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ABSTRACT. We study the mean values of the divisor func-
tion 7(w) over the ring of Gaussian integers G when weighted by
Kloosterman sums. For «, 5,7 € G with v # 0, let

-1
K(a,B;7v) = Z exp <27m'§)? (OME>> .
z€G v
We obtain an asymptotic formula for
Y 7w K(1aw;),
N(w)<X

uniformly in « co-prime to v and with explicit dependence on N (7).
Our approach combines a Selberg—Kuznetsov-type identity over G
with bounds for K(«, ;) in prime-power modulus, together with
Dirichlet—series methods for twisted sums

4miarg(w+01) | 627ri~§R(52w)
Zm(s;01,62) =
u; N(UJ —+ 61)5

e

We prove a truncated functional equation for Z,,, establish mean-
square bounds on the critical line, and deduce the required can-
cellation in the Kloosterman—weighted average of 7(w). As by-
products we record a generalized Selberg—Kuznetsov identity in G
and Weil-type bounds for K («, 3;p™). These results extend clas-
sical techniques for Z to the Gaussian setting and may be of inde-
pendent interest for additive problems in G involving divisor-type
functions and exponential sums.
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1. Introduction

Let G denote the ring of Gaussian integers. For v € G, let G, denote the
residue class ring modulo v. For v € G, write G for the multiplicative
group of units modulo 7.

For a, 3,7 € G the Kloosterman sum K («, ;) is defined by the

equality
-1
K(a, B;7) = Z exp (27ri3% <M>) ,

TEGY v

where ! is the multiplicative inverse modulo v for x.

We derive an asymptotic formula for the mean value of the divisor
function 7(w) over G weighted by the Kloosterman sums.

We use the following notations:

e let v(«) denote the number of non-associated prime divisors a € G}

p will always denote the Gaussian prime;

(a1, 9, ..., a1) be the greatest common divisor of oy, o, ..., o,
Q; € G;

e ©(q) denotes the Euler totient on G; write p(q)=N(g)[ [ (N]S}J()’g?);

plg

e by 7(a) we denote the number of non-associated divisors of a,
a€QG, T(m)(a) — Z 64mzarg6;
0eG
O
e unless stated otherwise, sums over GG are taken over non-associated
Gaussian integers;

* N(a)=o?, a € G;

e let H be a sufficiently large positive number; letters k, m, n denote
integers, while «, 3, v, 6 denote Gaussian integers;

e by ¢ we denote an arbitrary small positive number, not necessarily
the same in different occurrences. Unless explicitly stated other-
wise, the constants in the Vinogradov and Landau symbols are
absolute or depend on ¢;

e we denote by p(a) the Mébius function over G
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e as usual [t| denotes the integer part of ¢;

e further exp(2mit) = 2™,

e for any a and 7 such that («,7) = 1 we denote by a~! the inverse

of & modulo 7. If the value of the modulus is clear from the context

then we write for simplicity a~';

e and finally, by [J we mark an end of a proof or its absence.

2. Auxiliary

First, we recall the necessary background about the Kloosterman sums
over G.

Lemma 1. Let o, 3, be the Gaussian integers and let v(~y) be the num-
ber of different prime divisors of v. Then for~ # 0 the following estimate

N

K (o, 8;7)] < 2"OFIN((@, 8,7))7 - N()

holds.
Moreover, if v1 be square-free and v be square-free part of v1 then

for v =172, (71,72) =1 and for any B € G, (B,7) = 0, 61|71, 02|72,
N(0) > 1, we have

K1 0 if N(52) > 1,
O = wonk (1657 ) if N =1,
Here, (51_1 is a multiplicative inverse for 6 mod %, 62 = (6712

Proof. The claim follows by reduction to prime powers. Indeed, using
the multiplicativity of K («, ;) with respect to +, it suffices to prove
the equality for v = p. For m = 1 we have d, = 1 and (8,v) = (5,p) = p,
and hence

K(1,8:p™) = K(1,0;p) = =1 = p(01)K(1,0; 1).

For m > 2, (B,p™) = p*, kK > 1. Thus 6; = 1, d = pF. Set
m = (2] 2 1.
Let © = zo(1 + p™ ™y), 29 € G;m_ml, y € Gym. Then

rt =2 L —pm Ty + p2 Ty (zp! (mod p™)).
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Denoting 3 = p* 3o, (Bo,p) = 1, we can write

K(LBeipFp™) = > > exp <2m§%f(§2; y)) 7

roEG* yGGpml

pmfml

where

f(x0,y) = 20+ BopFay T 4+p™ " (y —bopFag ™™ + BopFag p T y?).

Therefore,
k m . 370+50ka61
Ko™ = 3 e (2min 000
onG;m_ml p
Yy
< Y o (2min )
yerml
=0.

At last, for do = 1 we have §; = p, p"" = p. But this case we already
considered. O

Corollary 1. Let f(w) be a multiplicative function over G for which the

series > f(w)N(w)™* converges absolutely. Then in semiplane Rs > 1
welG
the equality

flw)K(1,w;7v) f(w) 1.7
) TP D) N<w)sK(1’“5 5)

welG (5"}/1 welG

holds.

Lemma 2. Let o, 3 € G, p be a prime number from G. Then

-1 if (a,p)=1, B=0 (mod )
K(0,8:p) = 1 or 0=0 (modp), (3,p) =1,
ON(p)z, |0] <2 on all occasions.

Form > 2

if aB is a quadratic nonresidue mod p;

if «apB is a quadratic residue mod p,
6] <2.

m
2

0
K(a, B;p™) = { ON(p)
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For m = 1 this assertion was proved by A. Weil [4], and the case
m > 2 is an analogue of the estimate for rational case (see, [1]).

Lemma 3 (generalized identity of Selberg-Kuznetsov). Let a, 3,7 over
the Gaussian integers. Then

=Y NG ( gf;g)

3|, 8,7)

Proof. By the quasi-multiplicativity of the Kloosterman sum in the vari-
able ~, it suffices to prove the assertion for v = p™, where p is a Gaussian
prime.

If (e, B;p™) = 1, the proposition clearly holds.

f (a,8;9p™) = p™, we have K(a,B;p™) = o(p™) = N(p™) - (1 -
N=(p)).

On the other hand,

> NE) < 5§apm>=§:N(p€)x

dlp™ £=0
-1 m—~{
X Z exp <27Ti§R$ * wpm?égp > =
zeG*  _,
m
= ZN(p)Z Z exp <2m§R> =
=0 mGG;m P

Now let (a, 3,p™) = p*, where 0 < k < m.
We have

—1 -1
3 exp (m*;f) N Y e (mp;ﬂ)

xGG;m zeG*

pm— k

Hence,

K (a8 p™) =N<pk>-f<(1 jfk,pm ’f)
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Consider the sum

k 2(k—0)
Tz Jai By
= E N(p)z E exp <2m§R — )
=0 :UEG; p

m—~4

Using standard properties of Gauss sums, the inner sum is equal to zero
whenever ¢ # k. This completes the proof of the Selberg—Kuznetsov
identity. O

Theorem 1. Let g(w) be a completely multiplicative function over G,
and let the Dirichlet series

> gwNw)™
welG

converge absolutely in the half-plane Rs > 1. Then, for every a,v € G
such that N( ) >1 and (a,v) = 1, we have

flw 1aw’y
Z Z’u ZNtlsNt2

weG 5|’Yl t1,t2€G
151152|AY 1
1010 042(52(5_1
S )
B )

where f(w) = g(w), 71 denotes a square-free part of ,
dlw

C = {ozl,ozg €Gy, ajag =1 (mod %)}, 61 (mod %)

6
From now on, we shall write S(C') under the summation sign to indica-
te that the summation is performed over elements satisfying the condi-
tion C.

Proof. For every 0|v1, we have (§,%) = 1, and hence there exists 6~
(mod %) such that 66~ =1 (mod %). Using the completely multiplica-
tive function g(w) and corollary of Lemma 1, we deduce that for every
(5"’)/1, 1,05 € Gf’;, v E G, and z = a151w15_1 + 042(520.)25_1,

w w 2miz
S aloalen) x 3 et e (57) -

S(Cy) 6182=5 0
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T N Y g x Y gwnglw) 3 exp(
weqG

z
i =
e, §102=0 S(C3) S(Ch) 0
w7’y:
2.7
g fw 1, awd 2 ,
weqG ( 5>
(w,y)=4

where

Cy = {ozl,ozg € G*%, ajae = a (mod %)

b

Cy = {wl,wQ €qG, (w,wy) =1, (wb%) = (u@%) = 1}, (3)

C3:= {CU1,CU2 S G, w101 + Wody = w}

On the other hand, we have

> ) g(61)g(62)x

S(Cy) 6162=6

» Z o alwlélé’l + w9 b0
X
N wl SN CL)Q) P

o)
S(Cz)
2 2 2y

9(t1t2)><
Cl 6102= (5t1,t2|w tl SN

g(wr) exp (7‘““1%‘51‘;_1)
<

2 X (4)
w1,w2€G N(wl)s )
S(CS,) g(w2) exp (a2w2t§626_ >
X

Y ptr) - plte)

)
where
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Now, we multiply the identity in (2) and (3) by J, apply the Selberg-
Kuznetsov lemma, and after summing over §, where §|vy, we obtain our
statement. O

Lemma 1 can be generalized as follows:

Lemma 4. By the notation of Theorem 1, we have for £,q € G and
(¢,q) =1 that

w)K (1, aw;
s S@RLasy)

weG N(w)s
w=¢ (mod q)
=2 1) > N L Z 9(8
dlm t1,t2] F 5(0)
XZ ( 51’ altlilé ) ) Zg <S; é’ 042752?2(57 > ’
q 5 q s
where
s 51 g(w) exp (2mi2dd—
Z, (g;f;,a’éff ) - ( 3 ) i=1,2.

S
wel N <(JJ + %)

The proof of this lemma is similar to the proof of Theorem 1 (with
Z, (s; %) replaced by Z, <3; L §>)
0 o

Corollary 2. Let v be a Gaussian integer, and let g(w) = e*miargw,
Then, for Rs > 1, we deduce at once from Lemma 3 that for o € G

(M) (w aw;
Fule) = 3 T ) S ) Fsib), )

weld oy

where

m(8;0,7) = ZN Zx

t1,t2] % 1t

- -1
x S Za <s;0,0‘151§15 >.Zm (s;o,“252§25 > (6)
0

a1,02€GY 0
)

alon=a (rnod %)
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Corollary 3. Let q and v be Gaussian integers, and let a« € G with
Rs > 1. Then we have

7(m) (w aw;
) ) =S wO Fulso ), (1)

welG |y

w=¢ (mod q)
where
_ u t1 u(t2
Fm(s,5,€,’y, q) - Z t1t2 Z Z X
t1,ta] 2 3 a1,a2€GY 6102=0
)
atas=a  (mod %)
(8)
I d1t167 1 L Jotod !
XY (sl mibil) .z (sl cbhi )
£1,02 o o

Li42=C (mod q)

We now turn to the truncated functional equation and its estimates
for Z,,,(s; 01, d2), with d1,02 € Q(7). We now consider two Dirichlet series

00
a . .
f(s,m) _ § :TTZ’ ay = § : €4mzargw+6162m§R(62w)’ Rs > 1’ (9)
n=1

wel
N(w)=n

[e.e]
bn —dmiargw—6y 2miR(6
gp(s,m)zzlns, by, = Z e imiargw=02 2mR(NW) g 51 (10)
n—=

wel
N(w)=n

which are linked by the functional equation

(19 I2m|+1—35) 5.
— (1—2s) 2mi%R(6102) -
f(s,m)=m T2+ 5) e o1 —s,m).

It is clear that
f(sa m) = Zm(sa 617 62)7
p(s,m) = Zpm(s; —02,61).
Then, by the Lavrik theorem on the functional equation for the

Dirichlet function [2], [3], we have:

Lemma 5. Let s =0 +it, —2 < o < 2, and let T be a complex number
with |arg 7| < %. Let

_ V/t244m? _ V/t?24+4m?
U= v= =0
2m|T| 2|1

U=u(l+ Hlogu), V =v(l+ Hlogwv),

where H is a positive number.
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Then there exists a constant Ty > 0 such that for [4m? + 2| > Ty
elimarg(w+01)

Zm(30102) = D gy

weG
+ W7(172s)67277i§)%(6162) «

ezﬂm(élw)p*(& TN (w =+ 01))+

elmiarg (w—0d2)

—2miR (1 w) Pk
XU;GN(W—(SQ)l_Se I'(2,2),
where
A+ioco
I'(2,2) :=T"(1 — s,nTN(w + d2)) = = / I'(z+ w)ﬁdw.
27TiA_ioo w

Here, A is such that for ®s > A there are no singularities of the
integrand.

Moreover, if argT = arctgﬁ, then

€4imargw+61 omiR(S
In(sibr02) = D, gy T s 2], wN (o + 8))+
NiSu

n F7(172s)672m€&(5152)F(2|m| +1—5)
['(2|m| + s)

e—dmi arg(w—ad2)

—2miR(01w) ok
X Z We G (2m| + 5, 7N (w + 62)),
weG
N(w)<v

where H s an arbitrary positive constant > 5,

[*(2,Z) = £04+0 <<—01 fl) ‘Imz(z) R(2)
x <1+|Im(z)|é _CZWLf!ﬁ)_l

and
Loif |Z] <z,
Eo = .
0 if |Z]> ||

(here, C1 and Co are absolute positive constants, and the implied
O-constant is independent of s, T, m, H).

It follows immediately that
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Theorem 2. Let f(s,m), H and Ty be as in Lemma 5. Then forT > Ty,
s=3+it, |t| > Ty, argr = args, and || = N(’y)%, we have

f(svm): Z

e 0 571'15
we 1
N(w)< Lle2im N (“H' v)

9it1 (2|m| + % - it)

. 3
4mi arg (w—l——l)
e 0 ezwiyl‘:(é?“)

~

o F(2|m| +%—|—it) (11)
) ¢
X Z et arg(wi? e-27r7§§)?(%“)
) §+Zt
N(w)<2E2ml n () N (w — 72)

+O(log(H(t* +4m*)N (7)) + O([t|~*+2). O

Lemma 5 and Theorem 2 will be applied in the case 1 = %1, b9 = 0.
We now prove a statement essential for the main results.
We introduce the following notation

4miarg<w+l—1)
~ / ¢ v
Zm <8;1,0> =Zm <8; 1,0> - Z e—s

Py ’Y wEB N (w + %)
Lemma 6. As T — oo, for any e > 0

r L
Y
T

Rs=

2
ds =0 (:c%(T + |m\)1+5> N(’y)%+€,

1
3
where the implied O-constant depends only on €.

Proof. On the line s = %, we apply the truncated functional equation

for Z,, <3' b 0>. Using the notations (9) and (10), we have

I '77
2
T . '
) " ) edmi arg(w+~1)
7 (o0 N T Nwp | @
/ m(s’v’()) dt<</ (w) ; N(w)®
o “r N(7)<N(W)<KN()
%s:%
2
. .
+/ L(2m|+5 —it) 1 s
. g TN oAt
['(2|m| + it) T S Nw)z "

N(w)<K
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+ O(T log*((T? + m*)N (w)))
=1 + I + O(Tlog*((T? + m*)N (w))) ,

T42
where K = w

The integrals I; and I can be estimated in a similar way.

(12)

We calculate I1. Using the estimates for Zn (s, %,0) on the lines

Rs = —e and Ns = 1+ ¢, by the Phragmen-Lindel6f principle we deduce

1+e

1 0 0
Zm <+it,1,2> << N('y)%(t2+m2) 2
2 v

for arbitrary ¢1,02 € G, £; #0 (mod ~) or ¢5 Z 0 (mod 7).
In particular,

1+e

5 (1 14
L, <2 + it, ;,0) << N(’y)—%(ﬁ +m?) 2

for ¢1 Z 0 (mod 7).

To T To
Let I; = f + f + f = I11 + I12 + I13. From (13), we have
Ty To —-T

I < N(v)"NTZ +m?)7 < N(v) "= (jm| +1).

The estimates for 115 and I3 are similar; we detail 115 below.
Using the previous bounds, we obtain

2

T
Ly < Z emiarsw N =3 =it ()| dt+
w=z (mod 7)
N(v)<N(w)<Uo
T 2
1 27 ,
+ / Z exp (—m’ﬂ% mw) N_%J”t(w) dt+
N J vty gl
To W)

+ TN (y)log?(MTN (v)) + Ty 73

(14)

The integrals on the right-hand side of (15) can be estimated using stan-
dard mean value results for Dirichlet series. Using the notations (9) and
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(10), we have

|
N[

nT

——| dt <

—
]
=
Mibd
£
&
Il
(]
o

=a (mod 7v) Tp | N(V)<n<Uo

o | N <N @<t
2
2 21 Ay,
<((T?+ M)z +No) D P
N(v)<n<Uo
where
1
N72(y) |3 +iT
ap = Z 1, U= (7) ‘2 ‘ < N(’Y)T7
7|7|
w=a (mod 7)
N(w)=n
Uy
No= Y 1= Y 1< <T.
N _ N(7)
(7)<n<Uy w=a (mod 7)
an#0 N(v)<N(w)<Ugy
Moreover,
a? (W) Us 1
Y o %e ¥ < O
N N N
N(v)<n<Uy " w=a (mod ) (w) (7) w=a (mod 7) (w)
N(7)<N(w)<Uo N(v)<N(w)<Uo
Therefore,
2
T
S NTEw)| dt < THENTIE(y), (16)
w=a (mod 7)
N(v)<N(w)<u
Similarly,
T 2
27 -
/ > exp <m'3fe m““’) N~ t(w)| dt
T, |N(w)<v "
|5 bon~? s 2(n)
n Tl n re(n
:/Z e dt < (T+Vp) > - <(T+V) > .
T |n<v n<Vy n<Vp
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. 1 1
bn = Z exp (—772'3‘%27T;aw> , Vo= N2l — ] il

7|7t
N(w)=n

where r(n) denotes the number of representations of n as a sum of two

squares.
Since

2
> rn) « log? Vp < log? T
n<Vp n

it follows that

2

T
Ty N(w)<v

Hence,

I, € ——((TN(1))? + 10g2(MTN(3)) + Ty 1+%).

N(v)

2mi ,
Z exp <—7m'§R mw) N_%“t(w) dt < Tlog?T.
Y

(17)

The statement of the lemma follows from the choice |7| = N _%(7) and

(17) with H =5+ 1.

O]

Theorem 3. Let T — oco. Then, for anye >0, ¢,y € G, N({) < N(p)

2
dt < (T + |m|)**e.

r 14
Y

Rs=

1
2
Proof. By Theorem 2, we have

[ l
Y

=T —To To =T
Rs=

2 To

1
2
For I, we obtain
1
I < N(y)2 - Tyte.
The estimates for I and I3 proceed in a similar manner.

2 1_
By Theorem 2, L (2ml+5—it)

T2(2|m|+ 1 +it) =1 and therefore

T —To
dt<</+/+/=11+12+13-

(18)

(19)
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T
I < / oo+ > X
Ty w=a (mod 7) w=a (mod 7)
N@<N()  N(y)<N(w)<2HE2ml n(y)
. 2
4ma argw N\ 14t
x & 1(7> : dt
N((JJ)§7”
, 2
dmiargw | 2TR wT
Ay - c dt <
[sl42Im| N(w)2
N(w)<=-7
T .
Lte 64mz arg w 1
< N(7)2T} +/ > — |- N(7)2dt+
Ty w=L (mod ) N(w) 2
N(y)<N(@)< 2R N ()
2
T dmiargw
r o ((wl
+ / %BQWRR( a ) dt <K
T weG N(w) 2
Ny Lz

< N(Y)2(TE +m?) % + Iy + Ina.

Next, using the mean value estimates for segments of Dirichlete series,
we estimate I1; and Iqs.

Let
1
N(y)2 (3 —iT
= Y 0= TOELTT) ey
T
w=¢ (mod 7)
N(w)=n
U,
No= Y 1< < (T?+md)e.
N( N(7)
v)<n<Ug
an7#0

Taking into account that

N(v)<n<Ug w=l (mod 7) w=¢ (mod 7v)
) )
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we obtain
2
f N3
2 1
Yoo S @< NP (T A m?)E (20)
w=L (mod v) N(w)2
N(7)<N(w)<Uo
Similarly,
T 2
. lw .
JI & e ac@rmy e
TO N(L{J)SU(}
and hence
I, < (T + |m|)'*e. (22)
The statement of the theorem follows from (18)—(22). O
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