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On the structure of some Leibniz rings

Leonid A. Kurdachenko, Oleksandr O. Pypka,
and Mykola M. Semko

Abstract. In this paper, we study the fundamental proper-
ties of Leibniz rings. Special attention is given to the structure of
Leibniz rings whose additive group is “small”. The results obtained
illustrate a significant difference between the classes of Leibniz rings
and Lie rings.

Introduction

Lie rings are among the oldest objects of study among all non-associative
rings. Their linear analogue – Lie algebras – constitute one of the most
thoroughly investigated types of non-associative algebras. The theory of
Lie algebras is one of the most developed algebraic theories, rich in im-
portant and interesting results, many of which have become classical. In
turn, Lie algebras are a special case of Leibniz algebras. More precisely,
Lie algebras are exactly the anticommutative Leibniz algebras.

Leibniz algebras first appeared and were studied in the papers of
A. Blokh [3–5], in which they were called D-algebras. However, at that
time these papers did not attract much attention. Only two decades
later did real interest in Leibniz algebras arise. This happened thanks
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to the work of J.-L. Loday [26] (see also [25, Section 10.6]), who “re-
discovered” these algebras and used the term Leibniz algebras, since it
was Leibniz who discovered and proved the Leibniz rule for the diffe-
rentiation of functions. The main motivation for introducing Leibniz al-
gebras was the study of periodicity phenomena in algebraic K-theory.
Leibniz algebras turned out to be naturally related to several areas, such
as differential geometry, homological algebra, classical algebraic topology,
algebraic K-theory, loop spaces, noncommutative geometry, and so on.
Nowadays, the theory of Leibniz algebras is one of the actively develo-
ping areas of modern algebra. It should be noted that in recent years two
monographs [1,13] and numerous papers (see, e.g., [6–12, 14–24, 27,28])
have been published, presenting various results of this theory.

It should be noted that there is a very significant difference between
Lie rings and Lie algebras. The additive groups of Lie algebras, as well
as of Leibniz algebras, have a very simple structure: they are either
elementary abelian p-groups for some prime p, or torsion-free divisible
abelian groups. At the same time, the structure of the additive groups of
arbitrary Lie rings can be considerably more complicated. This explains
the fact that the theory of Lie rings is not as well developed as the theory
of Lie algebras. As for the theory of Leibniz rings, it is scarcely developed
at all – the number of papers devoted to Leibniz rings can be counted
on the fingers. This naturally raises the question of a systematic and
consistent development of the theory of Leibniz rings.

A set L with two binary operations + and [, ] is called a Leibniz ring
(more precisely, a left Leibniz ring) if it satisfies the following properties:

(i) L is an abelian group under addition;

(ii) [a, b+ c] = [a, b] + [a, c] and [a+ b, c] = [a, c] + [b, c];

(iii) [a, [b, c]] = [[a, b], c] + [b, [a, c]]

for all a, b, c ∈ L.

Dually, if instead of the last equality L satisfies

[a, [b, c]] = [[a, b], c]− [[a, c], b],

then L is called a right Leibniz ring.

Note that the classes of left Leibniz rings and right Leibniz rings are
distinct. The following simple example demonstrates this.
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Let L = ⟨a⟩⊕ ⟨b⟩ be the elementary abelian group of order p2, where
p is a prime. Define the operation [, ] on L by the following rule:

[a, a] = [a, b] = b, [b, a] = [b, b] = 0.

It is straightforward to check that L becomes a left Leibniz ring. Howe-
ver,

0 = [b, a] = [[a, a], a] ̸= [[a, a], a] + [a, [a, a]] = [a, b] = b.

Let R be a right Leibniz ring, and define [[a, b]] = [b, a]. Then we
have:

[[[[a, b]], c]] = [c, [b, a]] = [[c, b], a]− [[c, a], b]

= [[a, [[b, c]]]]− [[b, [[a, c]]]].

Thus, this substitution transforms a right Leibniz ring into a left Leibniz
ring. Similarly, one can construct a transfer from a left Leibniz ring to a
right Leibniz ring.

A ring L is called a symmetric Leibniz ring if it is both a left and
a right Leibniz ring. In what follows, we shall study in detail some
fundamental properties of Leibniz rings.

1. Basic concepts and results on Leibniz rings

Proposition 1. Let L be a left Leibniz ring. Then L is a symmetric
Leibniz ring if and only if [b, [a, c]] = −[[a, c], b] for all a, b, c ∈ L.

The assertion is almost obvious, so we omit the proof.

We prefer to work with left Leibniz rings. In this regard, we note the
following interesting property of Leibniz rings.

Proposition 2. Let L be a left Leibniz ring. Then [[a, b], c] = −[[b, a], c]
for all a, b, c ∈ L.

Proof. We have:

[a, [b, c]] = [[a, b], c] + [b, [a, c]],

and

[b, [a, c]] = [[b, a], c] + [a, [b, c]],

or equivalently,

[a, [b, c]] = [b, [a, c]]− [[b, a], c].
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It follows that

[[a, b], c] + [b, [a, c]] = [b, [a, c]]− [[b, a], c],

and hence
[[a, b], c] = −[[b, a], c].

The first important examples of Leibniz rings are Lie rings.

Proposition 3. Let L be a Lie ring. Then L is a Leibniz ring in which
[a, a] = 0 for every a ∈ L. Conversely, if L is a Leibniz ring in which
[a, a] = 0 for every a ∈ L, then L is a Lie ring.

Proof. Let L be a Lie ring. Then we have

[[a, b], c] + [[c, a], b] + [[b, c], a] = 0.

It follows that

[[a, b], c] = −[[c, a], b]− [[b, c], a]

= [a, [b, c]]− [[c, a], b]

= [a, [b, c]] + [b, [c, a]]

= [a, [b, c]]− [b, [a, c]].

Conversely, let L be a Leibniz ring in which [a, a] = 0 for all a ∈ L.
For arbitrary elements a, b ∈ L, we have

0 = [a+ b, a+ b] = [a, a] + [a, b] + [b, a] + [b, b] = [a, b] + [b, a].

It follows that [a, b] = −[b, a]. Then

0 = [[a, b], c]− [a, [b, c]] + [b, [a, c]]

= [[a, b], c] + [[b, c], a]− [[a, c], b]

= [[a, b], c] + [[b, c], a] + [[c, a], b]

for all a, b, c ∈ L. Hence L is a Lie ring.

Of course, Proposition 1 shows that every Lie ring is a symmetric
Leibniz ring. Note that the class of symmetric Leibniz rings is strictly
larger than the class of Lie rings. The following example demonstrates
this.
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Let L = ⟨a⟩⊕ ⟨b⟩ be the elementary abelian group of order p2, where
p is a prime. Define the operation [, ] on L by the following rule:

[a, a] = b, [b, a] = [b, b] = [a, b] = 0.

Let

x = k1a+ t1b, y = k2a+ t2b, z = k3a+ t3b,

0 ≤ k1, t1, k2, t2, k3, t3 < p. We have

[x, y] = [k1a+ t1b, k2a+ t2b]

= [k1a, k2a] + [k1a, t2b] + [t1b, k2a] + [t1b, t2b]

= k1k2[a, a] + k1t2[a, b] + t1k2[b, a] + t1t2[b, b]

= k1k2b.

Similarly,

[x, z] = k1k3b, [y, z] = k2k3b.

It follows that

[x, [y, z]] = [[x, y], z] = [y, [x, z]] = [[x, z], y] = 0,

so L is a symmetric Leibniz ring. However, [a, a] = b ̸= 0, so L is not a
Lie ring.

Let L be a Leibniz ring. As usual, a subset A of L is called a subring
of L if it is closed under both operations + and [, ], and is a Leibniz ring
with respect to the restrictions of these operations.

If A,B are the subgroups of the additive group of L, then [A,B]
denotes the subgroup of the additive group of L generated by all elements
[a, b], where a ∈ A, b ∈ B. In particular, a subgroup A of the additive
group of L is a subring of L if and only if [A,A] ≤ A.

A subring A of a Leibniz ring L is called a left (respectively, right)
ideal of L if [y, x] ∈ A (respectively, [x, y] ∈ A) for every x ∈ A and
y ∈ L. In other words, A is a left (respectively, right) ideal of L if and
only if [L,A] ≤ A (respectively, [A,L] ≤ A).

A subring A of L is called an ideal (more precisely, a two-sided ideal)
of L if it is both a left ideal and a right ideal; that is, [x, y], [y, x] ∈ A for
all x ∈ A, y ∈ L.

If A is an ideal of L, we can speak of the factor-ring (or quotient
ring) L/A. It is straightforward to verify that this factor-ring is also a
Leibniz ring.



84 On the structure of some Leibniz rings

A Leibniz ring L is called abelian (or trivial) if [a, b] = 0 for all
a, b ∈ L. In particular, every abelian Leibniz ring is a Lie ring.

Let L be a Leibniz ring. Define the lower central series of L

L = γ1(L) ≥ γ2(L) ≥ . . . γα(L) ≥ γα+1(L) ≥ . . . γδ(L),

by the following rule: γ1(L) = L, γ2(L) = [L,L], and, recursively,

γα+1(L) = [L, γα(L)]

for all ordinals α, and

γλ(L) =
⋂
µ<λ

γµ(L)

for all limit ordinals λ. The last term γδ(L) is called the lower hypocenter
of L. We have: γδ(L) = [L, γδ(L)].

If α = k is a positive integer, then γk(L) = [L, [L, [L, [. . . , L]]] . . .].

We note the following useful properties of subrings and ideals.

Proposition 4. Let L be a Leibniz ring. Then the following assertions
hold:

(i) if H is an ideal of L and S is a subring of L, then H + S is a
subring of L;

(ii) if H is an ideal of L, then [H,H] is an ideal of L;

(iii) if H is an ideal of L, then [L,H] is a subring of L;

(iv) if H is an ideal of L, then [H,L] is a subring of L;

(v) if H is an ideal of L, then [L,H] + [H,L] is an ideal of L;

(vi) if H is an ideal of L, then [γj(H), γk(H)] ≤ γj+k(H) for every pair
of positive integers j, k;

(vii) if H is an ideal of L, then γj(H) is an ideal of L for each positive
integer j; in particular, γj(L) is an ideal of L for each positive
integer j;

(viii) if H is an ideal of L, then γj(γk(H)) ≤ γjk(H) for all positive
integers j, k.
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Proof. (i) is obvious.
(ii) If u, v ∈ [H,H], then

u =
∑

1≤j≤n

[xj , yj ]

where xj , yj ∈ H, 1 ≤ j ≤ n,

v =
∑

1≤j≤t

[aj , bj ]

where aj , bj ∈ H, 1 ≤ j ≤ t. Consider an element [[xj , yj ], z] where
z ∈ L. We have:

[[xj , yj ], z] = [xj , [yj , z]]− [yj , [xj , z]].

Since H is an ideal of L, [yj , z], [xj , z] ∈ H, so that

[xj , [yj , z]], [yj , [xj , z]] ∈ [H,H].

In particular, if z = v, then [u, v] ∈ [H,H], which implies that [H,H] is
a subring of L. Further,

[z, [xj , yj ]] = [[z, xj ], yj ] + [xj , [z, yj ]].

Since H is an ideal of L, [z, xj ], [z, yj ] ∈ H, so that

[[z, xj ], yj ], [xj , [z, yj ]] ∈ [H,H].

It follows that [H,H] is an ideal of L.
(iii) If u, v ∈ [L,H], then

u =
∑

1≤j≤n

[xj , yj ]

where xj ∈ L, yj ∈ H, 1 ≤ j ≤ n,

v =
∑

1≤m≤t

[am, bm]

where am ∈ L, bm ∈ H, 1 ≤ m ≤ t. We have:

[u, v] =

 ∑
1≤j≤n

[xj , yj ],
∑

1≤m≤t

[am, bm]


=

∑
1≤j≤n; 1≤m≤t

[[xj , yj ], [am, bm]].
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Since H is an ideal, [am, bm] ∈ H for each 1 ≤ m ≤ t. It follows
that [[xj , yj ], [am, bm]] ∈ [L,H] for all 1 ≤ j ≤ n, 1 ≤ m ≤ t. Thus,
[u, v] ∈ [L,H].

(iv) If u, v ∈ [H,L], then

u =
∑

1≤j≤n

[xj , yj ],

where xj ∈ H, yj ∈ L, 1 ≤ j ≤ n,

v =
∑

1≤m≤t

[am, bm],

where am ∈ H, bm ∈ L, 1 ≤ m ≤ t. We have:

[u, v] =

 ∑
1≤j≤n

[xj , yj ],
∑

1≤m≤t

[am, bm]


=

∑
1≤j≤n; 1≤m≤t

[[xj , yj ], [am, bm]].

Since H is an ideal, [xj , yj ] ∈ H for each 1 ≤ j ≤ n. It follows that
[[xj , yj ], [am, bm]] ∈ [H,L] for all 1 ≤ j ≤ n, 1 ≤ m ≤ t. Thus, [u, v] ∈
[L,H].

(v) Let h1, h2, h3, h4 ∈ H, x1, x2, x3, x4 ∈ L. Then we have:

[[h1, x1] + [x2, h2], [h3, x3] + [x4, h4]]

= [[h1, x1], [h3, x3]] + [[h1, x1], [x4, h4]] + [[x2, h2], [h3, x3]]

+[[x2, h2], [x4, h4]] = y.

Since H is an ideal, y ∈ [H,L] + [L,H]. It follows that [L,H] + [H,L] is
a subring of L. If u ∈ [L,H] (respectively, v ∈ [H,L]), then

u =
∑

1≤j≤n

[xj , yj ]

where xj ∈ L, yj ∈ H, 1 ≤ j ≤ n (respectively,

v =
∑

1≤m≤t

[am, bm]

where am ∈ H, bm ∈ L, 1 ≤ m ≤ t).
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Consider the elements [[xj , yj ], z] and [[am, bm], z], where z ∈ L. Since
H is an ideal, [xj , yj ], [am, bm] ∈ H, so that [[xj , yj ], z], [[am, bm], z] ∈
[H,L]. Similarly, [z, [xj , yj ]], [z, [am, bm]]∈ [L,H]. It follows that [u+v, z],
[z, u+v] ∈ [L,H] + [H,L], which proves that [L,H] + [H,L] is an ideal
of L.

(vi) We will use the induction on j. For j = 1, the result follows
from definition. Now, suppose that j > 1 and we have already proved
the inclusion

[γm(H), γk(H)] ≤ γm+k(H)

for all m < j. We have: γj(H) = [H, γj−1(H)]. Choose the arbitrary
elements x ∈ H, y ∈ γj−1(H), z ∈ γk(H). We have

[[x, y], z] = [x, [y, z]]− [y, [x, z]].

Since [y, z] ∈ [γj−1(H), γk(H)], the induction hypothesis implies that
[y, z] ∈ γj−1+k(H), so that [x, [y, z]] ∈ [H, γj−1+k(H)] = γj+k(H). Fur-
ther,

[y, [x, z]] ∈ [γj−1(H), [H, γk(H)]] = [γj−1(H), γk+1(H)].

By the induction hypothesis,

[γj−1(H), γk+1(H)] ≤ γj−1+k+1(H) = γj+k(H).

Hence [y, [x, z]] ∈ γj+k(H), which proves the inclusion

[γj(H), γk(H)] ≤ γj+k(H).

(vii) Again, we proceed by induction on j. For j = 1, the result
follows directly from the definition. Assume now that j > 1 and that
γm(H) is an ideal of L for all m < j. We have: γj(H) = [H, γj−1(H)].
Choose the arbitrary elements x ∈ H, y ∈ γj−1(H), z ∈ L. We have

[[x, y], z] = [x, [y, z]]− [y, [x, z]].

By the induction hypothesis, [y, z] ∈ γj−1(H), so that

[x, [y, z]] ∈ [H, γj−1(H)] = γj(H).

Since H is an ideal of L, [x, z] ∈ H, so that

[y, [x, z]] ∈ [γj−1(H), H] = [γj−1(H), γ1(H)] ≤ γj(H).
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Hence [[x, y], z] ∈ γj(H). Further,

[z, [x, y]] = [[z, x], y] + [x, [z, y]].

Since H is an ideal, [z, x] ∈ H, so that [[z, x], y] ∈ [H, γj−1(H)] =
γj(H). By the induction hypothesis, [z, y] ∈ γj−1(H), so that [x, [z, y]] ∈
[H, γj−1(H)] = γj(H).

(viii) We will use the induction on j. For j = 1, we have γ1(γk(H)) =
γk(H), so the statement is trivial. Assume now that j > 1 and that the
inclusion γm(γk(H)) ≤ γmk(H) holds for all m < j. Then

γj(γk(H)) = [γk(H), γj−1(γk(H))] ≤ [γk(H), γjk−k(H)].

Using (vi), we obtain the inclusion

γj(γk(H)) ≤ γk+jk−k(H) = γjk(H).

By Proposition 4, [L,L] is an ideal of a Leibniz ring L; this ideal is
called the derived ideal of L.

We remark that if A,B are ideals of a Leibniz ring L, then, in general,
[A,B] need not be an ideal. For Leibniz algebras, this was shown by
D. Barnes [2], and it is not hard to construct a similar example for
Leibniz rings.

Every Leibniz ring has one specific ideal. Denote by Leib(L) the
subgroup of the additive group of L generated by the elements [a, a],
a ∈ L. From this definition, it follows that the derived ideal [L,L]
contains Leib(L).

Proposition 5. Let L be a Leibniz ring. Then Leib(L) is an ideal of L
such that L/Leib(L) is a Lie ring. Moreover, if H is an ideal of L such
that L/H is a Lie ring, then Leib(L) ≤ H.

Proof. We have
[a, [a, x]] = [[a, a], x] + [a, [a, x]],

so
[[a, a], x] = 0.

Furthermore,

[x+ [a, a], x+ [a, a]] = [x, x] + [x, [a, a]]

+ [[a, a], x] + [[a, a], [a, a]]

= [x, x] + [x, [a, a]].
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It follows that

[x, [a, a]] = [x+ [a, a], x+ [a, a]]− [x, x] ∈ Leib(L).

Hence Leib(L) is an ideal of L.

Put K = Leib(L). Then in factor-ring L/K we have

[a+K, a+K] = [a, a] +K = K

for each a ∈ L. By Proposition 3, it follows that L/K is a Lie ring.

Now, let H be an ideal of L such that L/H is a Lie ring. Then

H = [a+H, a+H] = [a, a] +H

for every a ∈ L, which means [a, a] ∈ H. Thus Leib(L) ≤ H.

The ideal Leib(L) is called the Leibniz kernel of a ring L. Note
the following important property of Leib(L), which has been proved in
Proposition 5.

Proposition 6. Let L be a Leibniz ring. Then [Leib(L), L] = ⟨0⟩. In
particular, Leib(L) is an abelian ideal.

Let A be an additive abelian group and n a positive integer. Define

Λn(A) = {a ∈ A| na = 0}.

If A is an additive abelian p-group, where p is a prime, then define

Ωn(A) = {a ∈ A| pna = 0}.

Proposition 7. Let L be a Leibniz ring. Then Λn(L) is an ideal of L
for every positive integer n.

Proof. Let a ∈ Λn(A) and x ∈ L be arbitrary. Since na = 0, we have

n[a, x] = [na, x] = 0 = [x, na] = n[x, a].

Thus [a, x], [x, a] ∈ Λn(L), and therefore Λn(L) is an ideal of L.

Corollary 1. Let L be a Leibniz ring, p a prime, and P the maximal
p-subgroup of the additive group of L. Then Ωn(P ) is an ideal of L for
every positive integer n.
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Corollary 2. Let L be a Leibniz ring and p a prime. Then the maximal
p-subgroup of the additive group of L is an ideal of L.

Corollary 3. Let L be a Leibniz ring and π a set of primes. Then the
maximal π-subgroup of the additive group of L is an ideal of L.

Corollary 4. Let L be a Leibniz ring. Then the periodic part of the
additive group of L is an ideal of L.

Let π be the set of primes and S the maximal π-subgroup of the
additive group of a Leibniz ring L. By Corollary 3, S is an ideal of L.
We will say that S is the maximal π-ideal of L.

Corollary 5. Let L be a Leibniz ring and T the periodic part of the
additive group of L. Then

T =
⊕

p∈Π(L)

Sp,

where Sp is the maximal p-ideal of L.

Proposition 8. Let L be a Leibniz ring. Then for every positive integer
n, nL = ⟨na| a ∈ L⟩ is an ideal of L.

Proof. Let a ∈ nL and x ∈ L be arbitrary. Then a = nb for some b ∈ L.
We have

[a, x] = [nb, x] = n[b, x] ∈ nL,

[x, a] = [x, nb] = n[x, b] ∈ nL.

Thus [a, x], [x, a] ∈ nL, and therefore nL is an ideal of L.

Let L be a Leibniz ring and put

α(L) = {a ∈ L| [x, a] = −[a, x] for all x ∈ L}.

The subset α(L) is called the anticenter of the ring L.

Proposition 9. Let L be a Leibniz ring. Then the anticenter α(L) of L
is an ideal of L.

Proof. Let a, b ∈ α(L) and x ∈ L be arbitrary. Then

[a− b, x] = [a, x]− [b, x] = −[x, a]+ [x, b] = −([x, a]− [x, b]) = −[x, a− b].
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Thus a− b ∈ α(L), and hence α(L) is a subgroup of the additive group
of L. Now let y ∈ L. Then

[[a, y], x] = [a, [y, x]]− [y, [a, x]]

= −[[y, x], a]− [y, [a, x]]

= −[y, [x, a]] + [x, [y, a]]− [y, [a, x]]

= −[y, [x, a]]− [x, [a, y]] + [y, [x, a]]

= −[x, [a, y]].

It follows that [a, y] ∈ α(L). Since [y, a] = −[a, y] ∈ α(L), we conclude
that α(L) is an ideal of L.

Proposition 1 implies the following

Corollary 6. Let L be a symmetric Leibniz ring. Then the anticenter
of L contains [L,L]. In particular, if L = [L,L], then L is a Lie ring.

Let L be a Leibniz ring and put

ζ left(L) = {x ∈ L| [x, y] = 0 for all y ∈ L},
ζright(L) = {x ∈ L| [y, x] = 0 for all y ∈ L},

ζ(L) = {x ∈ L| [x, y] = [y, x] = 0 for all y ∈ L}.

The subset ζ left(L) is called the left center of L, the subset ζright(L) is
called the right center of L, and the subset ζ(L) is called the center of L.

Proposition 10. Let L be a Leibniz ring. Then ζright(L) is a subring of
L, while ζ left(L) and ζ(L) are ideals of L.

Proof. The fact that ζ left(L) and ζright(L) are subrings of L is almost
obvious.

Let x, y ∈ L and z ∈ ζ left(L). Then

[[z, x], y] = [0, y] = 0

and
[[x, z], y] = [x, [z, y]]− [z, [x, y]] = [x, 0]− 0 = 0.

These equalities show that ζ left(L) is an ideal of L. The fact that ζ(L)
is an ideal of L is clear.

We note that, in general, the left and right centers need not coincide.
Concrete examples can be found in [13, Chapter 1].
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Proposition 11. Let L be a symmetric Leibniz ring. Then ζright(L),
ζ left(L), and ζ(L) are ideals of L, and moreover

ζright(L)/ζ(L) ≤ ζ(L/ζ(L)),

ζ left(L)/ζ(L) ≤ ζ(L/ζ(L)).

Proof. Let a ∈ ζright(L), x, y ∈ L. Then

[x, a] = 0 ∈ ζright(L).

Furthermore,

[y, [a, x]] = [[y, a], x] + [a, [y, x]] = [a, [y, x]].

By Proposition 1 we have

[a, [y, x]] = −[[y, x], a] = 0,

and hence [a, x] ∈ ζright(L). Thus ζright(L) is an ideal of L.
Let b = [a, x]. From the above we know that b ∈ ζright(L), so [y, b] = 0

for every y ∈ L. Since b ∈ [L,L], Corollary 6 implies that

[b, y] = −[y, b] = 0.

Therefore b ∈ ζ(L). In other words,

[ζright(L), L] ≤ ζ(L).

On the other hand,

[L, ζright(L)] = ⟨0⟩ ≤ ζ(L)

which implies that

ζright(L)/ζ(L) ≤ ζ(L/ζ(L)).

By similar arguments we obtain that

ζ left(L)/ζ(L) ≤ ζ(L/ζ(L)).

Consider now the structure of Leibniz rings whose additive groups are
“small”. As will be seen, these results already demonstrate how much
more complicated and diverse the situation with Leibniz rings is.
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2. Structure of Leibniz rings with cyclic additive group

Let L be a Leibniz ring. The order of an element x, regarded as an
element of the additive group of L, is called the additive order of x.

Suppose that L is a Leibniz ring whose additive group is cyclic, and
let a be a generator of the additive group of L. Then

L = {ka| k ∈ Z}.

If L is a Lie ring, then the equality [a, a] = 0 implies that

[ka, ta] = kt[a, a] = 0.

Thus, in this case, L is a ring with zero multiplication.
Therefore, suppose that L is not a Lie ring. Then Leib(L) = K is a

non-zero ideal of L. Since K is an abelian ideal by Proposition 6, we have
K ̸= L. The additive group of K is generated by an element kg for some
positive integer k. The fact that kg ∈ K, together with Proposition 6,
implies that [kg, g] = 0. It follows that

0 = [kg, g] = k[g, g].

In other words, the element [g, g] has finite order in the additive group
of L. Thus we again obtain that [g, g] = 0.

Suppose now that the additive group of L is a finite cyclic group. By
Corollary 5, we may assume that the additive group of L is a p-group
for some prime p. Let |L| = pm for some positive integer m. Since
⟨0⟩ ≠ K ̸= L, we have ptg ∈ K for some 0 < t < m. Then

0 = [ptg, g] = pt[g, g].

It follows that the element [g, g] has additive order ps for some s ≤ t.
Let x, y ∈ L. Then x = kg, y = jg for some non-negative integers

k, j. We have
[x, y] = [kg, jg] = kj[g, g].

Hence [L,L] ≤ ⟨[g, g]⟩. On the other hand, since [g, g] ∈ [L,L], we obtain
⟨[g, g]⟩ ≤ [L,L]. Thus

[L,L] = ⟨[g, g]⟩.

The additive factor-group ⟨g⟩/⟨[g, g]⟩ has order

pm

ps
= pm−s.
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Therefore, [g, g] = pm−sg and

0 = [[g, g], g] = [pm−sg, g] = pm−s[g, g] = [g, pm−sg] = [g, [g, g]].

It follows that

[[g, g], kg] = k[[g, g], g] = 0

and

[kg, [g, g]] = k[g, [g, g]] = 0.

These equalities show that [g, g] ∈ ζ(L) and hence ⟨[g, g]⟩ ≤ ζ(L).
Moreover, since pm−s[g, g] = 0, it follows that ps divides pm−s. Hence
s ≤ m− s, i.e. 2s ≤ m.

It is not hard to see that x ∈ ζ left(L) if and only if [x, g] = 0. Let
x = jg, where j = ptr and p does not divide r. Then

0 = [x, g] = [jg, g] = j[g, g] = jpm−sg = ptrpm−sg = rpm−s+tg.

It follows thatm−s+t ≥ m, hence t ≥ s. Thus we obtain ζ left(L) = ⟨psg⟩.
By the same arguments, ζright(L) = ⟨psg⟩ and hence ζ(L) = ⟨psg⟩.

Conversely, suppose that L = ⟨g⟩ is an additive cyclic group of order
pm, where m is a positive integer. Put c = pm−sg, 2s ≤ m. Then the
element c has order ps. Define a multiplication [, ] on L by the rule: if
x = n1g, y = n2g with n1, n2 are non-negative integers, then

[x, y] = n1n2c.

In particular, [g, g] = c. Moreover,

[g, c] = [g, pm−sg] = pm−s[g, g] = pm−sc = 0,

since m− s ≥ s. Similarly,

0 = pm−sc = pm−s[g, g] = [pm−sg, g] = [c, g].

Thus c ∈ ζ(L). Consequently, [x, y] ∈ ζ(L) for all x, y ∈ L. If x, y, z ∈ L
are arbitrary, then by the above observations

[x, y], [x, z], [y, z] ∈ ζ(L),

so that

0 = [x, [y, z]] = [[x, y], z] + [y, [x, z]] = 0.
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It follows that L is a Leibniz ring. Thus we obtain the following type of
Leibniz ring:

L1 = ⟨g⟩,
|g| = pm, [g, g] = c, |c| = ps, where 2s ≤ m, [g, c] = [c, g] = 0.

Here

Leib(L1) = [L1, L1] = ⟨pm−sg⟩, ζright(L1) = ζ left(L1) = ζ(L1) = ⟨psg⟩.

3. Structure of Leibniz rings whose additive group is ele-
mentary abelian of order p2

Let L be a Leibniz ring and suppose that the additive group of L is an
elementary abelian p-group of order p2. Assume that L is not a Lie ring.
As above, we then have Leib(L) = K is a non-zero ideal of L, and K ̸= L.
It follows that K has prime order p. Since L/K is a Lie ring generated
by one element, we obtain that L/K is a ring with zero multiplication.
Because L is not a Lie ring, there exists an element a ∈ L such that
[a, a] ̸= 0. Put

[a, a] = b.

Then b ∈ K, hence K = ⟨b⟩. With this choice we have [b, a] = 0. Since
K is an ideal, there exists 0 ≤ k < p such that [a, c] = kc. Suppose
k ̸= 0, and let t be a positive integer such that

kt ≡ 1(mod p).

Put c = ta. Then

[c, b] = [ta, b] = t[a, b] = tkb = b.

Also,

[c, c] = t2[a, a] = t2b = d,

and

[c, d] = [c, t2b] = t2[c, b] = t2b = d.

Thus, with this choice we have

L = ⟨c⟩ ⊕ ⟨d⟩.
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Hence we obtain the following two types of Leibniz rings:

L2 = ⟨a⟩ ⊕ ⟨b⟩,
pa = pb = 0, [a, a] = b, [b, a] = [a, b] = [b, b] = 0.

Here

Leib(L2) = [L2, L2] = ζ(L2) = ⟨b⟩.

The second type is the following:

L3 = ⟨c⟩ ⊕ ⟨d⟩,
[c, c] = [c, d] = d, pc = pd = 0, [d, c] = [d, d] = 0.

Here

Leib(L3) = [L3, L3] = ζ left(L3) = ⟨d⟩, ζright(L3) = ζ(L3) = ⟨0⟩.

4. Structure of Leibniz rings whose additive group is a
direct sum of a cyclic subgroup of order p2 and a sub-
group of order p

Let L be a Leibniz ring and suppose that the additive group of L has
order p3 and is a direct sum of two cyclic subgroups:

L = ⟨a⟩ ⊕ ⟨b⟩,

where the element a has additive order p2, and b has additive order p. As
before, we assume that L is not a Lie ring. Then, as above, Leib(L) = K
is a non-zero ideal of L and K ̸= L.

Suppose first that K has prime order p. Then

K = ⟨u⟩, u = t1a+ t2b, 0 ≤ t1, t2 < p.

If t2 ̸= 0, then ⟨a⟩ ∩ ⟨u⟩ = ⟨0⟩ and hence

L = ⟨a⟩ ⊕ ⟨u⟩.

Therefore, without loss of generality, we may assume that u = b.
It is not hard to prove that a Lie ring whose additive group is cyclic

has zero multiplication. It follows that

[a, a], [a, b] ∈ ⟨b⟩.
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Without loss of generality, we may assume that [a, a] = b and [a, b] = αb
where 0 ≤ α < p. If α = 0, then we obtain the following Leibniz ring:

L4 = ⟨a⟩ ⊕ ⟨b⟩,
p2a = pb = 0, [a, a] = b, [b, a] = [a, b] = [b, b] = 0.

Here

Leib(L4) = [L4, L4] = ζ left(L4) = ζright(L4) = ζ(L4) = ⟨b⟩.

Conversely, since L4/ζ(L4) is abelian, it is not hard to see that this ring
is indeed a Leibniz ring.

Suppose now that α ̸= 0. Let β be a positive integer such that
αβ ≡ 1(mod p), and put c = βa. Then

[c, b] = [βa, b] = β[a, b] = βαb = b.

We also have
[c, c] = β2[a, a] = β2b = d,

and
[c, d] = [c, β2b] = β2[c, b] = β2b = d.

Thus we obtain the following type of Leibniz ring:

L5 = ⟨c⟩ ⊕ ⟨d⟩,
p2c = pd = 0, [c, c] = [c, d] = d, [d, c] = [d, d] = 0.

Here

Leib(L5) = [L5, L5] = ζ left(L5) = ⟨d⟩, ζright(L5) = ζ(L5) = ⟨0⟩.

Conversely, we show that such a ring really is a Leibniz ring. Let
x, y, z be arbitrary elements of L5,

x = λ1c+ µ1d,

y = λ2c+ µ2d,

z = λ3c+ µ3d,

0 ≤ λ1, λ2, λ3 < p2 and 0 ≤ µ1, µ2, µ3 < p. We have

[x, y] = [λ1c+ µ1d, λ2c+ µ2d]

= λ1λ2[c, c] + µ1λ2[d, c] + λ1µ2[c, d] + µ1µ2[d, d]

= λ1λ2d+ λ1µ2d = (λ1λ2 + λ1µ2)d,

[x, z] = (λ1λ3 + λ1µ3)d,

[y, z] = (λ2λ3 + λ2µ3)d.
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Therefore,

[x, [y, z]] = [λ1c+ µ1d, (λ2λ3 + λ2µ3)d]

= λ1(λ2λ3 + λ2µ3)[c, d]

= λ1λ2(λ3 + µ3)d,

[[x, y], z] = [(λ1λ2 + λ1µ2)d, λ3c+ µ3d]

= 0,

[y, [x, z]] = [λ2c+ µ2d, (λ1λ3 + λ1µ3)d]

= λ2(λ1λ3 + λ1µ3)[c, d]

= λ2λ1(λ3 + µ3)d.

Hence
[x, [y, z]] = [[x, y], z] + [y, [x, z]],

which shows that L5 indeed is a Leibniz ring.
Suppose now that K has order p2. Then either K is cyclic or K is

elementary abelian. Assume that K is cyclic. Without loss of generality,
we may suppose that K = ⟨a⟩. In this case we have

[b, b], [b, a] ∈ K.

Since
0 = [0, a] = [pb, a] = p[b, a],

it follows that p[b, a] = 0. Similarly, 0 = p[b, b]. It is not hard to show
that in this case [L,L] ≤ pK. Hence |[L,L]| ≤ p. On the other hand,
since K ≤ [L,L], we obtain a contradiction. This contradiction shows
that additive group of K must be elementary abelian.

Proposition 8 implies that pL is an ideal of L. We note that pL =
⟨pa⟩. Then |pL| = p, in particular, pL ̸= K. It follows that L/pL is not
a Lie ring. In particular, Leib(L/pL) ̸= L/pL, so that |Leib(L/pL)| = p.
The inclusion K/pL ≤ Leib(L/pL) implies that

K/pL = Leib(L/pL).

By the argument above, K does not contain ⟨a⟩. Therefore, without loss
of generality, we may assume that

K/pL = (⟨b⟩+ pL)/pL,

so that
K = ⟨pa⟩ ⊕ ⟨b⟩.
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Put c = pa. We have
0 = p[a, a] = [a, pa].

Since [b, c] = [c, b] = 0, it follows that c ∈ ζ(L).
Suppose that [a, b] = 0. Let x be an arbitrary element of L,

x = λa+ µb,

0 ≤ λ < p2, 0 ≤ µ < p. Then

[x, x] = [λa+ µb, λa+ µb]

= λ2[a, a] + λµ[a, b] + µλ[b, a] + µ2[b, b]

= λ2[a, a] + λµ[a, b] = λ2[a, a].

Thus, in this case K = ⟨[a, a]⟩ is cyclic. This contradicts the assumption
that K is elementary abelian. Therefore, we conclude that [a, b] ̸= 0.

Let [a, b] = βb + γc, where 0 < β < p, 0 ≤ γ < p. Without loss
of generality we may suppose that β = 1 (otherwise we replace b with
β−1b). Put a2 = b+ γc. Then

[a, a2] = [a, b+ γc] = [a, b] + γ[a, c] = [a, b] = b+ γc = a2.

The equalities

[a2, a] = [a2, b] = [b, a2] = [a2, a2] = 0

shows that ⟨a2⟩ is an ideal of L. The additive group of the factor-ring
L/⟨a2⟩ is cyclic of order p2. On the other hand, since ⟨a2⟩ ̸= K, the
factor-ring L/⟨a2⟩ is not a Lie ring. Taking into account the structure
of a Leibniz ring with cyclic additive group (described above), we obtain
[a, a] = c+ β1a2. Now put a1 = a− β1a2. Then

[a1, a1] = [a− β1a2, a− β1a2] = [a, a]− β1[a, a2] = c+ β1a2 − β1a2 = c.

Note also that
pa1 = p(a− β1a2) = pa = c.

Thus we come to the following type of Leibniz ring:

L6 = ⟨a1⟩ ⊕ ⟨a2⟩,
p2a1 = pa2 = 0, [a1, a1] = pa1, [a1, a2] = a2, [a2, a1] = [a2, a2] = 0,

[pa1, a1] = [a1, pa1] = [pa1, a2] = [a2, pa1] = [pa1, pa1] = 0.
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5. Structure of Leibniz rings whose additive group is the
direct sum of two infinite cyclic subgroups

Let L be a Leibniz ring and suppose that the additive group of L is a
direct sum of two infinite cyclic subgroups. Again, we assume that L is
not a Lie ring. Then, as above, Leib(L) = K is a non-zero ideal of L and
K ̸= L.

Denote by T/K the periodic part of the additive group of L/K. By
Corollary 4, T is an ideal of L. If we suppose that T = L, then we obtain
L = ζright(L). In particular, this means that L is abelian, which gives a
contradiction. Therefore, this contradiction shows that T ̸= L.

Suppose that T ̸= K and let u ∈ T with u ̸∈ K. Then there exists
a positive integer n such that nu ∈ K. It follows that [nu, x] = 0 for
each x ∈ L. Hence 0 = [nu, x] = n[u, x]. Since the additive group of
L is torsion-free, we obtain [u, x] = 0. This holds for every x ∈ L, and
therefore u ∈ ζ left(L). Thus, T ≤ ζ left(L). If we assume that T ̸= ζ left(L),
then ζ left(L) has finite index in L. Using the above arguments, this leads
to a contradiction. Hence, we conclude that T = ζ left(L).

Since r0(L) = 2 and T ̸= ⟨0⟩, the additive group of L/T is infinite
cyclic. In this case we obtain L = T ⊕ ⟨b⟩ for some element b. As shown
above, the factor-ring L/T is abelian. Hence [L,L] ≤ T .

Finally, the equality r0(L) = 2 implies that the additive group of T
is infinite cyclic, that is, T = ⟨a⟩ for some a ∈ L.

If T = K, then as above we obtain that K = ⟨a⟩ and the additive
group of L/K is infinite cyclic. Hence,

L = ⟨a⟩ ⊕ ⟨b⟩.

From the previous arguments it follows that in this case K = ζ left(L).

We have [b, b] = βa, [b, a] = αa for some positive integers α, β. The
equality ⟨a⟩ = ζ left(L) implies that [a, a] = [a, b] = 0. Let x, y, z ∈ L be
arbitrary elements,

x = λ1a+ µ1b,

y = λ2a+ µ2b,

z = λ3a+ µ3b.
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Then

[x, y] = [λ1a+ µ1b, λ2a+ µ2b]

= λ1λ2[a, a] + µ1λ2[b, a] + λ1µ2[a, b] + µ1µ2[b, b]

= µ1λ2[b, a] + µ1µ2[b, b] = µ1λ2αa+ µ1µ2βa

= (µ1λ2α+ µ1µ2β)a,

[x, z] = (µ1λ3α+ µ1µ3β)a,

[y, z] = (µ2λ3α+ µ2µ3β)a.

Hence,

[x, [y, z]] = [λ1a+ µ1b, (µ2λ3α+ µ2µ3β)a]

= [µ1b, (µ2λ3α+ µ2µ3β)a]

= µ1(µ2λ3α+ µ2µ3β)[b, a]

= αµ1(µ2λ3α+ µ2µ3β)a,

[[x, y], z] = [(µ1λ2α+ µ1µ2β)a, λ3a+ µ3b]

= 0,

[y, [x, z]] = [λ2a+ µ2b, (µ1λ3α+ µ1µ3β)a]

= [µ2b, (µ1λ3α+ µ1µ3β)a]

= µ2(µ1λ3α+ µ1µ3β)[b, a]

= αµ2(µ1λ3α+ µ1µ3β)a.

Hence

[x, [y, z]] = [[x, y], z] + [y, [x, z]].

Thus we arrive at the following type of Leibniz ring:

L7 = ⟨a1⟩ ⊕ ⟨a2⟩,
where the additive orders of a1 and a2 are infinite,

[a1, a1] = [a1, a2] = 0, [a2, a1] = αa1, [a2, a2] = βa1.

Here

ζ left(L7) = ⟨a1⟩, ζright(L7) = ζ(L7) = ⟨0⟩,
Leib(L7) = ⟨βa1⟩, [L7, L7] = ⟨αa1⟩+ ⟨βa1⟩.
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6. Structure of Leibniz rings whose additive group is the
direct sum of infinite and finite cyclic subgroups

Let L be a Leibniz ring, and suppose that the additive group of L is a
direct sum of one infinite cyclic subgroup and one finite cyclic subgroup.
Again, we assume that L is not a Lie ring. As above, Leib(L) = K is a
non-zero ideal of L, and K ̸= L.

Let T be the periodic part of the additive group of L. By Corollary 4,
T is an ideal of L. The additive group of the factor-ring L/T is infinite
cyclic. By the arguments proved above, this factor-ring is abelian. It
follows that [L,L] ≤ T and K ≤ T . Put T = ⟨a⟩. Since the additive
group of L/T is infinite cyclic, L = T ⊕⟨b⟩ for some element b of infinite
additive order. By our assumptions, T = ⟨a⟩ for some element a. Let
|a| = k. The inclusion K ≤ ⟨a⟩ implies that [b, b] = βa for some integer
β, 0 ≤ β < k. Let GCD(β, k) = d and β = β1β2 where GCD(β2, k) = 1.
Therefore, without loss of generality, we may assume that β is a divisor
of k.

We have [a, a] = σa, [b, a] = α1a, [a, b] = α2a, [b, b] = βa, where
σ, α1, α2, β are integers satisfying 0 ≤ σ, α1, α2, β ≤ k.

Suppose first that σ = α1 = α2 = 0, that is ⟨a⟩ ≤ ζ(L). Note that
β ̸= k, otherwise L would be abelian, contradicting our assumptions. Let
x = λ1a+ µ1b be an arbitrary element of L. We have

[x, b] = [λ1a+ µ1b, b] = λ1[a, b] + µ1[b, b] = µ1βa,

[b, x] = [b, λ1a+ µ1b] = λ1[b, a] + µ1[b, b] = µ1βa.

We note that x ∈ ζ(L) if and only if [x, b] = [b, x] = 0. It follows that
µ1βa = 0, hence µ1 = k/β. Therefore, in this case we obtain

ζ(L) = {λa+ µ(k/β)b| λ, µ are integers}.

Thus we arrive at the following type of Leibniz ring:

L8 = ⟨a1⟩ ⊕ ⟨a2⟩,
the additive order of a1 is finite, |a1| = k,

the additive order of a2 is infinite,

[a1, a1] = [a1, a2] = [a2, a1] = 0, [a2, a2] = βa1,

where β is a divisor of k.
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Here

⟨a1⟩ = ζ(L8) = ⟨a1⟩ ⊕ ⟨(k/β)a2⟩ = ζ left(L8) = ζright(L8),

Leib(L8) = ⟨βa1⟩ = [L8, L8].

Suppose now that the center of L does not contain ⟨a⟩. By the arguments
above, in this case we have [a, [a, a]] = 0 = [[a, a], a]. We have

[a, [a, a]] = [a, σa] = σ[a, a] = σ2a,

so that σ2 ≡ 0(mod k). Furthermore, we have

0 = [[a, a], b] = [σa, b] = σ[a, b] = σα2a, so that α2σ ≡ 0(mod k),

0 = [[b, b], b] = [βa, b] = β[a, b] = βα2a, so that α2β ≡ 0(mod k),

0 = [[b, b], a] = [βa, a] = β[a, a] = βσa, so that βσ ≡ 0(mod k),

and

[a, [b, b]] = [[a, b], b] + [b, [a, b]]

= [α2a, b] + [b, α2a] = α2[a, b] + α2[b, a]

= α2
2a+ α2α1a, so that α2

2 + α2α1 ≡ 0(mod k),

[a, [b, b]] = [a, βa] = β[a, a] = βσa,

[b, [a, a]] = [[b, a], a] + [a, [b, a]] = [α1a, a] + [a, α1a] = 2σα1a,

[b, [a, a]] = [b, σa] = σ[b, a] = σα1a, so that α1σ ≡ 0(mod k).

Conversely, suppose that L = ⟨a⟩⊕⟨b⟩ where |a| = k and b has infinite
additive order. Define the multiplication [, ] on L by the following rules:

[a, a] = σa, [b, a] = α1a, [a, b] = α2a, [b, b] = βa,

where σ, α1, α2, β are integers with 0 ≤ σ, α1, α2, β ≤ k. Assume that
the following congruences are satisfied:

σ2 ≡ 0(mod k), α2σ ≡ 0(mod k), α2β ≡ 0(mod k),

βσ ≡ 0(mod k), α2
2 + α2α1 ≡ 0(mod k), α1σ ≡ 0(mod k).

Let x, y, z ∈ L be arbitrary elements,

x = λ1a+ µ1b, y = λ2a+ µ2b, z = λ3a+ µ3b.
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Then

[x, y] = [λ1a+ µ1b, λ2a+ µ2b]

= λ1λ2[a, a] + µ1λ2[b, a] + λ1µ2[a, b] + µ1µ2[b, b]

= λ1λ2σa+ µ1λ2α1a+ λ1µ2α2a+ µ1µ2βa

= (λ1λ2σ + µ1λ2α1 + λ1µ2α2 + µ1µ2β)a,

[x, z] = (λ1λ3σ + µ1λ3α1 + λ1µ3α2 + µ1µ3β)a,

[y, z] = (λ2λ3σ + µ2λ3α1 + λ2µ3α2 + µ2µ3β)a.

Therefore,

[x, [y, z]] = [λ1a+ µ1b, (λ2λ3σ + µ2λ3α1 + λ2µ3α2 + µ2µ3β)a]

= λ1(λ2λ3σ + µ2λ3α1 + λ2µ3α2 + µ2µ3β)[a, a]

+ µ1(λ2λ3σ + µ2λ3α1 + λ2µ3α2 + µ2µ3β)[b, a]

= λ1(λ2λ3σ + µ2λ3α1 + λ2µ3α2 + µ2µ3β)σa

+ µ1(λ2λ3σ + µ2λ3α1 + λ2µ3α2 + µ2µ3β)α1a

= (µ1µ2λ3α
2
1 + µ1λ2µ3α2α1 + µ1µ2µ3βα1)a,

[[x, y], z] = [(λ1λ2σ + µ1λ2α1 + λ1µ2α2 + µ1µ2β)a, λ3a+ µ3b]

= λ3(λ1λ2σ + µ1λ2α1 + λ1µ2α2 + µ1µ2β)[a, a]

+ µ3(λ1λ2σ + µ1λ2α1 + λ1µ2α2 + µ1µ2β)[a, b]

= λ3(λ1λ2σ + µ1λ2α1 + λ1µ2α2 + µ1µ2β)σa

+ µ3(λ1λ2σ + µ1λ2α1 + λ1µ2α2 + µ1µ2β)α2a

= (λ3λ1λ2σ
2 + λ3µ1λ2α1σ + λ3λ1µ2α2σ + λ3µ1µ2βσ

+ µ3λ1λ2σα2 + µ3µ1λ2α1α2 + µ3α1µ2α
2
2 + µ3µ1µ2βα2)a

= (µ3µ1λ2α1α2 + µ3λ1µ2α
2
2)a,

[y, [x, z]] = [λ2a+ µ2b, (λ1λ3σ + µ1λ3α1 + λ1µ3α2 + µ1µ3β)a]

= λ2(λ1λ3σ + µ1λ3α1 + λ1µ3α2 + µ1µ3β)[a, a]

+ µ2(λ1λ3σ + µ1λ3α1 + λ1µ3α2 + µ1µ3β)[b, a]

= λ2(λ1λ3σ + µ1λ3α1 + λ1µ3α2 + µ1µ3β)σa

+ µ2(λ1λ3σ + µ1λ3α1 + λ1µ3α2 + µ1µ3β)α1a

= (λ2λ1λ3σ
2 + λ2µ1λ3α1σ + λ2λ1µ3α2σ + λ2µ1µ3βσ

+ µ2λ1λ3σα1 + µ2µ1λ3α
2
1 + µ2λ1µ3α2α1 + µ2µ1µ3βα1)a

= (µ2µ1λ3α
2
1 + µ2λ1µ3α2α1 + µ2µ1µ3βα1)a.
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We have

[x, [y, z]]− [[x, y], z]− [y, [x, z]]

= (µ1µ2λ3α
2
1 + µ1λ2µ3α2α1 + µ1µ2µ3βα1)a

−(µ3µ1λ2α1α2 + µ3λ1µ2α
2
2)a

−(µ2µ1λ3α
2
1 + µ2λ1µ3α2α1 + µ2µ1µ3βα1)a

= −(µ3λ1µ2α
2
2 + µ2λ1µ3α2α1)a

= −µ3λ1µ2(α
2
2 + α2α1)a = 0.

Thus we obtain
[x, [y, z]] = [[x, y], z] + [y, [x, z]],

which shows that L is a Leibniz ring. By the above, we have

[x, y] = (λ1λ2σ + µ1λ2α1 + λ1µ2α2 + µ1µ2β)a.

Hence
[L,L] = ⟨σa⟩+ ⟨α1a⟩+ ⟨α2a⟩+ ⟨βa⟩.

An element x ∈ ζ left(L) if and only if [x, a] = [x, b] = 0. We have

[x, a] = (λ1σ + µ1α1)a,

[x, b] = (λ1α2 + µ1β)a.

It follows that

ζ left(L) = ⟨σa⟩+ ⟨α1a⟩+ ⟨α2a⟩+ ⟨βa⟩ = [L,L].

Similarly, y ∈ ζright(L) if and only if [a, y] = [b, y] = 0. We have

[a, y] = (λ2σ + µ2α2)a,

[y, b] = (λ2α1 + µ2β)a,

and again conclude that

ζright(L) = ⟨σa⟩+ ⟨α1a⟩+ ⟨α2a⟩+ ⟨βa⟩ = [L,L].

Thus,
ζ left(L) = ζright(L) = ζ(L) = [L,L].

Furthermore,

[x, x] = (λ2
1σ + µ1λ1α1 + λ1µ1α2 + µ2

1β)a,
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and hence

K = ⟨σa⟩+ ⟨(α1 + α2)a⟩+ ⟨βa⟩.

Therefore, we obtain the following type of Leibniz ring:

L9 = ⟨a1⟩ ⊕ ⟨a2⟩,
the additive order of a1 is finite, |a1| = k,

the additive order of a2 is infinite,

[a1, a1] = σa1, [a1, a2] = α2a, [a2, a1] = α1a1, [a2, a2] = βa1,

where σ, α1, α2, β are integers, satisfying the following conditions:

σ2 ≡ 0(mod k), α2σ ≡ 0(mod k), α2β ≡ 0(mod k),

βσ ≡ 0(mod k), α2
2 + α2α1 ≡ 0(mod k), α1σ ≡ 0(mod k).

Here

ζ(L9) = ζ left(L9) = ζright(L9) = [L9, L9]

= ⟨σa⟩+ ⟨α1a⟩+ ⟨α2a⟩+ ⟨βa⟩,
Leib(L9) = ⟨σa⟩+ ⟨(α1 + α2)a⟩+ ⟨βa⟩.
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