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Structure of algebra of derivation of some
non-nilpotent Leibniz algebras
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Abstract. Let L be an algebra over a field F with the binary
operations + and [, ]. Then L is called a left Leibniz algebra if it
satisfies the left Leibniz identity [[a, b], c] = [a, [b, c]]−[b, [a, c]] for all
a, b, c ∈ L. We study algebras of derivations of some non-nilpotent
Leibniz algebras of low dimensions.

Introduction

Let V be a vector space over a field F . Denote by

EndF (V )

the set of all linear transformations of V . Then EndF (V ) is an associative
algebra by the operations + and ◦. As usual, EndF (V ) is a Lie algebra
by the operations + and [, ] where

[f, g] = f ◦ g − g ◦ f

for all f, g ∈ EndF (V ).
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Let L be an algebra over a field F with the operations + and [, ]. Re-
call that a linear transformation f of an algebra L is called a derivation if

f([a, b]) = [f(a), b] + [a, f(b)] for all a, b ∈ L.

Derivations play a very important role in studying the structure of
many types of non-associative algebras. In particular, such is especially
true for Lie and Leibniz algebras.

Let L be an algebra over a field F with the binary operations + and
[, ]. Then L is called a left Leibniz algebra if it satisfies the left Leibniz
identity,

[[a, b], c] = [a, [b, c]]− [b, [a, c]]

for all a, b, c ∈ L. We will also use another form of this identity:

[a, [b, c]] = [[a, b], c] + [b, [a, c]].

Leibniz algebras were introduced in the paper of A. Blokh [2], but
the term “Leibniz algebra” appears in the book of J.-L. Loday [16] and
his article [17]. Certain aspects of this theory have been explored in the
books [1, 6].

Let Der(L) be the subset of all derivations of a Leibniz algebra L. It
can be proven that Der(L) is a subalgebra of the Lie algebra EndF (L).
Der(L) is called the algebra of derivations of the Leibniz algebra L.

The impact of the algebra of derivations on the structure of a Leibniz
algebra is evident in the following result: If A is an ideal of a Leibniz
algebra, then the factor-algebra of L by the annihilator of A is isomorphic
to some subalgebra of Der(A) [4, Proposition 3.2].

The structure of the algebra of derivations of finite-dimensional one-
generator Leibniz algebras was described in the papers [11, 18], its as-
sociation with infinite-dimensional, one-generator Leibniz algebras was
examined in the paper [15]. The study of derivation algebras for small-
dimensional Leibniz algebras is a natural and intriguing question. Unlike
Lie algebras, Leibniz algebras of dimension 3 exhibit considerable diver-
sity. A classification of these algebras has been established, with the
most comprehensive account available in [5].

The derivation algebras of Leibniz algebras of dimension 3 have been
investigated in various papers, providing valuable insights into their
structural properties [6–10,12,13].

The final consideration concerns derivation algebras of non-nilpotent
Leibniz algebras of dimension 3 with a one-dimensional Leibniz kernel.
In particular, the paper [10] focuses on the case where the center of the
Leibniz algebra contains the Leibniz kernel.
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1. Some preliminaries and remarks

We will need some general properties of an algebra of derivations of a
Leibniz algebra. Here, we show some basic elementary properties of
derivations that have been proven in the paper [13]. First, let us recall
some definitions.

Every Leibniz algebra L has a specific ideal. Denote by Leib(L) the
subspace generated by the elements [a, a], a ∈ L. It is possible to prove
that Leib(L) is an ideal of L. The ideal Leib(L) is called the Leibniz
kernel of algebra L. By the definition, factor-algebra L/Leib(L) is a Lie
algebra. Conversely, if K is an ideal of L such that L/K is a Lie algebra,
then K includes the Leibniz kernel.

Let L be a Leibniz algebra. Define the lower central series of L,

L = γ1(L) ≥ γ2(L) ≥ . . . γα(L) ≥ γα+1(L) ≥ . . . γδ(L),

by the following rule: γ1(L) = L, γ2(L) = [L,L], recursively, γα+1(L) =
[L, γα(L)] for every ordinal α, and γλ(L) =

⋂
µ<λ

γµ(L) for every limit

ordinal λ. The last term γδ(L) = γ∞(L) is called the lower hypocenter
of L. We have: γδ(L) = [L, γδ(L)].

As usual, we say that a Leibniz algebra L is called nilpotent if a
positive integer k exists, such that γk(L) = ⟨0⟩. More precisely, L is said
to be nilpotent of nilpotency class c if γc+1(L) = ⟨0⟩ but γc(L) ̸= ⟨0⟩.

The left (respectively right) center ζ left(L) (respectively ζright(L)) of
a Leibniz algebra L is defined by the rule below:

ζ left(L) = {x ∈ L| [x, y] = 0 for each element y ∈ L}

(respectively

ζright(L) = {x ∈ L| [y, x] = 0 for each element y ∈ L}).

It is not hard to prove that the left center of L is an ideal, but this is not
true for the right center. Moreover, Leib(L) ≤ ζ left(L), so that L/ζ left(L)
is a Lie algebra. The right center is a subalgebra of L; the left and right
centers are generally different; they may even have different dimensions
(see [4]).

The center of L is defined by the rule below:

ζ(L) = {x ∈ L| [x, y] = 0 = [y, x] for each element y ∈ L}.

The center is an ideal of L.
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Lemma 1. Let L be a Leibniz algebra over a field F and f be a derivation
of L. Then f(ζ left(L)) ≤ ζ left(L), f(ζright(L)) ≤ ζright(L) and f(ζ(L)) ≤
ζ(L).

Corollary 1. Let L be a Leibniz algebra over a field F and f be a
derivation of L. Then f(ζα(L)) ≤ ζα(L) for every ordinal α.

Lemma 2. Let L be a Leibniz algebra over a field F and f be a derivation
of L. Then f([L,L]) ≤ [L,L].

Corollary 2. Let L be a Leibniz algebra over a field F and f be a
derivation of L. Then f(γα(L)) ≤ γα(L) for every ordinal α.

Denote by Ξ the classic monomorphism of End(L) in M3(F ) (i.e.,
the mapping, assigning to each endomorphism its matrix concerning the
basis {a1, a2, a3}).

2. On the Leibniz algebras Lei13(3,F) and Lei14(3,F)

Proposition 1. Let L be a non-nilpotent Leibniz algebra of dimension 3
having the Leibniz kernel of dimension 1, S = AnnL(Leib(L)). Suppose
that L ̸= S and L/Leib(L) is a non-abelian Lie algebra. Then L =
Lei13(3, F ) is a Leibniz algebra of the following type

Lei13(3, F ) = Fa1 ⊕ Fa2 ⊕ Fa3 where

[a1, a1] = a3 = [a1, a3], [a1, a2] = −a2, [a2, a1] = a2,

[a2, a2] = [a2, a3] = [a3, a1] = [a3, a2] = [a3, a3] = 0.

In this case, Leib(L) = Fa3 = ζ left(L), [L,L] = S = Fa2 ⊕ Fa3 is an
abelian ideal, Fa2 is also an ideal of L, Fa1 ⊕ Fa3 is a non-nilpotent
subalgebra of L, Fa1 ⊕ Fa2 is a non-abelian Lie subalgebra of L.

Proof. Let K = Leib(L), then L/K is a Lie algebra of dimension 2. Then
Annleft

L (K) is an ideal of L such that L/Annleft
L (K) is isomorphic to some

subalgebra of the algebra of derivation of K [4, Proposition 3.2]. The
inclusion Leib(L) ≤ ζ left(L) implies that, Annleft

L (K) = AnnL(K) = S.
Since S ̸= L, dimF (L/S) = 1. The inclusion Leib(L) ≤ ζ left(L) shows
that S = AnnL(K). As we have noted above, S/K is an ideal of L/K
of dimension 1. It follows that S is nilpotent subalgebra of dimension 2.
The factor-algebra L/K is a non-abelian Lie algebra of dimension 2.

Since S/K is an ideal of L/K, it follows that L/K has an element
b+K ̸∈ S/K and S/K has an element a+K such that [a+K, b+K] =
a+K (see, for example, the book [3, Chapter 1, § 4]).
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Suppose initially that S is non-abelian, then [a, a] = c ̸= 0. The
equality a + K = [a + K, b + K] implies that [a, b] = a + κ1c for some
scalar κ1 ∈ F . If κ1 = 0, then put b1 = b. If not, then put b1 = b− κ1a.
In this case, we have

[a, b1] = [a, b− κ1a] = [a, b]− [a, κ1a] = a+ κ1c− κ1c = a.

Let x be an element such that x ̸∈ S. Since S is an ideal of L,
[a, x] = αa + νc for some scalars α, ν ∈ F . Since L/K is not nilpotent,
α ̸= 0. The fact that L/K is a Lie algebra implies that [x, a] = −αa+ν1c
for some ν1 ∈ F . Since x ̸∈ S = AnnL(K), [x, c] = ξc for some scalar
0 ̸= ξ ∈ F . We have

[x, [a, x]] = [[x, a], x] + [a, [x, x]] = [[x, a], x].

Then we obtain

α[x, a] + ν[x, c] = [x, αa+ νc] = [x, [a, x]]

= [[x, a], x] = [−αa+ ν1c, x] = [−αa, x] = −α[a, x].

Since α ̸= 0 we obtain that [x, a] = −[a, x] − α−1ν[x, c]. In particular,
for x = b1 we have [b1, a] = −[a, b1] = −a.

The fact that b1 ̸∈AnnL(K) implies that [b1, c] = αc where 0 ̸= α ∈ F .
We have also that [b1, b1] = γc for some scalar γ ∈ F . If γ = 0, then put
a1 = b1. If not, then put a1 = b1 − α−1γc. For this case, we have

[a1, a1] = [b1 − α−1γc, b1 − α−1γc]

= [b1, b1]− α−1γ[b1, c] = γc− α−1γαc = 0.

Moreover,

[a, a1] = [a, b1 − α−1γc] = [a, b1]− α−1γ[a, c] = [a, b1] = a,

[a1, a] = [b1 − α−1γc, a] = [b1, a]− α−1γ[c, a] = [b1, a] = −a.

Put now a2 = a, a3 = c. Then we come to the following Leibniz algebra

L = Fa1 ⊕ Fa2 ⊕ Fa3 where

[a1, a1] = 0, [a1, a2] = −a2, [a2, a1] = a2,

[a2, a2] = a3, [a3, a1] = [a2, a3] = [a3, a2] = 0, [a1, a3] = γa3

for some scalar 0 ̸= γ ∈ F .
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Let’s verify that an algebra with such defining relations is indeed a
Leibniz algebra.

Let x, y, z be arbitrary elements of L,

x = ξ1a1 + ξ2a2 + ξ3a3,

y = η1a1 + η2a2 + η3a3,

z = σ1a1 + σ2a2 + σ3a3,

where ξ1, ξ2, ξ3, η1, η2, η3, σ1, σ2, σ3 are arbitrary scalars. Then

[x, y] = [ξ1a1 + ξ2a2 + ξ3a3, η1a1 + η2a2 + η3a3]

= −ξ1η2a2 + ξ1η3γa3 + ξ2η1a2 + ξ2η2a3

= (ξ2η1 − ξ1η2)a2 + (ξ1η3γ + ξ2η2)a3,

[x, z] = (ξ2σ1 − ξ1σ2)a2 + (ξ1σ3γ + ξ2σ2)a3

[y, z] = (η2σ1 − η1σ2)a2 + (η1σ3γ + η2σ2)a3.

Thus

[x, [y, z]] = [ξ1a1 + ξ2a2 + ξ3a3, (η2σ1 − η1σ2)a2 + (η1σ3γ + η2σ2)a3]

= ξ1(η2σ1 − η1σ2)[a1, a2] + ξ1(η1σ3γ + η2σ2)[a1, a3]

+ ξ2(η2σ1 − η1σ2)[a2, a2]

= −ξ1(η2σ1 − η1σ2)a2 + ξ1(η1σ3γ + η2σ2)γa3 + ξ2(η2σ1 − η1σ2)a3

= (ξ1η1σ2 − ξ1η2σ1)a2 + (ξ1η1σ3γ
2 + ξ1η2σ2γ + ξ2η2σ1 − ξ2η1σ2)a3,

[[x, y], z] = [(ξ2η1 − ξ1η2)a2 + (ξ1η3γ + ξ2η2)a3, σ1a1 + σ2a2 + σ3a3]

= σ1(ξ2η1 − ξ1η2)[a2, a1] + σ2(ξ2η1 − ξ1η2)[a2, a2]

= σ1(ξ2η1 − ξ1η2)a2 + σ2(ξ2η1 − ξ1η2)a3,

[y, [x, z]] = [η1a1 + η2a2 + η3a3, (ξ2σ1 − ξ1σ2)a2 + (ξ1σ3γ + ξ2σ2)a3]

= η1(ξ2σ1 − ξ1σ2)[a1, a2] + η1(ξ1σ3γ + ξ2σ2)[a1, a3]

+ η2(ξ2σ1 − ξ1σ2)[a2, a2]

= −η1(ξ2σ1 − ξ1σ2)a2 + η1(ξ1σ3γ + ξ2σ2)γa3 + η2(ξ2σ1 − ξ1σ2)a3

= (η1ξ1σ2 − η1ξ2σ1)a2 + (η1ξ1σ3γ
2 + η1ξ2σ2γ + η2ξ2σ1 − η2ξ1σ2)a3.

Then

[[x, y], z] + [y, [x, z]]

= (ξ2η1σ1 − ξ1η2σ1)a2 + (ξ2η1σ2 − ξ1η2σ2)a3 + (η1ξ1σ2 − η1ξ2σ1)a2

+(η1ξ1σ3γ
2 + η1ξ2σ2γ + η2ξ2σ1 − η2ξ1σ2)a3 = (η1ξ1σ2 − ξ1η2σ2)a2

+(ξ2η1σ2 − 2ξ1η2σ2 + η1ξ1σ3γ
2 + η1ξ2σ2γ + η2ξ2σ1)a3.
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We have now

[[x, y], z] + [y, [x, z]]− [x, [y, z]]

= (η1ξ1σ2 − ξ1η2σ2)a2

+(ξ2η1σ2 − 2ξ1η2σ2 + η1ξ1σ3γ
2 + η1ξ2σ2γ + η2ξ2σ1)a3

−(ξ1η1σ2 − ξ1η2σ1)a2 − (ξ1η1σ3γ
2 + ξ1η2σ2γ + ξ2η2σ1 − ξ2η1σ2)a3

= (ξ1η2σ1 − ξ1η2σ2)a2 + (η1ξ2σ2γ − 2ξ1η2σ2 − ξ1η2σ2γ)a3.

Thus we can see that it is possible to find the elements x, y, z such
that [x, [y, z]] ̸= [[x, y], z] + [y, [x, z]], so that we came to a contradiction.
This contradiction shows that S must be abelian.

Since b ̸∈ S = AnnL(K), a subalgebra ⟨b,K⟩ is not nilpotent. The
equality [K, b] = ⟨0⟩ implies that ⟨b,K⟩ is not Lie algebra. Taking into
account the information about the structure, the following conclusions
can be drawn about Leibniz algebra of dimension 2 (see, for example, a
survey [14]) we can suppose that [b, b] = [b, c] = c where K = Fc.

Let x be an element such that x ̸∈ S. Since S is an ideal of L,
[a, x] = αa + νc for some scalars α, ν ∈ F . Since L/K is not nilpotent,
α ̸= 0. The fact that L/K is a Lie algebra implies that [x, a] = −αa+ν1c
for some ν1 ∈ F . Since x ̸∈ S = AnnL(K), [x, c] = ξc for some scalar
0 ̸= ξ ∈ F . We have

[x, [a, x]] = [[x, a], x] + [a, [x, x]] = [[x, a], x].

Then we obtain

α[x, a] + ν[x, c] = [x, αa+ νc] = [x, [a, x]]

= [[x, a], x] = [−αa+ ν1c, x] = [−αa, x] = −α[a, x].

Since α ̸= 0, we obtain that [x, a] = −[a, x]− α−1ν[x, c].
The equality [a + K, b + K] = a + K implies that [a, b] = a + κ1c

for some scalar κ1 ∈ F . From the results established above, we conclude
that the following holds

[b, a] = −[a, b]− κ1[b, c] = −a− κ1c− κ1c = −a− 2κ1c.

If κ1 = 0, then put a2 = a. If not, then put a2 = a+ κ1c. For this case,
we have

[b, a2] = [b, a+ κ1c] = [b, a] + [b, κ1c] = −a− 2κ1c+ κ1c

= −a− κ1c = −a2,
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[a2, b] = [a+ κ1c, b] = [a, b] + [κ1c, b] = a+ κ1c = a2.

Put a1 = b, a3 = c. Then we come to the following Leibniz algebra

Lei13(3, F ) = Fa1 ⊕ Fa2 ⊕ Fa3 where

[a1, a1] = a3 = [a1, a3], [a1, a2] = −a2, [a2, a1] = a2,

[a2, a2] = [a2, a3] = [a3, a1] = [a3, a2] = [a3, a3] = 0.

Let us verify that an algebra with such defining relations is indeed a
Leibniz algebra. Let x, y, z be arbitrary elements of L,

x = ξ1a1 + ξ2a2 + ξ3a3,

y = η1a1 + η2a2 + η3a3,

z = σ1a1 + σ2a2 + σ3a3,

where ξ1, ξ2, ξ3, η1, η2, η3, σ1, σ2, σ3 are arbitrary scalars. Then

[x, y] = [ξ1a1 + ξ2a2 + ξ3a3, η1a1 + η2a2 + η3a3]

= ξ1η1a3 − ξ1η2a2 + ξ1η3a3 + ξ2η1a2

= (ξ2η1 − ξ1η2)a2 + (ξ1η1 + ξ1η3)a3,

[x, z] = (ξ2σ1 − ξ1σ2)a2 + (ξ1σ1 + ξ1σ3)a3

[y, z] = (η2σ1 − η1σ2)a2 + (η1σ1 + η1σ3)a3.

Thus

[x, [y, z]] = [ξ1a1 + ξ2a2 + ξ3a3, (η2σ1 − η1σ2)a2 + (η1σ1 + η1σ3)a3]

= ξ1(η2σ1 − η1σ2)[a1, a2] + ξ1(η1σ1 + η1σ3)[a1, a3]

= −ξ1(η2σ1 − η1σ2)a2 + ξ1(η1σ1 + η1σ3)a3

= (ξ1η1σ2 − ξ1η2σ1)a2 + (ξ1η1σ1 + ξ1η1σ3)a3,

[[x, y], z] = [(ξ2η1 − ξ1η2)a2 + (ξ1η1 + ξ1η3)a3, σ1a1 + σ2a2 + σ3a3]

= (ξ2η1 − ξ1η2)σ1[a2, a1] = (ξ2η1 − ξ1η2)σ1a2

= (ξ2η1σ1 − ξ1η2σ1)a2,

[y, [x, z]] = [η1a1 + η2a2 + η3a3, (ξ2σ1 − ξ1σ2)a2 + (ξ1σ1 + ξ1σ3)a3]

= η1(ξ2σ1 − ξ1σ2)[a1, a2] + η1(ξ1σ1 + ξ1σ3)[a1, a3]

= −η1(ξ2σ1 − ξ1σ2)a2 + η1(ξ1σ1 + ξ1σ3)a3

= (η1ξ1σ2 − η1ξ2σ1)a2 + (η1ξ1σ1 + η1ξ1σ3)a3.

Then
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[[x, y], z] + [y, [x, z]]

= (ξ2η1σ1 − ξ1η2σ1)a2 + (η1ξ1σ2 − η1ξ2σ1)a2 + (η1ξ1σ1 + η1ξ1σ3)a3

= (ξ1η1σ2 − ξ1η2σ1)a2 + (ξ1η1σ1 + ξ1η1σ3)a3 = [x, [y, z]].

Thus, we indeed have a Leibniz algebra.

Proposition 2. Let L be a non-nilpotent Leibniz algebra of dimension 3
having the Leibniz kernel of dimension 1, S = AnnL(Leib(L)). Suppose
that L ̸= S and L/Leib(L) is an abelian algebra. Then L = Lei14(3, F )
is a Leibniz algebra of the following type

Lei14(3, F ) = Fa1 ⊕ Fa2 ⊕ Fa3 where

[a1, a1] = a3 = [a1, a3], [a1, a2] = [a2, a1] = 0,

[a2, a2] = [a2, a3] = [a3, a1] = [a3, a2] = [a3, a3] = 0.

In this case, Leib(L) = Fa3 = [L,L], ζ left(L) = S = Fa2 ⊕ Fa3 is
an abelian ideal. Moreover, Fa2 = ζ(L) = ζright(L), Fa1 ⊕ Fa3 is a
non-nilpotent subalgebra of L.

Proof. Let again K = Leib(L), then L/K is a Lie algebra of dimen-
sion 2. As it was shown above Annleft

L (K) is an ideal of L such that
L/Annleft

L (K) of dimension 1. The inclusion Leib(L) ≤ ζ left(L) implies
that Annleft

L (K) = AnnL(K) = S. As it was shown above S/K is an
ideal of L/K of dimension 1. In follows that S is nilpotent subalgebra
of dimension 2. The factor-algebra L/K is a non-abelian Lie algebra of
dimension 2. Let b be an element of L such that b ̸∈ S = AnnL(K).
Then the subalgebra ⟨b,K⟩ is not nilpotent. The equality [K, b] = ⟨0⟩
implies that ⟨b,K⟩ is not a Lie algebra. Taking into account the infor-
mation about the structure of a two-dimensional Leibniz algebra (see,
for example, a survey [14]) we can suppose that [b, b] = [b, c] = c where
K = Fc.

Choose in S the element a such that a ∈ K. Then S = Fa⊕Fc, and,
moreover [a, c] = [c, a] = 0. Let b be an element of L such that b ̸∈ S.
The equality K = [a+K, b+K] implies that [a, b] = κ1c for some scalar
κ1 ∈ F . And similarly [b, a] = κ2c for some scalar κ2 ∈ F . We have

κ1[b, c] = [b, κ1c] = [b, [a, b]] = [[b, a], b] + [a, [b, b]]

= [[b, a], b] = [κ2c, b] = 0.

Since b ̸∈ AnnL(K), κ1 = 0.
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Consider the mapping Lb : S → S defined by the rule: Lb(y) = [b, y],

y ∈ S. Clearly, Lb is a linear mapping, Ker(Lb) = Annright
S (b), Im(Lb) =

[b, S] = K. An isomorphism

K = [b, S] = Im(Lb) ∼= S/Ker(Lb) = S/Annright
S (b),

and the fact that dimF (K) = 1 implies that Annright
S (b) = Y has dimen-

sion 1. Let x = αa+βb+ γc be an arbitrary element of L and let y ∈ Y .
We have

[x, y] = [αa+ βb+ γc, y] = α[a, y] + β[b, y] + γ[c, y] = 0,

[y, x] = [y, αa+ βb+ γc] = α[y, a] + β[y, b] + γ[y, c] = β[y, b].

Furthermore, [b, [y, b]] = [[b, y], b] + [y, [b, b]] = 0, so that [b, [y, x]] =
[b, β[y, b]] = 0. Thus, we can see that [x, y], [y, x] ∈ Y , and Y is an ideal
of L. Since b ̸∈ AnnL(K), Y ∩K = ⟨0⟩ and S = K ⊕ Y . In particular,
we obtain that S is an abelian ideal. In the coset a + K we choose an
element a2 such that a2 ∈ Y . By this choice, [b, a2] = 0. From what
has been established above, we obtain the following result: [a2, b] = 0, so
that, Fa2 = Y = AnnS(b). Together with [c, a2] = 0 = [a2, c] it follows
that Fa2 = Y = ζ(L).

Put now a1 = b, a3 = c. Then we come to the following Leibniz
algebra

Lei14(3, F ) = Fa1 ⊕ Fa2 ⊕ Fa3 where

[a1, a1] = a3 = [a1, a3], [a1, a2] = [a2, a1] = 0,

[a2, a2] = [a2, a3] = [a3, a1] = [a3, a2] = [a3, a3] = 0.

In this case, Leib(L) = Fa3 = [L,L], ζ left(L) = S = Fa2 ⊕ Fa3 is
an abelian ideal. Moreover, Fa2 = ζ(L) = ζright(L), Fa1 ⊕ Fa3 is a
non-nilpotent subalgebra of L.

Let us verify that an algebra with such defining relations is indeed a
Leibniz algebra. Let x, y, z be arbitrary elements of L,

x = ξ1a1 + ξ2a2 + ξ3a3,

y = η1a1 + η2a2 + η3a3,

z = σ1a1 + σ2a2 + σ3a3,

where ξ1, ξ2, ξ3, η1, η2, η3, σ1, σ2, σ3 are arbitrary scalars. Then

[x, y] = [ξ1a1 + ξ2a2 + ξ3a3, η1a1 + η2a2 + η3a3]
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= ξ1η1a3 + ξ1η3a3 = (ξ1η1 + ξ1η3)a3,

[x, z] = (ξ1σ1 + ξ1σ3)a3,

[y, z] = (η1σ1 + η1σ3)a3.

Thus

[x, [y, z]] = [ξ1a1 + ξ2a2 + ξ3a3, (η1σ1 + η1σ3)a3]

= ξ1(η1σ1 + η1σ3)[a1, a3]

= ξ1(η1σ1 + η1σ3)a3 = (ξ1η1σ1 + ξ1η1σ3)a3,

[[x, y], z] = [(ξ1η1 + ξ1η3)a3, σ1a1 + σ2a2 + σ3a3] = 0,

[y, [x, z]] = [η1a1 + η2a2 + η3a3, (ξ1σ1 + ξ1σ3)a3]

= η1(ξ1σ1 + ξ1σ3)[a1, a3]

= η1(ξ1σ1 + ξ1σ3)a3 = (η1ξ1σ1 + η1ξ1σ3)a3.

Then

[[x, y], z] + [y, [x, z]] = 0 + (η1ξ1σ1 + η1ξ1σ3)a3 = [x, [y, z]].

Thus, we have a Leibniz algebra.

3. Main results

Theorem 1. Let D be an algebra of derivations of the Leibniz algebra
Lei13(3, F ). Then D is isomorphic to a Lie subalgebra of M3(F ) con-
sisting of the matrices of the following form: 0 0 0

0 β 0
γ 0 γ

 ,

β, γ ∈ F . Furthermore, D is abelian and D is a direct sum of two one-
dimensional subalgebras.

Proof. Let L = Lei13(3, F ) and f ∈ Der(L). By Lemma 1, Fa3 =
f(Leib(L)) = f(ζ left(L)) = ζ left(L), by Lemma 2, f([L,L]) ≤ [L,L]. So
that

f(a1) = α1a1 + α2a2 + α3a3,

f(a2) = β2a2 + β3a3,

f(a3) = γa3,
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α1, α2, α3, β2, β3, γ ∈ F . Then

f(a3) = f([a1, a1]) = [f(a1), a1] + [a1, f(a1)]

= [α1a1 + α2a2 + α3a3, a1] + [a1, α1a1 + α2a2 + α3a3]

= α1[a1, a1] + α1[a1, a1] + α2[a1, a2] + α3[a1, a3]

= 2α1a3 − α2a2 + α3a3 = −α2a2 + (2α1 + α3)a3,

f(a3) = f([a1, a3]) = [f(a1), a3] + [a1, f(a3)]

= [α1a1 + α2a2 + α3a3, a3] + [a1, γa3]

= α1[a1, a3] + γ[a1, a3] = α1a3 + γa3 = (α1 + γ)a3,

f(a2) = f([a2, a1]) = [f(a2), a1] + [a2, f(a1)]

= [β2a2 + β3a3, a1] + [a2, α1a1 + α2a2 + α3a3]

= β2[a2, a1] + α1[a2, a1] = β2a2 + α1a2 = (β2 + α1)a2.

Thus, we obtain

−α2a2 + (2α1 + α3)a3 = (α1 + γ)a3 = γa3,

(β2 + α1)a2 = β2a2 + β3a3.

It follows that

α1 = α2 = 0, α3 = γ, β3 = 0.

Hence, Ξ(f) is the following matrix: 0 0 0
0 β 0
γ 0 γ

 ,

β, γ ∈ F .
Conversely, let x, y be arbitrary elements of L,

x = ξ1a1 + ξ2a2 + ξ3a3,

y = η1a1 + η2a2 + η3a3,

where ξ1, ξ2, ξ3, η1, η2, η3 are arbitrary scalars. Then

[x, y] = [ξ1a1 + ξ2a2 + ξ3a3, η1a1 + η2a2 + η3a3]

= ξ1η1[a1, a1] + ξ1η2[a1, a2] + ξ1η3[a1, a3] + ξ2η1[a2, a1]

= ξ1η1a3 − ξ1η2a2 + ξ1η3a3 + ξ2η1a2

= (ξ2η1 − ξ1η2)a2 + (ξ1η1 + ξ1η3)a3,
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f(x) = f(ξ1a1 + ξ2a2 + ξ3a3) = ξ1f(a1) + ξ2f(a2) + ξ3f(a3)

= ξ1γa3 + ξ2βa2 + ξ3γa3

= ξ2βa2 + (ξ1γ + ξ3γ)a3,

f(y) = η2βa2 + (η1γ + η3γ)a3,

f([x, y]) = f((ξ2η1 − ξ1η2)a2 + (ξ1η1 + ξ1η3)a3)

= (ξ2η1 − ξ1η2)f(a2) + (ξ1η1 + ξ1η3)f(a3)

= (ξ2η1 − ξ1η2)βa2 + (ξ1η1 + ξ1η3)γa3

= (ξ2η1β − ξ1η2β)a2 + (ξ1η1γ + ξ1η3γ)a3.

Thus,

[f(x), y] + [x, f(y)]

= [ξ2βa2 + (ξ1γ + ξ3γ)a3, η1a1 + η2a2 + η3a3]

+[ξ1a1 + ξ2a2 + ξ3a3, η2βa2 + (η1γ + η3γ)a3]

= ξ2βη1[a2, a1] + ξ1(η1γ + η3γ)[a1, a3] + ξ1η2β[a1, a2]

= ξ2βη1a2 + (ξ1η1γ + ξ1η3γ)a3 − βξ1η2a2

= (ξ2βη1 − βξ1η2)a2 + (ξ1η1γ + ξ1η3γ)a3,

so that f([x, y]) = [f(x), y] + [x, f(y)].
Denote by A the subset of M3(F ) consisting of the matrices of the

following form:  0 0 0
0 0 0
γ 0 γ

 ,

γ ∈ F . Denote by B the subset of M3(F ) consisting of the matrices of
the following form:  0 0 0

0 β 0
0 0 0

 ,

β ∈ F .
It is not hard to see that A,B are one-dimensional subalgebras of

Ξ(L), [B,A] = ⟨0⟩, Ξ(L) is a direct sum A⊕B.

Theorem 2. The algebra of derivations of the Leibniz algebra Lei14(3, F )
is isomorphic to the derivation algebra of Lei13(3, F ).

Proof. Let L = Lei14(3, F ) and f ∈ Der(L). By Lemma 1, ζ left(L) =
f(ζ left(L)) = f(Fa2⊕Fa3), Fa2 = ζ(L) = f(ζ(L)), by Lemma 2, Fa3 =
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f(Leib(L)) = f([L,L]) ≤ [L,L]. So that

f(a1) = α1a1 + α2a2 + α3a3,

f(a2) = βa2,

f(a3) = γa3,

α1, α2, α3, β, γ ∈ F . Then

f(a3) = f([a1, a1]) = [f(a1), a1] + [a1, f(a1)]

= [α1a1 + α2a2 + α3a3, a1] + [a1, α1a1 + α2a2 + α3a3]

= α1[a1, a1] + α1[a1, a1] + α3[a1, a3]

= 2α1a3 + α3a3 = (2α1 + α3)a3,

f(a3) = f([a1, a3]) = [f(a1), a3] + [a1, f(a3)]

= [α1a1 + α2a2 + α3a3, a3] + [a1, γa3]

= α1[a1, a3] + γ[a1, a3] = (α1 + γ)a3.

Thus, we obtain

(2α1 + α3)a3 = (α1 + γ)a3 = γa3.

It follows that α1 = α2 = 0, α3 = γ. Hence, Ξ(f) is the following matrix: 0 0 0
0 β 0
γ 0 γ

 ,

β, γ ∈ F .

Conversely, let x, y be arbitrary elements of L,

x = ξ1a1 + ξ2a2 + ξ3a3,

y = η1a1 + η2a2 + η3a3,

where ξ1, ξ2, ξ3, η1, η2, η3 are arbitrary scalars. Then

[x, y] = [ξ1a1 + ξ2a2 + ξ3a3, η1a1 + η2a2 + η3a3]

= ξ1η1[a1, a1] + ξ1η3[a1, a3] = ξ1η1a3 + ξ1η3a3

= (ξ1η1 + ξ1η3)a3,

f(x) = f(ξ1a1 + ξ2a2 + ξ3a3) = ξ1f(a1) + ξ2f(a2) + ξ3f(a3)

= ξ1γa3 + ξ2βa2 + ξ3γa3 = ξ2βa2 + (ξ1γ + ξ3γ)a3,
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f(y) = η2βa2 + (η1γ + η3γ)a3,

f([x, y]) = f((ξ1η1 + ξ1η3)a3) = (ξ1η1 + ξ1η3)f(a3)

= (ξ1η1 + ξ1η3)γa3 = (ξ1η1γ + ξ1η3γ)a3,

so that f([x, y]) = [f(x), y] + [x, f(y)].

As we can see that the algebra of derivations of Leibniz algebra
Lei14(3, F ) is isomorphic to the algebra of derivations of Leibniz algebra
Lei13(3, F ).
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