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weighted by the Kloosterman sum
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Abstract. We study the mean values of the divisor func-
tion τ(ω) over the ring of Gaussian integers G when weighted by
Kloosterman sums. For α, β, γ ∈ G with γ ̸= 0, let

K(α, β; γ) =
∑
x∈G∗

γ

exp

(
2πiℜ

(
αx+ βx−1

γ

))
.

We obtain an asymptotic formula for∑
N(ω)≤X

τ(ω) ·K(1, αω; γ),

uniformly in α co-prime to γ and with explicit dependence onN(γ).
Our approach combines a Selberg–Kuznetsov–type identity over G
with bounds for K(α, β; γ) in prime-power modulus, together with
Dirichlet–series methods for twisted sums

Zm(s; δ1, δ2) =
∑
ω∈G

e4mi arg(ω+δ1) · e2πi·ℜ(δ2ω)

N(ω + δ1)s
.

We prove a truncated functional equation for Zm, establish mean-
square bounds on the critical line, and deduce the required can-
cellation in the Kloosterman–weighted average of τ(ω). As by-
products we record a generalized Selberg–Kuznetsov identity in G
and Weil–type bounds for K(α, β; pm). These results extend clas-
sical techniques for Z to the Gaussian setting and may be of inde-
pendent interest for additive problems in G involving divisor-type
functions and exponential sums.
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1. Introduction

Let G denote the ring of Gaussian integers. For γ ∈ G, let Gγ denote the
residue class ring modulo γ. For γ ∈ G, write G∗

γ for the multiplicative
group of units modulo γ.

For α, β, γ ∈ G the Kloosterman sum K(α, β; γ) is defined by the
equality

K(α, β; γ) =
∑
x∈G∗

γ

exp

(
2πiℜ

(
αx+ βx−1

γ

))
,

where x−1 is the multiplicative inverse modulo γ for x.
We derive an asymptotic formula for the mean value of the divisor

function τ(ω) over G weighted by the Kloosterman sums.
We use the following notations:

� let ν(α) denote the number of non-associated prime divisors α ∈ G;

� p will always denote the Gaussian prime;

� (α1, α2, . . . , αk) be the greatest common divisor of α1, α2, . . . , αk,
αj ∈ G;

� φ̃(q) denotes the Euler totient on G; write φ̃(q)=N(q)
∏
p|q

(
N(p)−1
N(p)

)
;

� by τ(α) we denote the number of non-associated divisors of α,
α ∈ G, τ (m)(α) =

∑
δ∈G
δ|α

e4mi arg δ;

� unless stated otherwise, sums over G are taken over non-associated
Gaussian integers;

� N(α) = |α|2, α ∈ G;

� let H be a sufficiently large positive number; letters k, m, n denote
integers, while α, β, γ, δ denote Gaussian integers;

� by ε we denote an arbitrary small positive number, not necessarily
the same in different occurrences. Unless explicitly stated other-
wise, the constants in the Vinogradov and Landau symbols are
absolute or depend on ε;

� we denote by µ(α) the Möbius function over G;
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� as usual [t] denotes the integer part of t;

� further exp(2πit) = e2πit;

� for any α and γ such that (α, γ) = 1 we denote by α−1 the inverse
of α modulo γ. If the value of the modulus is clear from the context
then we write for simplicity α−1;

� and finally, by □ we mark an end of a proof or its absence.

2. Auxiliary

First, we recall the necessary background about the Kloosterman sums
over G.

Lemma 1. Let α, β, γ be the Gaussian integers and let ν(γ) be the num-
ber of different prime divisors of γ. Then for γ ̸= 0 the following estimate

|K(α, β; γ)| ≤ 2ν(γ)+1N((α, β, γ))
1
2 ·N(γ)

1
2

holds.
Moreover, if γ1 be square-free and γ2 be square-free part of γ1 then

for γ = γ1 · γ2, (γ1, γ2) = 1 and for any β ∈ G, (β, γ) = δ, δ1|γ1, δ2|γ2,
N(δ) > 1, we have

K(1, β; γ) =

{
0 if N(δ2) > 1,

µ(δ1)K
(
1, βδ−2

1 , γ
δ1

)
if N(δ2) = 1.

Here, δ−1
1 is a multiplicative inverse for δ mod γ

δ1
, δ−2 = (δ−1)2.

Proof. The claim follows by reduction to prime powers. Indeed, using
the multiplicativity of K(α, β; γ) with respect to γ, it suffices to prove
the equality for γ = p. For m = 1 we have δ2 = 1 and (β, γ) = (β, p) = p,
and hence

K(1, β; pm) = K(1, 0; p) = −1 = µ(δ1)K(1, 0; 1).

For m ≥ 2, (β, pm) = pk, k ≥ 1. Thus δ1 = 1, δ2 = pk. Set
m1 =

[
m
2

]
≥ 1.

Let x = x0(1 + pm−m1y), x0 ∈ G∗
pm−m1

, y ∈ Gpm . Then

x−1 = x−1
0 (1− pm−m1y + p2(m−m1)y2), (x−1

0 (mod pm)).
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Denoting β = pkβ0, (β0, p) = 1, we can write

K(1, β0; p
k; pm) =

∑
x0∈G∗

pm−m1

∑
y∈Gpm1

exp

(
2πiℜf(x0, y)

pm

)
,

where

f(x0, y) = x0+β0p
kx−1

0 +pm−m1(y−b0p
kx−1

0 pm−m1+β0p
kx−1

0 pm−m1y2).

Therefore,

K(1, pkβ0; p
m) =

∑
x0∈G∗

pm−m1

exp

(
2πiℜx0 + β0p

kx−1
0

pm

)
×

×
∑

y∈Gpm1

exp

(
2πiℜ y

pm1

)
= 0.

At last, for δ2 = 1 we have δ1 = p, pm = p. But this case we already
considered.

Corollary 1. Let f(ω) be a multiplicative function over G for which the
series

∑
ω∈G

f(ω)N(ω)−s converges absolutely. Then in semiplane ℜs > 1

the equality∑
ω∈G

f(ω)K(1, ω; γ)

N(ω)s
=
∑
δ|γ1

µ(δ)
∑
ω∈G

(ω,γ)=δ

f(ω)

N(ω)s
K
(
1, ωδ−1;

γ

δ

)

holds.

Lemma 2. Let α, β ∈ G, p be a prime number from G. Then

K(α, β; p) =


−1 if (α, p) = 1, β ≡ 0 (mod p)

or α ≡ 0 (mod p), (β, p) = 1,

θN(p)
1
2 , |θ| ≤ 2 on all occasions.

For m ≥ 2

K(α, β; pm) =


0 if αβ is a quadratic nonresidue mod p;

θN(p)
m
2 if αβ is a quadratic residue mod p,

|θ| ≤ 2.
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For m = 1 this assertion was proved by A. Weil [4], and the case
m ≥ 2 is an analogue of the estimate for rational case (see, [1]).

Lemma 3 (generalized identity of Selberg-Kuznetsov). Let α, β, γ over
the Gaussian integers. Then

K(α, β; γ) =
∑

δ|(α,β,γ)

N(δ)K

(
1,

αβ

δ2
;
γ

δ

)
.

Proof. By the quasi-multiplicativity of the Kloosterman sum in the vari-
able γ, it suffices to prove the assertion for γ = pm, where p is a Gaussian
prime.

If (α, β; pm) = 1, the proposition clearly holds.
If (α, β; pm) = pm, we have K(α, β; pm) = φ̃(pm) = N(pm) · (1 −

N−1(p)).
On the other hand,

∑
δ|pm

N(δ)K

(
1,

αβ

δ2
, pm

)
=

m∑
ℓ=0

N(pℓ)×

×
∑

x∈G∗
pm−ℓ

exp

(
2πiℜx+ x−1α0p

m−ℓ

pm−ℓ

)
=

=
m∑
ℓ=0

N(p)ℓ
∑

x∈G∗
pm−ℓ

exp

(
2πiℜ x

pm−ℓ

)
=

=
m∑
ℓ=0

N(pℓ)µ(pm−ℓ) = φ(pm).

Now let (α, β, pm) = pk, where 0 < k < m.
We have

∑
x∈G∗

pm

exp

(
2πiℜαx+ βx−1

pm

)
=N(p)k

∑
x∈G∗

pm−k

exp

(
2πiℜα1x+ β1x

−1

pm−k

)
.

Hence,

K(α, β; pm) = N(pk) ·K
(
1,

αβ

p2k
; pm−k

)
.
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Consider the sum

k∑
ℓ=0

N(pℓ)K

(
1,

αβ

p2ℓ
; pm−ℓ

)
=

=

k∑
ℓ=0

N(p)ℓ
∑

x∈G∗
pm−ℓ

exp

(
2πiℜx+ x−1p2(k−ℓ)α1β1

pm−ℓ

)
.

Using standard properties of Gauss sums, the inner sum is equal to zero
whenever ℓ ̸= k. This completes the proof of the Selberg–Kuznetsov
identity.

Theorem 1. Let g(ω) be a completely multiplicative function over G,
and let the Dirichlet series ∑

ω∈G
g(ω)N(ω)−1

converge absolutely in the half-plane ℜs > 1. Then, for every α, γ ∈ G
such that N(γ) > 1 and (α, γ) = 1, we have∑
ω∈G

f(ω)K(1, αω; γ)

N(ω)s
=
∑
δ|γ1

µ(δ)
∑

t1,t2∈G
t1t2| γδ

µ(t1)µ(t2)

N(t1)sN(t2)s
×

×
∑
S(C)

g(δ)Zg

(
s; 0;

α1δ1δ
−1

γ
δ

)
Zg

(
s; 0;

α2δ2δ
−1

γ
δ

)
,

(1)

where f(ω) =
∑
δ|ω

g(ω), γ1 denotes a square-free part of γ,

C :=
{
α1, α2 ∈ G∗

γ
δ
, α1α2 ≡ 1 (mod

γ

δ
)
}
; δ−1 (mod

γ

δ
).

From now on, we shall write S(C) under the summation sign to indica-
te that the summation is performed over elements satisfying the condi-
tion C.

Proof. For every δ|γ1, we have
(
δ, γ1δ

)
= 1, and hence there exists δ−1

(mod γ
δ ) such that δδ−1 ≡ 1 (mod γ

δ ). Using the completely multiplica-
tive function g(ω) and corollary of Lemma 1, we deduce that for every
δ|γ1, ℓ1, ℓ2 ∈ G∗

γ , γ ∈ G, and z = α1δ1ω1δ
−1 + α2δ2ω2δ

−1,∑
S(C1)

∑
δ1δ2=δ

g(δ1)g(δ2)×
∑ g(ω1)g(ω2)

N(ω1δ1)sN(ω2δ2)s
exp

(
2πiz

γ
δ

)
=
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=
∑
ω∈G

(ω,γ)=δ

N(ω)−s
∑

δ1δ2=δ

g(ω)×
∑
S(C3)

g(ω1)g(ω2)
∑
S(C1)

exp

(
z
γ
δ

)
= (2)

=
∑
ω∈G

(ω,γ)=δ

f(ω)N(ω)−sK
(
1, αωδ−2;

γ

δ

)
,

where

C1 :=
{
α1, α2 ∈ G∗

γ
δ
, α1α2 ≡ α (mod

γ

δ
)
}
,

C2 :=
{
ω1, ω2 ∈ G, (ω1, ω2) = 1,

(
ω1,

γ

δ

)
=
(
ω2,

γ

δ

)
= 1
}
,

C3 := {ω1, ω2 ∈ G, ω1δ1 · ω2δ2 = ω} .

(3)

On the other hand, we have∑
S(C1)

∑
δ1δ2=δ

g(δ1)g(δ2)×

×
∑
ω

S(C2)

g(ω1)g(ω2)

N(ω1)sN(ω2)s
exp

(
α1ω1δ1δ

−1 + α2ω2δ2δ
−1

γ
δ

)
=

=
∑
S(C1)

∑
δ1δ2=δ

∑
t1,t2| γδ

µ(t1)µ(t2)

N(t1)sN(t2)s
g(t1t2)×

×
∑

ω1,ω2∈G
S(C3)

g(ω1) exp
(
α1ω1t1δ1δ−1

γ
δ

)
N(ω1)s

×

×
g(ω2) exp

(
α2ω2t2δ2δ−1

γ
δ

)
N(ω2)s

=

=
∑
S(C1)

∑
t1,t2| γδ

µ(t1)

N(t1)s
· µ(t2)

N(t2)s
×

×
∑

δ1δ2=δ

Zg

(
s;

α1t1δ1δ
−1

ω
δ

)
Zg

(
s;

α2t2δ2δ
−1

ω
δ

)
,

(4)

where

Zg

(
s;

β
ω
δ

)
=
∑
ω∈G

g(ω) exp
(
2πiβωγ

δ

)
N(ω)s

,
(
α,

γ

δ

)
= 1, ℜs > 1.
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Now, we multiply the identity in (2) and (3) by δ, apply the Selberg-
Kuznetsov lemma, and after summing over δ, where δ|γ, we obtain our
statement.

Lemma 1 can be generalized as follows:

Lemma 4. By the notation of Theorem 1, we have for ℓ, q ∈ G and
(ℓ, q) = 1 that ∑

ω∈G
ω≡ℓ (mod q)

f(ω)K(1, αω; γ)

N(ω)s
=

=
∑
δ|γ1

µ(δ)
∑

t1,t2| γδ

µ(t1)µ(t2)

N(t1)sN(t2)s

∑
S(C)

g(δ)g(δ)×

×Zg

(
s;

ℓ1
q
,
α1t1δ1δ

−1

γ
δ

)
· Zg

(
s;

ℓ2
q
,
α2t2δ2δ

−1

γ
δ

)
,

where

Zg

(
s;

ℓi
q
,
αiδiδ

−1

γ
δ

)
=
∑
ω∈G

g(ω) exp
(
2πiαiδiδ

−1

γ
δ

)
N
(
ω + ℓi

q

)s , i = 1, 2.

The proof of this lemma is similar to the proof of Theorem 1 (with

Zg

(
s; β

γ
δ

)
replaced by Zg

(
s; ℓ

q ,
β
γ
δ

)
).

Corollary 2. Let γ be a Gaussian integer, and let g(ω) = e4mi argω.
Then, for ℜs > 1, we deduce at once from Lemma 3 that for α ∈ G∗

γ

Fm(s) :=
∑
ω∈G

τ (m)(ω)K(1, αω; γ)

N(ω)s
=
∑
δ|γ

µ(δ)Fm(s; δ, γ), (5)

where

Fm(s; δ, γ) =
∑

t1,t2| γδ

µ(t1)µ(t2)

N(t1, t2)s

∑
δ1δ2=δ

×

×
∑

α1,α2∈G∗
γ
δ

α1α2≡α (mod γ
δ )

Zm

(
s; 0,

α1δ1t1δ
−1

γ
δ

)
· Zm

(
s; 0,

α2δ2t2δ
−1

γ
δ

)
.

(6)
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Corollary 3. Let q and γ be Gaussian integers, and let α ∈ G∗
γ with

ℜs > 1. Then we have∑
ω∈G

ω≡ℓ (mod q)

τ (m)(ω)K(1, αω; γ)

N(ω)s
=
∑
δ|γ

µ(δ)Fm(s; δ, ℓ, γ, q), (7)

where

Fm(s, δ, ℓ, γ, q) =
∑

t1,t2| γδ

µ(t1)µ(t2)
N(t1t2)s

∑
α1,α2∈G∗

γ
δ

α1α2≡α (mod γ
δ
)

∑
δ1δ2=δ

×

×
∑
ℓ1,ℓ2

ℓ1ℓ2≡ℓ (mod q)

Zm

(
s; ℓ1q ,

α1δ1t1δ−1

γ
δ

)
· Zm

(
s; ℓ2q ,

α2δ2t2δ−1

γ
δ

)
.

(8)

We now turn to the truncated functional equation and its estimates
for Zm(s; δ1, δ2), with δ1, δ2 ∈ Q(i). We now consider two Dirichlet series

f(s,m) =

∞∑
n=1

an
ns

, an =
∑
ω∈G

N(ω)=n

e4mi argω+δ1e2πiℜ(δ2ω), ℜs > 1, (9)

φ(s,m) =

∞∑
n=1

bn
ns

, bn =
∑
ω∈G

N(ω)=n

e−4mi argω−δ2e2πiℜ(δ1ω), ℜs > 1, (10)

which are linked by the functional equation

f(s,m) = π−(1−2s)Γ(2|m|+ 1− s)

Γ(2|m|+ s)
e−2πiℜ(δ1δ2)φ(1− s,m).

It is clear that
f(s,m) = Zm(s; δ1, δ2),

φ(s,m) = Zm(s;−δ2, δ1).

Then, by the Lavrik theorem on the functional equation for the
Dirichlet function [2], [3], we have:

Lemma 5. Let s = σ + it, −2 ≤ σ ≤ 2, and let τ be a complex number
with | arg τ | < π

2 . Let

u =
√
t2+4m2

2π|τ | , v =
√
t2+4m2

2π|τ−1| ,

U = u(1 +H log u), V = v(1 +H log v),

where H is a positive number.
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Then there exists a constant T0 > 0 such that for |4m2 + t2| > T0

Zm(s; δ1, δ2) =
∑
ω∈G

e4im arg(ω+δ1)

N(ω + δ1)s
e2πiℜ(δ1ω)Γ∗(s, πτN(ω + δ1))+

+ π−(1−2s)e−2πiℜ(δ1δ2)×

×
∑
ω∈G

e4mi arg(ω−δ2)

N(ω − δ2)1−s
e−2πiℜ(δ1ω)Γ∗(z, Z),

where

Γ∗(z, Z) := Γ∗(1− s, πτN(ω + δ2)) =
1

2πi

∆+i∞∫
∆−i∞

Γ(z + w)
Z−w

w
dw.

Here, ∆ is such that for ℜs ≥ ∆ there are no singularities of the
integrand.

Moreover, if arg τ = arctg t
2|m|+σ , then

Zm(s; δ1,δ2) =
∑
ω∈G

N(ω)≤U

e4im argω+δ1

N(ω + δ1)s
e2πiℜ(δ2ω)Γ∗(s+ 2|m|, πN(ω + δ1))+

+ π−(1−2s)e−2πiℜ(δ1δ2)Γ(2|m|+ 1− s)

Γ(2|m|+ s)
×

×
∑
ω∈G

N(ω)≤V

e−4mi arg(ω−δ2)

N(ω − δ2)1−s
e−2πiℜ(δ1ω)Γ∗(2|m|+ s, πN(ω + δ2)),

where H is an arbitrary positive constant ≥ 5,

Γ∗(z, Z) = ε0+O

((
−C1

∣∣∣∣Zz
∣∣∣∣) ∣∣∣∣ Z

Im(z)

∣∣∣∣ℜ(z)

×

×

(
1 + |Im(z)|

1
2 − C2

|Z|
|Im(z)|

1
2

)−1


and

ε0 =

{
1 if |Z| ≤ |z|,
0 if |Z| > |z|

(here, C1 and C2 are absolute positive constants, and the implied
O-constant is independent of s, τ , m, H).

It follows immediately that



P. Varbanets�, S. Varbanets, Y. Vorobyov 265

Theorem 2. Let f(s,m), H and T0 be as in Lemma 5. Then for T > T0,

s = 1
2 + it, |t| ≥ T0, arg τ = arg s, and |τ | = N(γ)

1
2 , we have

f(s,m) =
∑
ω∈G

N(ω)≤ |s|+2|m|
π

e
4mi arg

(
ω+

ℓ1
δ

)

N
(
ω + ℓ1

γ

) 1
2
−it

e
2πiℜ

(
ℓ2ω
γ

)
+

+ π−2itΓ
(
2|m|+ 1

2 − it
)

Γ
(
2|m|+ 1

2 + it
)×

×
∑

N(ω)≤ |s|+2|m|
π

N(γ)

e
−4mi arg

(
ω− ℓ2

γ

)

N
(
ω − ℓ2

γ

) 1
2
+it

e
−2πiℜ

(
ωℓ1
γ

)
+

+O(log(H(t2 + 4m2)N(γ))) +O(|t|−L+2).

(11)

Lemma 5 and Theorem 2 will be applied in the case δ1 =
ℓ1
γ , δ2 = 0.

We now prove a statement essential for the main results.
We introduce the following notation

Z̃m

(
s;

ℓ1
γ
, 0

)
= Zm

(
s;

ℓ1
γ
, 0

)
−
∑
ω∈B

e
4mi arg

(
ω+

ℓ1
γ

)
N
(
ω + ℓ1

γ

)s .

Lemma 6. As T → ∞, for any ε > 0

T∫
−T

ℜs= 1
2

∣∣∣∣Z̃m

(
s;

ℓ1
γ
, 0

)∣∣∣∣2 ds = O
(
x

1
2 (T + |m|)1+ε

)
N(γ)

1
2
+ε,

where the implied O-constant depends only on ε.

Proof. On the line ℜs = 1
2 , we apply the truncated functional equation

for Zm

(
s; ℓ1γ , 0

)
. Using the notations (9) and (10), we have

T∫
−T

ℜs= 1
2

∣∣∣∣Z̃m

(
s;

ℓ1
γ
, 0

)∣∣∣∣2dt ≪
T∫

−T

N(ω)

∣∣∣∣∣∣∣
∑
ω

N(γ)≤N(ω)≤KN(γ)

e4mi arg(ω+ℓ1)

N(ω)s

∣∣∣∣∣∣∣
2

dt

+

T∫
−T

∣∣∣∣∣∣∣∣
Γ
(
2|m|+ 1

2 − it
)

Γ(2|m|+ it)
· 1
π

∑
ω∈G

N(ω)≤K

e−2πiℜ(ωℓ1)

N(ω)
1
2
−it

∣∣∣∣∣∣∣∣
2

dt
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+O
(
T log2

(
(T 2 +m2)N(ω)

))
= I1 + I2 +O

(
T log2

(
(T 2 +m2)N(ω)

))
, (12)

where K = T+2|m|
π .

The integrals I1 and I2 can be estimated in a similar way.

We calculate I1. Using the estimates for Z̃m

(
s, ℓ1γ , 0

)
on the lines

ℜs = −ε and ℜs = 1+ ε, by the Phragmen-Lindelöf principle we deduce

Zm

(
1

2
+ it,

ℓ1
γ
,
ℓ2
γ

)
<< N(γ)

1
2 (t2 +m2)

1+ε
2

for arbitrary ℓ1, ℓ2 ∈ G, ℓi ̸≡ 0 (mod γ) or ℓ2 ̸≡ 0 (mod γ).
In particular,

Z̃m

(
1

2
+ it,

ℓ1
γ
, 0

)
<< N(γ)−

1
2 (t2 +m2)

1+ε
2 (13)

for ℓ1 ̸≡ 0 (mod γ).

Let I1 =
T0∫

−T0

+
T∫
T0

+
T0∫
−T

= I11 + I12 + I13. From (13), we have

I11 ≪ N(γ)−1(T 2
0 +m2)

1
2 ≪ N(γ)−1+ε(|m|+ 1). (14)

The estimates for I12 and I13 are similar; we detail I12 below.
Using the previous bounds, we obtain

I12 ≪
T∫

T0

∣∣∣∣∣∣∣∣
∑

ω≡x (mod γ)
N(γ)<N(ω)≤U0

e4mi argωN− 1
2
−it(ω)

∣∣∣∣∣∣∣∣
2

dt+

+
1

N(γ)

T∫
T0

∣∣∣∣∣∣
∑

N(ω)≤V

exp

(
−πiℜ2πiω

γ

)
N− 1

2
+it(ω)

∣∣∣∣∣∣
2

dt+

+ TN−1(γ) log2(MTN(γ)) + T−H+3
0 .

(15)

The integrals on the right-hand side of (15) can be estimated using stan-
dard mean value results for Dirichlet series. Using the notations (9) and
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(10), we have

T∫
T0

∣∣∣∣∣∣∣∣
∑

ω≡α (mod γ)
N(γ)<N(ω)≤U0

N− 1
2
−it(ω)

∣∣∣∣∣∣∣∣
2

dt =

T∫
T0

∣∣∣∣∣∣
∑

N(γ)<n≤U0

ann
− 1

2

nit

∣∣∣∣∣∣
2

dt ≪

≪ ((T 2 +M2)
1
2 +N0)

∑
N(γ)<n≤U0

a2n
n
,

where

an =
∑

ω≡α (mod γ)
N(ω)=n

1, U0 =
N− 1

2 (γ)
∣∣1
2 + iT

∣∣
π|τ |

≪ N(γ)T,

N0 =
∑

N(γ)<n≤U0

an ̸=0

1 =
∑

ω≡α (mod γ)
N(γ)<N(ω)≤U0

1 ≤ U0

N(γ)
≪ T.

Moreover,∑
N(γ)<n≤U0

a2n
n

≪
∑

ω≡α (mod γ)
N(γ)<N(ω)≤U0

τ (ω)

N(ω)
≪ U ε

0

N(γ)

∑
ω≡α (mod γ)
N(γ)<N(ω)≤U0

1

N(ω)
.

Therefore,

T∫
T0

∣∣∣∣∣∣∣∣
∑

ω≡α (mod γ)
N(γ)<N(ω)≤u

N− 1
2
−it(ω)

∣∣∣∣∣∣∣∣
2

dt ≪ T 1+εN−1+ε(γ). (16)

Similarly,

T∫
T0

∣∣∣∣∣∣
∑

N(ω)≤v

exp

(
−πiℜ2πiαω

γ

)
N− 1

2
+it(ω)

∣∣∣∣∣∣
2

dt

=

T∫
T0

∣∣∣∣∣∣
∑
n≤v

bnn
− 1

2

n−it

∣∣∣∣∣∣ dt ≪ (T + V0)
∑
n≤V0

|bn|2

n
≪ (T + V0)

∑
n≤V0

r2(n)

n

with
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bn =
∑

N(ω)=n

exp

(
−πiℜ2πiαω

γ

)
, V0 =

N
1
2 (γ)

∣∣1
2 − it

∣∣
π|τ |−1

≪ T,

where r(n) denotes the number of representations of n as a sum of two
squares.

Since ∑
n≤V0

r2(n)

n
≪ log2 V0 ≪ log2 T

it follows that

T∫
T0

∣∣∣∣∣∣
∑

N(ω)≤v

exp

(
−πiℜ2πiω

γ

)
N− 1

2
+it(ω)

∣∣∣∣∣∣
2

dt ≪ T log2 T.

Hence,

I2 ≪
T

N(γ)
((TN(γ))2 + log2(MTN(γ)) + T−H+3

0 ). (17)

The statement of the lemma follows from the choice |τ | = N− 1
2 (γ) and

(17) with H = 5 + 1
ε .

Theorem 3. Let T → ∞. Then, for any ε > 0, ℓ, γ ∈ G, N(ℓ) < N(φ)

T∫
−T

ℜs= 1
2

∣∣∣∣Zm

(
s; 0,

ℓ

γ

)∣∣∣∣2 dt ≪ (T + |m|)1+ε.

Proof. By Theorem 2, we have

T∫
−T

ℜs= 1
2

∣∣∣∣Zm

(
s; 0,

ℓ

γ

)∣∣∣∣2 dt ≪
T0∫

−T0

+

T∫
T0

+

−T0∫
−T

= I1 + I2 + I3. (18)

For I1, we obtain

I1 ≪ N(γ)
1
2 · T 1+ε

0 . (19)

The estimates for I2 and I3 proceed in a similar manner.

By Theorem 2,

∣∣∣∣Γ2(2|m|+ 1
2
−it)

Γ2(2|m|+ 1
2
+it)

∣∣∣∣ = 1 and therefore
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I2 ≪
T∫

T0



∣∣∣∣∣∣∣∣∣∣


∑

ω≡α (mod γ)
N(ω)<N(γ)

+
∑

ω≡α (mod γ)

N(γ)<N(ω)≤ |s|+2|m|
π

N(γ)

×

×e4mi argωN(γ)
1
2
−it

N(ω)
1
2
−it

dt

∣∣∣∣∣
2

+

∣∣∣∣∣∣∣
∑

N(ω)≤ |s|+2|m|
π

e4mi argω · e2πiℜ
(

ωℓ
γ

)
N(ω)

1
2
+it

∣∣∣∣∣∣∣
2 dt ≪

≪ N(γ)
1
2T 1+ε

0 +

T∫
T0

∣∣∣∣∣∣∣∣∣∣
∑

ω≡ℓ (mod γ)

N(γ)<N(ω)≤ |s|+2|m|
π

N(γ)

e4mi argω

N(ω)
1
2
−it

∣∣∣∣∣∣∣∣∣∣
·N(γ)

1
2dt+

+

T∫
T0

∣∣∣∣∣∣∣∣∣
∑
ω∈G

N(ω)≤ |s|2|m|
π

e4mi argω

N(ω)
1
2
+it

e
2πiℜ

(
ωℓ
γ

)
∣∣∣∣∣∣∣∣∣
2

dt ≪

≪ N(γ)
1
2 (T 2

0 +m2)
1+ε
2 + I11 + I12.

Next, using the mean value estimates for segments of Dirichlete series,
we estimate I11 and I12.

Let

an =
∑

ω≡ℓ (mod γ)
N(ω)=n

1, U0 =
N(γ)

1
2

(
1
2 − iT

)
πτ

≪ N(γ)(T 2 +m2)
1
2 ,

N0 =
∑

N(γ)<n≤U0

an ̸=0

1 ≪ U0

N(γ)
≪ (T 2 +m2)

1
2 .

Taking into account that

∑
N(γ)<n≤U0

a2n
n

≪
∑

ω≡ℓ (mod γ)
N(γ)<N(ω)≤U0

τ2(ω)

N(ω)
≪ U0

ε
∑

ω≡ℓ (mod γ)
N(γ)<N(ω)≤U0

1

N(ω)
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we obtain

T∫
T0

∣∣∣∣∣∣∣∣
∑

ω≡ℓ (mod γ)
N(γ)<N(ω)≤U0

N(γ)
1
2
−it

N(ω)
1
2
−it

∣∣∣∣∣∣∣∣
2

dt ≪ N(γ)ε(T 2+ε +m2)
1
2 . (20)

Similarly,

T∫
T0

∣∣∣∣∣∣
∑

N(ω)≤U0

e
2πiℜ

(
ℓω
γ

)
N(ω)−

1
2
+it

∣∣∣∣∣∣
2

dt ≪ (T + |m|)1+ε (21)

and hence
I2 ≪ (T + |m|)1+ε. (22)

The statement of the theorem follows from (18)–(22).
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