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Matroids arisen from seeds
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Abstract. This paper aims to shed light on new (sub)classes
of matroids originating from cluster algebras and investigate their
properties. We focus on what we call cluster matroids and build
some results on them. Then, we point out a relationship between
these kinds of matroids and uniform matroids and study their mi-
nors.

1. Introduction

The theory of matroids originated in 1935 by Whitney to abstract the
notion of the linear independence of vector spaces. Since then, because
of its interesting properties and applications, the matroid theory has
formed one of the most active areas of algebraic combinatorics. On the
other hand, cluster algebras were invented by Fomin and Zelevinsky in
2002 and have quickly received a lot of interest because of their signifi-
cant applications and connections to different areas of mathematics. For
instance, the applications of the theory of cluster algebras appear in rep-
resentation theory, combinatorics, algebraic geometry, Poisson geometry,
integrable systems, mathematical physics, and topology. Although both
theories have the flavor of algebra and combinatorics and despite the
existence of some works built on both theories, their immediate relation-
ships have not yet been studied well.

The author thanks Professor James Oxley for the useful discussion in preparing
this paper.
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In this study, we provide an overview of matroids in Section 2 and clus-
ter algebras in Section 3. We then introduce some connections between
them in Section 4. Next, we take a close look at the behavior of the
minors of the main class of matroids in this study in Section 5.

2. Matroid preliminaries

This section introduces the theory of matroids and the needed results.
The reader who is interested in a deeper look is referred to Oxley’s
book [8].

Definition 2.1. A matroid M is a pair (E,B) where E is a finite non-
empty set called the ground set and B is a subset of the power set of E
in which

1. B ̸= ∅.

2. If B1, B2 ∈ B and x ∈ B1 \ B2, then there is a y ∈ B2 \ B1 such
that (B1 \ {x}) ∪ {y} ∈ B.

A member of B is called a basis of the matroid M , while a subset I of
E is called independent if it is a subset of a basis. Any subset of E that
is not independent is called dependent. Sometimes, we may write B(M)
instead of B to emphasize that we are considering the set of bases of the
matroid M .

Example 2.2. Let A be a matrix and E be the set of column labels of
A. Let B be the set of linearly independent sets of maximal size induced
by the column labels of A. Then, (E,B) is a matroid. A matroid is called
representable if it can be formed by the linear independence relations of
a matrix.

Remark 2.3. It is not hard to see that the definition of a matroid is a
generalization of the properties of bases of a linear space V . A matroid
can be defined in other equivalent ways, such as the independent sets or
circuits, which are the minimal dependent sets.

Remark 2.4. Let M be a matroid whose ground set is E and set of
bases is B. The pair M∗ = (E,B∗), in which B∗ = {E \ B | B ∈ B},
forms a matroid whose set of bases is B∗. This matroid is called the
dual matroid of M . Bases, (in)dependent sets and circuits in the dual
matroid are called cobases, co(in)dependent sets and cocircuits of the
original matroid, respectively.
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Now, we recall the following definition:

Definition 2.5. Let K be an extension field of a field F. Let α ∈ K and
let E ⊂ K.

1. An element α is said to be algebraic over F if there exists a nonzero
polynomial p ∈ F[x] such that p(α) = 0. If no such polynomial
exists, α is called transcendental over F.

2. A set E is said to be algebraically independent over F if there is no
nonzero polynomial p ∈ F[x1, x2, . . . , xn], where n = |E|, such that
p vanishes when evaluated at the elements of E. Otherwise, E is
said to be algebraically dependent over F.

Theorem 2.6. Let K be an extension field of a field F and E ⊂ K be
finite. The collection I of subsets of E that are algebraically independent
over F forms a matroid on E whose independent sets are the members
of I.

Definition 2.7. A matroid M is called connected if every two elements
of it lie in a common circuit or cocircuit.

Definition 2.8. Let M1 and M2 be two matroids with disjoint ground
sets. The direct sum M1 ⊕M2 is the matroid whose ground sets is the
union of the ground sets of M1 and M2 and whose bases are the union
of their bases.

Theorem 2.9. A matroid M is connected if and only if it cannot be
written as a direct sum of two matroids.

Definition 2.10. Let M = (E,B) be a matroid and X ⊂ E.

1. The restriction of M to X, denoted M |X or M \ (E \ X), is the
matroid whose set of bases is the set of the maximal independent
sets contained in X. In the case of singletons, we will denote M |{e}
and M \ {e} by M |e and M \ e, respectively. The operation of
restricting M to X is called the deletion of E \X.

2. The contraction of X is the matroid denoted by M/X and given
by (M∗ \ X)∗. Similarly to the restriction, we will omit the set
brackets when we deal with singletons.

3. A minor of M is a matroid induced from M by a sequence of
contractions and restrictions.
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3. Cluster algebra overview

This section introduces the notion of cluster algebra. For a wide overview,
the reader is referred to [2, 5]. We begin with the following sequence of
definitions.

Definition 3.1. A (labeled) seed is a pair (x, B) such that

x = (x1, ..., xn, xn+1, ..., xm)

is a tuple of algebraically independent variables generating a field isomor-
phic to the field C(x1, ..., xn, xn+1, ..., xm). Also, B is an m×n extended
skew-symmetrizable matrix, that is, a matrix whose north n×n submat-
rix can be transformed to a skew-symmetric matrix by multiplying each
row ri by a nonzero integer di. The matrix B is called the exchange mat-
rix and the tuple x is called the extended cluster. The variables x1, ..., xn
are called mutable, while the variables xn+1, ..., xm are called frozen.

Remark 3.2. In some cases, the field C(x1, ..., xn, xn+1, ..., xm) of the
previous definition is replaced by the field Q(x1, ..., xn, xn+1, ..., xm). We
will mainly deal with the first in this paper, but all the results still make
sense for the second.

Definition 3.3. Let k be an index of a mutable variable of a seed (x, B).
A mutation at k is a transformation to a new seed (x′, B′) in which B′

is an m× n matrix whose entries are

b′ij =

−bij , if i = k or j = k,

bij +
|bik|bkj + bik|bkj |

2
, otherwise;

(3.1)

and x′ = (x′1, ..., x
′
n, x

′
n+1, ..., x

′
m) is a tuple such that x′i = xi for i ̸= k

and
xkx

′
k =

∏
bik>0

xbiki +
∏
bik<0

x−bik
i .

The seed (x′, B′) obtained by a mutation at k is denoted sometimes by
µk(x, B).

Remark 3.4. It is not hard to see that the mutation of a seed provides a
new seed. Moreover, mutating twice at the same index brings the original
seed back. In symbols,

µk(µk(x, B)) = (x, B).
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Definition 3.5. Let (x, B) be a seed. A cluster algebra (of geometric
type) attached to (x, B) is the polynomial algebra A = C[xn+1, ..., xm][χ],
where χ is the set of all possible mutable variables, that is, the mutable
variables of the original seed or a seed obtained by a mutation or a
sequence of mutations. The seed (x, B) is called the initial seed.

Remark 3.6. By the properties of mutation and algebraically indepen-
dent sets, it is not hard to see that the cluster algebra attached to some
seed is the same cluster algebra attached to any seed mutation. There-
fore, in the context of cluster algebras, we often fix an initial seed and
describe the cluster algebra A by means of it. In terms of notation, we
sometimes write A(x, B) instead of A, if there is an emphasis on the
initial seed (x, B).

Definition 3.7. The rank of a seed or a cluster algebra attached to it
is the number of mutable variables of its initial seed. A cluster algebra
is of finite type if it has finitely many seeds. Otherwise, it is of infinite
type.

Remark 3.8. The finite type classification of cluster algebras is closely
related to Lie Theory. In fact, the cluster algebras of finite type are classi-
fied by the Dynkin Diagrams, which are also the main objects classifying
the semisimple complex Lie algebras.

Definition 3.9. Let B be an n× n square integer matrix. The Cartan
counterpart of B is the matrix A(B) = (ai,j) defined by:

aii := 2, and aij := −|bij | if i ̸= j.

Theorem 3.10. A cluster algebra A is of finite type if and only if the
Cartan counterpart of one of its seeds is a Cartan matrix of finite type,
that is, of type An, Bn, Cn, Dn, E6, E7, E8, F4, or G2.

Definition 3.11. For a cluster algebra A, a cluster monomial is a mono-
mial consisting of variables from a single seed.

4. Cluster matroids

In this section, we investigate a matroid structure in the set of ex-
tended clusters and build a connection between the two topics from there.
Throughout, the terms “cluster algebra” and “seed” mean a cluster al-
gebra and a seed of finite type.
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Figure 1: A triangulation of the octagon.

Example 4.1. This example produces a way to give the Grassmannian
Gr2,n a cluster algebra. We skip some details here. For a wider overview,
the reader is encouraged to see [2] Section 1.2. Consider the octagon of
Figure 1. A triangulation of the octagon is a shape obtained by drawing
a maximal number of pairwise non-crossing diagonals. It is easily seen
that any triangulation of the octagon produces exactly 5 non-crossing
diagonals, one of them is the one in Figure 1. More generally, a triangu-
lation of an m-gon produces exactly m− 3 non-crossing diagonals. Now,
this octagon forms a combinatorial way of describing a seed whose frozen
variables are the sides of the octagon and whose mutable variables are
the non-crossing diagonals. The mutation of seeds here corresponds to
diagonal flipping. For instance, flipping the diagonal P58 to P16 corres-
ponds to another triangulation that is a mutation of the first one at the
variable P58. Another example is to flip P68 to P57 and so on.

Näıvely, one might think that this gives rise to a matroid on the set
of diagonals of an n-gon by taking as the bases those edges that are the
edges of a triangulation, but this turns out to be false. In fact, consider
the triangulation in Figure 2. If P14 is removed from this triangulation,
then there is no diagonal from the triangulation of Figure 1 that can
be inserted and give a new triangulation. Hence, the second axiom of
matroid bases is not satisfied and this is not a matroid. However, we will
be able to solve this issue in the next remark.

Remark 4.2. From Theorem 2.6, it is straightforward to see that the
set of extended clusters of some cluster algebra induces a matroid. In-
deed, define the bases of this matroid to be all maximal algebraically
independent sets containing the frozen variables, where the ground set is
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Figure 2: Another triangulation of the octagon.

the set of all possible variables generated by any sequence of mutations.
We will call this a cluster matroid.

Remark 4.3. Since cluster algebras of type An are combinatorially de-
scribed by the triangulations of an (n + 3)-gon and since the (2n + 3)-
quantities attached to the triangulations are algebraically independent,
one can see that this can give a matroid on any n-gon using the algeb-
raic independence and the definition of cluster matroids of the previous
remark.

Example 4.4 (Rank 1). (c.f. Example 3.2.2 of [2]) A cluster algebra
of rank 1 has exactly two mutable variables, say x1 and x′1, each of
them is a mutation of the other. It can have any number of frozen vari-
ables. Any m × 1 matrix B with top entry 0 is a possible extended
exchange matrix for such a cluster algebra. Of course, x1 and x′1 are

related by the mutation relation x1x
′
1 =

∏
i x

bi
i +

∏
j x

−bj
j where i ̸= j

and bi > 0 and bj < 0 for all i and j. This cluster algebra is gene-
rated by the variables x1, x

′
1, x2, ..., xm and lives inside C(x1, x2, ..., xm) =

C(x′1, x2, ..., xm). The matroid attached to this cluster algebra is given by
the ground set E = {x1, x′1, x2, ..., xm} and the basesB1 = {x1, x2, ..., xm}
and B2 = {x′1, x2, ..., xm}. A more concrete example is the coordinate
ring of the subgroup of unipotent upper triangular matrices

U+ =



1 a b

0 1 c

0 0 1


 ⊂ SL3.
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This coordinate ring is C[a, b, c] and it forms a cluster algebra of rank 1
whose extended clusters are {a, b, ac− b} and {c, b, ac− b}. Clearly, the
mutable variables are a and c and the frozen variables are b and ac− b.

Example 4.5. Let (x1, x2) be a seed in which both of its variables are
mutable. Let

B =

[
0 1

−1 0

]
be the exchange matrix attached to this seed. It is not hard to see that

the list of all possible cluster variables is: x1, x2,
1 + x2
x1

,
1 + x1 + x2

x1x2
,

and
1 + x1
x2

.

Any 2-set of elements of this list is a basis of the induced cluster
matroid. This matroid is denoted by U2,5. More generally, for n ≤ m,
the uniform matroid Un,m is the matroid whose ground set is {1, ...,m}
such that any n-subset forms a basis.

Remark 4.6. In general, cluster matroids are not closed under duali-

ty. This is because the number of seeds is fully determined by the ex-

change matrix together with the cluster algebra rank. Thus, if the rank

is changed, then the number of seeds, and hence the size of the matroid,

will be different.

Remark 4.7. The matroids introduced in Theorem 2.6 are called algeb-

raic. There are many open questions about them and their duals. We

believe that the study of cluster matroids can help answer some of these

open questions. One can see [8] for a deeper look at algebraic matroids.

Now, we note the following results of cluster matroids:

Theorem 4.8. A cluster matroid of size greater than or equal to 2 is
connected if and only if it has no frozen variables.

Proof. Since the frozen variables appear in every basis, they are coloops,

that is, codependent singletons. It is straight forward to verify that

any matroid with (co)loops is disconnected. Now, assume that there

is a disconnected cluster matroid M consisting merely of mutable vari-

ables. This implies the existence of two matroids M1 and M2 such that

M = M1 ⊕ M2. Assume that (x1, ..., xn, ..., xm) is an extended cluster
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and suppose that xi ∈ M1. If xi is mutable, then its mutation x′i ∈ M1.

Otherwise, M has two bases {x1, ..., xi, ..., xn} and {x1, ..., x′i, ..., xn} such

that the first has elements from M1 more than the second, a contradic-

tion. Similarly, if xj is a mutable variable living in M2, then its mutation

x′j ∈ M2. Now, assume without loss of generality that there exists a num-

ber r such that x1, ..., xr ∈ M1 and xr+1, ..., xn ∈ M2. Then, at the first

level, any mutation at mutable indices of the first r spots induces a vari-

able in M1. Likewise, any mutation at the rest spots induces a variable

in M2. At the second level, a second mutation at k ∈ [1, r] produces a

variable in M1, no matter if the first mutation was at [1, r] or [r+ 1,m].

Similarly, a second mutation at k ∈ [r + 1,m] induces a variable in M2.

This continues to any level of mutations. Note that x1 and xr+1 must

not live in a same circuit; otherwise, there is a connected component

containing both of them, which means that they must be both in M1 or

both in M2. However, {x1, x′1, x2, ..., xr, xr+1, ..., xn} is dependent and

has no dependent subset. Hence, it is a circuit, a contradiction. Since

the mutation at an index produces a variable in the same original con-

nected component, the previous argument can be generalized for any two

variables by comparing their mutations at some certain level.

In Example 4.5, we have seen a connection between cluster matroids
and uniform matroids. This guides us to the following theorem:

Theorem 4.9. Let M be a cluster matroid whose seeds have no frozen
variables and whose off-diagonal entries are nonzero. Then M is equal
to Un,|M |, where n is the size of the initial seed and |M | is the ground set
cardinality.

Proof. First, note that any n-subset of the ground set is algebraically

independent. It is not hard to see this, since the initial seed contains n

algebraically independent variables and the mutation formula

xkx
′
k =

∏
bik>0

xbiki +
∏
bik<0

x−bik
i

implies that the variable x′k preserves the apperance of all the variables
at the initial seed, no more no less.

Second, any (n + 1)-subset of the ground set is algebraically depen-
dent. Indeed, since all cluster variables lie in the rational function field
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C(x1, . . . , xn), whose transcendence degree over C is n, no subset of mu-
table variables of size greater than n can be algebraically independent.
Thus, any (n + 1)-subset of cluster variables must be algebraically de-
pendent.

Clearly, the combination of the results of the two paragraphs above
implies that M = Un,|M |.

We have seen that cluster algebras induce matroids via the property
of algebraic independence. In fact, we can get another type of matroid
from cluster algebras. This comes from the Laurent phenomenon, which
is one of the most powerful phenomena of cluster algebras:

Theorem 4.10 (Laurent phenomenon). Let A be a cluster algebra. Any
cluster variable of A can be expressed as a Laurent polynomial in the
variables of any extended cluster with integer coefficients. Moreover, the
frozen variables do not appear in the denominator of any such Laurent
polynomial.

Corollary 4.11. The cluster monomials of any cluster algebra are line-
arly independent over the ground field (Q or C).

Corollary 4.12. Cluster monomials of a cluster algebra of finite type
form a representable matroid.

5. Minors

To better understand the class of cluster matroids, it is important to see
how it behaves after contraction. Since the cluster algebras of finite type
are classified by Dynkin diagrams (or Cartan matrices), we choose one
example of type A2 to buid some results from. Clearly, the mutable and
frozen variables are the main ingredients to determine the seed pattern
of a cluster algebra. Thus, we look closely to the effect of each of them.

We first make the following note regarding the contraction by frozen
variables in a cluster matroid.

Theorem 5.1. The contraction of a frozen variable from a cluster ma-
troid is a cluster matroid.

Proof. Assume that M is a cluster matroid and e is a frozen variable.
We have the following:

B(M/e) =
{
X ⊂ E \ e : M |e has a basis B such that X ∪B ∈ B(M)

}
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=
{
X ⊂ E \ e : X ∪ e ∈ B(M)

}
=

{
B \ e : B ∈ B(M)

}
,

where the last equality holds because of the facts that e is frozen and
frozen variables appear in every cluster-matroid basis. Note that this is
the same cluster matroid obtained by removing the frozen variable e from
its original seed together with its corresponding row from the exchange
matrix B.

Corollary 5.2. If M is a cluster matroid and X is a set of frozen vari-
ables, then M/X is a cluster matroid.

Remark 5.3. Based on the definition of a cluster matroid, it is straight-
forward to see that the deletion of a frozen variable results in the same
as the contraction of it. Therefore, the deletion of a frozen variable from
a cluster matroid is a cluster matroid as well.

Let us recall this theorem for the classification of type An:

Theorem 5.4. Let A be a cluster algebra of type An. Then, its clusters
can be labeled by the diagonals of a convex (n+ 3)-gon so that

� clusters correspond to triangulations of the gon Pn+3 by noncros-
sing diagonals,

� mutations correspond to flips, and

� exchange matrices are given such that their counterparts are Cartan
matrices of type An.

Cluster variables labeled by different diagonals are distinct, so there are
altogether n(n+3)

2 cluster variables and 1
n+2

(
2n+2
n+1

)
seeds.

We use this theorem now to develop the following example:

Example 5.5. Let us focus on a cluster matroid of type A2. The set
of extended clusters can be discribed combinatorially using the follo-
wing graph, where the diagonals represent mutable variables and the
sides represent the frozen ones:
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It is easily seen that the contraction (or deletion) of a frozen variable,
for example the top side of each hexagon, will produce bases that can be
described using this graph, where again the sides are frozen and diagonals
are mutable:

Example 5.6. Now, using the previous example, we investigate what
happens if we contract a mutable variable. Let us start by mutating the
variable represented by the dotted diagonal below:
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Note that if e is a mutable variable, then we have

B(M/e) =
{
X ⊂ E \ e : M |e has a basis B such that X ∪B ∈ B(M)

}
=

{
X ⊂ E \ e : X ∪ e ∈ B(M)

}
=

{
B \ e : B ∈ B(M) and e ∈ B

}
.

This will easily imply that the set generating the bases of the new ma-
troid is the one that appears in the following graph:

Next, we mutate the variable represented by the dotted diagonal be-
low:

Using the same logic, it is not hard to see that the graph representing
the set that generates the bases is:
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Interestingly, one can see here that the mutation of different mutable
variables can give two different matroids. This is true because the size
in the graph after the first mutation is 5, while it is 4 in the second case.

Remark 5.7. Note that the cluster matroids can be described combina-
torially in a nice way, and this description can still be used to describe
their minors. However, one can easily see that the class of cluster ma-
troids is not closed under minors. One evidence is the difference of the
numbers that we got after contracting two different mutable variables in
the previous example.

6. Result summary and remarks

Remark 6.1. The study of cluster matroids reveals several key struc-
tural properties. While n-gon triangulations do not form a set of matroid
bases, this limitation is resolved by leveraging the algebraic independence
of extended clusters, defining a structure called a cluster matroid. Such a
matroid is connected precisely when only mutable variables are present.
Removing frozen variables, together with making the off-diagonal entries
nonzero, results in a uniform matroid, and the Laurent phenomenon en-
ables the construction of a representable matroid from cluster algebra
seeds. Notably, deleting or contracting any set of frozen variables always
yields another cluster matroid. However, contracting mutable variables
does not guarantee analogous consistency, as it may produce distinct ma-
troids. These results highlight the nuanced interplay between frozen and
mutable variables in shaping the matroidal framework of cluster struc-
tures. The following table summarizes key characteristics and results of
this paper.

7. Further destination

This paper is a starting point for a connection between matroids and
cluster algebras that can be interestingly deepened. We believe that this
can serve as a framework for a new shining path in an interesting area
of mathematics that has the potential to grow significantly if it receives
proper care from interested mathematicians. It would be very nice to see
both theories’ simultaneous development in algebraic and combinatorial
ways. The work of this paper has the flavor of what matroid theorists
usually do. Of course, much deeper work can be built on this, like study-
ing the minors, duals, representability, etc. Other interesting questions
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Question/Property Answer/Result

Do n-gon triangulations form
matroid bases?

No

Can this issue be resolved? Yes, define a cluster matroid via al-
gebraic independence

Connectedness condition Connected ⇐⇒ presence of mutable
variables only

Effect of removing frozen vari-
ables

Yields a uniform matroid if the off-
diagonal entries are nonzero

Deletion/contraction of frozen
variables

Always produces another cluster ma-
troid

Contraction of mutable vari-
ables

Not guaranteed; may generate dis-
tinct matroids

What about representable
matroids?

They can be produced using the Lau-
rent phenomenon

Table 1: Properties of cluster matroids

arise if we make changes to cluster algebras that build cluster matroids.
For example, one might wonder what happens if the ground field of the
cluster algebra is changed or if one of its exchange matrix entries is
changed. Moreover, the classification of this new class of matroid can be
studied and help in answering questions regarding algebraic matroids,
which have many unsolved problems yet.

It is worth mentioning that this is not the first work that relates both
matroid theory and cluster algebras together; there is another interesting
path that has a more cluster-algebra flavor. For instance, the reader
is referred to the work of Karp and Williams [7] that is followed by a
sequence of other significant papers of the same direction.
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