2k} by X.
The elements of X can be described by binary sequences (ki, ko, ..., kn,)
consisting of k£ ‘0‘-s and k ‘1‘-s in any order. Clearly, the cardinality of
the set X is (2:)

We say that the subset Y of binary m-tuples in X is complement free
if y €Y implies 1 —y ¢ Y, where 1 = (1,1,...,1). Denote the set of
monomials corresponding to the set of exponents in X by X. Denote the
set with maximum number of pairwise orthogonal monomials in X by )
and their corresponding exponents in X by Y.

Example. For m = 6 the quotient space j;:m / \724’m has a basis with
(g) = 20 elements, where the binary 6-tuples corresponding to the coset
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representative monomials (the set X) are listed in pairs of complements:

(1,1,1,0,0,0) (0,0,0,1,1,1)
(1,1,0,1,0,0) (0,0,1,0,1,1)
(1,1,0,0,1,0) (0,0,1,1,0,1)
(1,1,0,0,0,1) (0,0,1,1,1,0)
(1,0,1,1,0,0) (0,1,0,0,1,1)
(1,0,1,0,1,0) (0,1,0,1,0,1)
(1,0,1,0,0,1) (0,1,0,1,1,0)
(1,0,0,1,1,0) (0,1,1,0,0,1)
(1,0,0,1,0,1) (0,1,1,0,1,0)
(1,0,0,0,1,1) (0,1,1,1,0,0)

6
and we have 22(3) = 210 complement-free sets. For example the following
complement free sets Y and ) of 10 elements:

Y N
(1,1,1,0,0,0), X1X2X3
(0,0,1,0,1,1), X3X5Xg
(1,1,0,0,1,0), X;1X5X;
(0,0,1,1,1,0), X3X4X5
(1,0,1,1,0,0), X;X3X4
(0,1,0,1,0,1), X2X,4Xg
(0,1,0,1,1,0), X2X4X5
(0,1,1,0,0,1), X2X3Xg
(1,0,0,1,0,1), X1 X4Xg
(1,0,0,0,1,1), X1X5Xg

Theorem 1. Let C be a binary code with RM(k—1,2k) C C C RM(k, 2k)
with the following basis of the factorspace C/RM(k — 1,2k)

{H XF 4+ RM(k — 1,2k), where k; € {0,1} and > ki = k} , (6)
i=1 i=1
where the set of the exponents (ki,ka, ..., kn) is a mazimal (with cardinal-

2k

ity 23 (%) ) complement free subset of X. Then C forms a [22F 221 2F]
self-dual doubly-even code.

Proof. Let G be an elementary abelian group of order 2, where m =
2k, k > 2. By the group algebra representation of RM-codes and the
definition of C' we have the relation Jéf;ll cCcC jzlfm.
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For m = 2k the set X is the set of coset representatives of the quotient

space J¥ 'm/ T 2"7:;1, i.e. the set of monomials satisfying (6).

Clearly, two monomials X X5 . Xkn and X' x> Xl are or-
thogonal, i.e. their product is zero, if for some 7 : 1 < i < m we have k; = [;.

Thus, the elements in the radical corresponding to these monomials
are orthogonal if their exponent m-tuples belong to a complement free
set.

The m-tuples (k1, ko . . . k) have to be complement free in Y, otherwise
the corresponding monomials in ) are not orthogonal. Clearly YV is a
complement free subset of X (given by (4)) with cardinality 2(%) =
(i)

By definition, C' = j;f:,ﬁbl U Y ) is a subspace of the radical Ja,, of
the group algebra A; ,, generated by the union of Tom F+1 and V. For the
dimension of C' we have

dim(C) = dim(RM(k—1,m))+ 3 <2k> = 1—1—2 ( ) <2kk> = 92k—1,

It follows that C' is self-dual. Since a binary self-dual code contains a word
of weight 2 if and only if the generator matrix has two equal columns, we
have our self-dual code to be doubly-even.

Each monomial in )Y has the same weight 2k, that is the minimal
distance of C. Using the identities for the monomials involved in the basis
of our codes

zi(x;+1) = (v; + 1)(x; + 1) + (z; + 1) and (z; +1)* =0,

we easily obtain that C' (which is subspace of J2,,) is an ideal in the
group algebra GF(2)[G]. O

Theorem 2. Let Y and Y be sets defined above and let C' be the code
defined in Theorem 1. Suppose that k; =0 for some i : 1 < i < m in each
element of the subset Y, (i.e. the variable X; is missing in each monomial
of Y). Then we have the isomorphism

C ~RM(k—1,2k — 1) ® RM(k — 1,2k — 1).

Proof. The elements of ) are of the form

m
XP L XE = (e + )P (2o + DR (2 + )P, where Y ki =k
=1
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and their weight is 2¥. Project the set of monomials with k; = 0 in
C = .72’“7:11 U V) onto the monomials X{“, o ,Xf_"’ll,Xle, oy X,
The image C of this projection is a self-dual RM(k — 1,2k — 1)-code with
parameters [22F71 22k=2 k],

By Lemma 1 the elements of the basis of Jéc’;l with k; = 1 generate a
subspace Cy which is isomorphic to RM(k — 1,2k —1). The intersection of
C and C5 is empty. Therefore C' ~ C7 ®Cs and the statement follows. [

Remark 2. In particular, by Theorem 1 we get [16, 8, 4] self-dual codes
for m = 4. These codes are extremal doubly-even codes. Using the SAGE
computer algebra software we may check easily the classification of binary
self-dual codes listed in [14].

There are two cases:

1) If k; =0 for some i : 1 < i < m in each element of the set Y, then
we get the direct sum Eg & Fg, where Fg is the extended Hamming
code.

2) otherwise we get an indecomposable [16, 8, 4] code (which is denoted
by E16 in [14])

These codes are formally self-dual. Both classes have the following
weight function:
210 428212 119828 + 282% + 1

Remark 3. It is known that for each odd m > 1 there exists a self-dual
affine-invariant code of length 2™ over GF'(2), which is not a self-dual
RM-code [4].

The factor space Jp'fm / jp]fj,'ll is an irreducible AGL(m,GF(p)) module.
Thus the code C' is not affine invariant (see [1] Theorem 4.17 ) as the
powers of the radical of A, ,, are. The code C cannot be an extended
cyclic code by Corollary 1 in [4].

Remark 4. Using the inclusion-exclusion principle a formula can be
given for the dimension of the RM (k + 1, m)-code (see for example in [1]
Theorem 5.5). If p =2 and 0 < k < m, then we have

m 2k . L m
dim O =3(3) + > L EWEEESTN = 2 () +3()
i=k+17=0 1=k+1

where ¢ — 25 > 0.

The codes constructed in the current paper are worth to be studied
further. Already for k = 2 we get two non-isomorphic codes with the
same parameters. It would be interesting to determine all classes of codes
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up to isomorphism for each arbitrary integer k£ and to determine their
automorphism group. The code C' in Theorem 1 is not affine-invariant
and first computations show that the automorphism group of C' with
k; = 0 differs from the automorphism group of C' with k; = 1 for some
1< <m.

We can formulate the following open questions about the code C' of

Theorem 1:
1) Does there exist a classification for all complement-free sets for

arbitrary even m?

2) How many non-equivalent (in any sense) self-dual binary codes exist

for fixed m and p?

3) Compare the automorphism groups of the codes C' defined in Theo-

rem 1 with the automorphism group of RM-codes.

4) Find decoding algorithms for C.
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