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Structure of algebra of derivation of some
non-nilpotent Leibniz algebras
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ABSTRACT. Let L be an algebra over a field F' with the binary
operations + and [,]. Then L is called a left Leibniz algebra if it
satisfies the left Leibniz identity [[a, b], ¢] = [a, [b, c|]]—[b, [a, c]] for all
a,b,c € L. We study algebras of derivations of some non-nilpotent
Leibniz algebras of low dimensions.

Introduction

Let V be a vector space over a field F'. Denote by
EndF(V)

the set of all linear transformations of V. Then Endp(V') is an associative
algebra by the operations + and o. As usual, Endpr(V) is a Lie algebra
by the operations + and [,] where

[fgl=fog—gof
for all f,g € Endp(V).
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Let L be an algebra over a field F' with the operations + and [,]. Re-
call that a linear transformation f of an algebra L is called a derivation if

f([a,b]) = [f(a),b] + [a, f(b)] for all a,b € L.

Derivations play a very important role in studying the structure of
many types of non-associative algebras. In particular, such is especially
true for Lie and Leibniz algebras.

Let L be an algebra over a field F' with the binary operations + and
[,]. Then L is called a left Leibniz algebra if it satisfies the left Leibniz
identity,

[[a7 b]v C] = [a’ [ba CH - [ba [CL, CH
for all a,b,c € L. We will also use another form of this identity:
[a, [b, c]] = [[a, 0], c] + [b, [a, c]].

Leibniz algebras were introduced in the paper of A. Blokh [2], but
the term “Leibniz algebra” appears in the book of J.-L. Loday [16] and
his article [17]. Certain aspects of this theory have been explored in the
books [1,6].

Let Der(L) be the subset of all derivations of a Leibniz algebra L. It
can be proven that Der(L) is a subalgebra of the Lie algebra Endg(L).
Der(L) is called the algebra of derivations of the Leibniz algebra L.

The impact of the algebra of derivations on the structure of a Leibniz
algebra is evident in the following result: If A is an ideal of a Leibniz
algebra, then the factor-algebra of L by the annihilator of A is isomorphic
to some subalgebra of Der(A) [4, Proposition 3.2].

The structure of the algebra of derivations of finite-dimensional one-
generator Leibniz algebras was described in the papers [11, 18], its as-
sociation with infinite-dimensional, one-generator Leibniz algebras was
examined in the paper [15]. The study of derivation algebras for small-
dimensional Leibniz algebras is a natural and intriguing question. Unlike
Lie algebras, Leibniz algebras of dimension 3 exhibit considerable diver-
sity. A classification of these algebras has been established, with the
most comprehensive account available in [5].

The derivation algebras of Leibniz algebras of dimension 3 have been
investigated in various papers, providing valuable insights into their
structural properties [6-10, 12, 13].

The final consideration concerns derivation algebras of non-nilpotent
Leibniz algebras of dimension 3 with a one-dimensional Leibniz kernel.
In particular, the paper [10] focuses on the case where the center of the
Leibniz algebra contains the Leibniz kernel.
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1. Some preliminaries and remarks

We will need some general properties of an algebra of derivations of a
Leibniz algebra. Here, we show some basic elementary properties of
derivations that have been proven in the paper [13]. First, let us recall
some definitions.

Every Leibniz algebra L has a specific ideal. Denote by Leib(L) the
subspace generated by the elements [a,a], a € L. It is possible to prove
that Leib(L) is an ideal of L. The ideal Leib(L) is called the Leibniz
kernel of algebra L. By the definition, factor-algebra L/Leib(L) is a Lie
algebra. Conversely, if K is an ideal of L such that L/K is a Lie algebra,
then K includes the Leibniz kernel.

Let L be a Leibniz algebra. Define the lower central series of L,

L=y(L) > (L) >...7%(L) =2 Ya+1(L) > ...75(L),

by the following rule: v, (L) = L, v2(L) = [L, L], recursively, v4+1(L) =

[L,va(L)] for every ordinal «, and vy(L) = () vu(L) for every limit
p<A
ordinal A. The last term ~s5(L) = voo(L) is called the lower hypocenter

of L. We have: ~v5(L) = [L,~s(L)].

As usual, we say that a Leibniz algebra L is called nilpotent if a
positive integer k exists, such that v, (L) = (0). More precisely, L is said
to be nilpotent of nilpotency class c if ve41(L) = (0) but ~v.(L) # (0).

The left (vespectively right) center ('%(L) (respectively ("8 (L)) of
a Leibniz algebra L is defined by the rule below:

(L) = {z € L| [x,y] = 0 for each element y € L}
(respectively
Cright(L) ={z € L] [y,z] =0 for each element y € L}).

It is not hard to prove that the left center of L is an ideal, but this is not
true for the right center. Moreover, Leib(L) < ¢'f(L), so that L/¢'*f(L)
is a Lie algebra. The right center is a subalgebra of L; the left and right
centers are generally different; they may even have different dimensions
(see [4]).

The center of L is defined by the rule below:

((L) ={z € L| [z,y] = 0 = [y, 2] for each element y € L}.

The center is an ideal of L.
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Lemma 1. Let L be a Leibniz algebra over a field F' and f be a derivation
of L. Then f(C'*"(L)) < ¢*™*(L), f(¢"#M(L)) < ¢""(L) and f(¢(L)) <
¢(L).

Corollary 1. Let L be a Leibniz algebra over a field F' and f be a
derivation of L. Then f(Ca(L)) < (o(L) for every ordinal c.

Lemma 2. Let L be a Leibniz algebra over a field F' and f be a derivation
of L. Then f([L,L]) <[L, L].

Corollary 2. Let L be a Leibniz algebra over a field F' and f be a
derivation of L. Then f(v4(L)) < vo(L) for every ordinal a.

Denote by E the classic monomorphism of End(L) in M3(F) (i.e.,
the mapping, assigning to each endomorphism its matrix concerning the
basis {a1,a2,as}).

2. On the Leibniz algebras Lei 5(3,F) and Leii4(3,F)

Proposition 1. Let L be a non-nilpotent Leibniz algebra of dimension 3
having the Leibniz kernel of dimension 1, S = Annp,(Leib(L)). Suppose
that L # S and L/Leib(L) is a non-abelian Lie algebra. Then L =
Leiy3(3, F) is a Leibniz algebra of the following type

Lei3(3, F) = Fay; ® Fay @ Fag where
[CL]_,CL]_} = a3 = [alaa3]7 [CL]_,CLQ] = —ay, [a25a1] = a2,

lag, as] = [az,as3] = [as, a1] = |as, az] = [as, a3] = 0.

In this case, Leib(L) = Faz = (*(L), [L,L] = S = Fay @ Fagz is an
abelian ideal, Fag is also an ideal of L, Fai; & Fas is a non-nilpotent
subalgebra of L, Fay ® Fas is a non-abelian Lie subalgebra of L.

Proof. Let K = Leib(L), then L/K is a Lie algebra of dimension 2. Then
Annl¢t(K) is an ideal of L such that L/Ann!¢f(K) is isomorphic to some
subalgebra of the algebra of derivation of K [4, Proposition 3.2]. The
inclusion Leib(L) < ¢'*%(L) implies that, Annf®(K) = Annp(K) = S.
Since S # L, dimp(L/S) = 1. The inclusion Leib(L) < ¢('*%(L) shows
that S = Annp(K). As we have noted above, S/K is an ideal of L/K
of dimension 1. It follows that S is nilpotent subalgebra of dimension 2.
The factor-algebra L/K is a non-abelian Lie algebra of dimension 2.

Since S/K is an ideal of L/K, it follows that L/K has an element
b+ K ¢ S/K and S/K has an element a + K such that [a + K,b+ K] =
a+ K (see, for example, the book [3, Chapter 1, § 4]).
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Suppose initially that S is non-abelian, then [a,a] = ¢ # 0. The
equality a + K = [a + K,b + K| implies that [a,b] = a + k1c for some
scalar k1 € F. If k1 = 0, then put by = b. If not, then put b; = b — k4.
In this case, we have

[a,b1] = [a,b — Kk1a] = [a,b] — [a,k1a] = a + Kic — K1c = a.

Let = be an element such that z ¢ S. Since S is an ideal of L,
la, 2] = aa + ve for some scalars o, v € F. Since L/K is not nilpotent,
a # 0. The fact that L/K is a Lie algebra implies that [z,a] = —aa+vic
for some v; € F. Since z ¢ S = Annp(K), [x,c] = &c for some scalar
0+# & € F. We have

[J}, [avx“ = [[x,a],x] + [av [377‘7:“ = Hxva}vx]'
Then we obtain

alz,a)l + viz, ] = [z, 0a + ve| = [z, ]a, z]]

= [[z,a],2] = [~aa + vic, z] = [—aa, x] = —afa, x].
Since @ # 0 we obtain that [x,a] = —[a,z] — a~'v[z,¢]. In particular,
for = b; we have [b1,a] = —[a, b1] = —a.

The fact that by € Anny,(K) implies that [b1, ¢] = ac where 0 # a € F.
We have also that [by,b;] = ¢ for some scalar v € F. If v = 0, then put
a1 = b1. If not, then put a1 = b1 — ofl'yc. For this case, we have

la1,a1] = [b1 — a tye, by — a ]

= [b1,b1] — @ y[br, ¢ = y¢ — a"yac = 0.

Moreover,
[a,a1] = [a,b1 — & 'yc] = [a,b1] — " ya, ] = [a,b1] = a,
[a1,a] = [by — a e, al = [bi,a] — oflfy[c, al = [b1, a] = —a.

Put now as = a, ag = ¢. Then we come to the following Leibniz algebra

L =Fa; ® Fas ® Fag where
la1,a1] = 0,[a1, az] = —a, [az, a1] = as,

lag, as] = as, [a3, a1] = [az, a3] = [a3, az] = 0, [a1, a3] = vas

for some scalar 0 # v € F.
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Let’s verify that an algebra with such defining relations is indeed a
Leibniz algebra.
Let x,y, z be arbitrary elements of L,

x = §1a1 + §eaz + 3a3,
Y = nia1 + n2a2 + n3as,
z = 0101 + 0262 + 03a3,

where &1, &2, &3,11,1m2,M3, 01,09, 03 are arbitrary scalars. Then

[2,y] = [§1a1 + &2a2 + E3a3, mar + n2ag + n3a3]
= —&imeaz + &1m3vas + Eamaz + Sanpas
= (§am — &in2)az + (&1m3y + &anp)as,

[, 2] = (§201 — &102)az + (§1037 + &202)as

[y, 2] = (o1 — moz)ag + (Mmosgy + n2o2)as.

Thus

[z, [y, 2]] = [§1a1 + &aa2 + &3a3, (1201 — mo2)ag + (Mo3y + M202)as]
= &1(n201 — moz)lar, az] + §1(Mmosy + n202)lar, as)
+ & (201 — io2)laz, as)
= —&1(m2or —moz)as + §1(mosy + meoa)yas + o (n201 — moz)as
= (&moa — E1meor)as + (§1m1037> + &m0y + Eampor — Eamioa)as,
([, ], 2] = [(&am — &1ma)az + (§1msy + §2me)as, o1a1 + 0202 + 030a3]
= o1(&am — &imz)[az, ar] + o2(Sam — S1m2)[az, a2
= 01(am — E1ma)az + 02(§am — E1m2)as,
[y, [z, 2]] = [may + naaz + nzas, (§201 — E102)az + (§1037 + &202)as]
=m(&o1 — &102)[ar, az] + mi(§1o37 + &202)|ar, as]
+ m2(&201 — §102)]az, as]
= —m(&0o1 — §102)ag + 1 (§1037 + §202)vaz + n2(§201 — €102)a3
= (mé102 — m&01)az + (M&rosy” + Mmooy + meéaor — n2€102)as.

Then
[[2, 9], 2] + [y, [z, 2]
= (&mo1 — &impor)ag + (Eamoz — Einpoz)as + (m&roz — méeor)as

+(m&iosy? + m&oay + Moot — naéioa)az = (mé1os — E1ma02)as
+(&amoa — 281200 + 771510'372 + m&r02y + n2éaor)as.
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We have now

[z, 9], 2] + [y, [, 2]] = [, [y, ]
= (mé&1oa — {11202)az
+(&moa — 261202 + MmEr1osy” + Moy + 1m0 )ag
—(&moy — &m0 )ag — (E1mosy® + E1m2097y + Ea1201 — Eamoa)as
= (&1meo1 — E1m202)ag + (Mm&202y — 261202 — 1120277 )as.

Thus we can see that it is possible to find the elements z,y, z such
that [z, [y, z]] # [[z,y], 2] + [y, [, 2]], so that we came to a contradiction.
This contradiction shows that S must be abelian.

Since b ¢ S = Annp(K), a subalgebra (b, K) is not nilpotent. The
equality [K,b] = (0) implies that (b, K) is not Lie algebra. Taking into
account the information about the structure, the following conclusions
can be drawn about Leibniz algebra of dimension 2 (see, for example, a
survey [14]) we can suppose that [b,b] = [b, ¢] = ¢ where K = Flc.

Let = be an element such that z ¢ S. Since S is an ideal of L,
la, 2] = aa + ve for some scalars o, v € F. Since L/K is not nilpotent,
a # 0. The fact that L/K is a Lie algebra implies that [z, a] = —aa+vic
for some v; € F. Since v ¢ S = Annp(K), [x,c] = &c for some scalar
0+# & € F. We have

[, [a, 2]] = [[z,a], 2] + [a, [, 2]] = [[z,q], z].
Then we obtain
alz,a] + vz, ] = [x,aa + ve] = [z, [a, z]]
= [[z,a],z] = [~aa + vic, x] = [—aa, x| = —ala, x].
Since a # 0, we obtain that [z,a] = —[a, 2] — a V], .
The equality [a + K,b+ K] = a + K implies that [a,b] = a + kic

for some scalar k1 € F'. From the results established above, we conclude
that the following holds

[b,a] = —[a,b] — k1[b,c] = —a — K1c — K1c = —a — 2K1c.

If k1 = 0, then put as = a. If not, then put as = a + x1c. For this case,
we have

[b,as] = [b,a + kic] = [b,a] + [b, kK1c] = —a — 2K1c + K1C

= —a — K1C = —ay,
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[a2,b] = [a+ Kic,b] = [a,b] + [k1c,b] = a+ Kic = ag.
Put a; = b, a3 = c¢. Then we come to the following Leibniz algebra

Leiy3(3, F) = Fay ® Fay @ Fas where
[al,aﬂ = a3 = [01,03], [a17a2] = —az, [02,01] = a2,
laz, az] = [az, a3] = [a3, a1] = [a3, ag] = [as,a3] = 0.

Let us verify that an algebra with such defining relations is indeed a
Leibniz algebra. Let z,y, z be arbitrary elements of L,

x = §1a1 + §eaz + §3a3,
Yy =nia1 + nea2 + n3as,
z = o01a1 + oga9 + 03a3,

where &1, &2,&3,11,12,M3, 01,09, 03 are arbitrary scalars. Then

[z,y] = [§1a1 + §202 + §3a3,m1a1 + N202 + 1303]
= §1maz — §1m2a2 + §1m3a3 + Samras
= (&m — &imz)az + (§1m + &ins)as,

[z, 2] = (§201 — §102)az + (§101 + &103)as

ly, 2] = (n201 — moz)as + (mo1 + mos)as.

Thus

[, [y, 2]] = [§1a1 + &2a2 + §3a3, (n201 — Mmo2)az + (Mmo1 + mos)as]
= &1(neo1 — moa)|ar, a2] + &1 (mor + mos)ai, as]
= —&1(neo1 — mo2)az + §1(mo1 +mos)as
= (&1mog — &1meor)ag + (S1mior + Eimios)as,
= [(&am — &1m)as + (&1m1 + &1m3)as, o1a1 + o202 + 03a3]
= (&m — &ine)orfaz, ar] = (Eam — E1ne)o1az
= (&amo1 — &1mpor)az,
[y, [z, 2]] = [ma1 + n2a2 4+ n3a3, (§201 — &102)az + (§101 + &103)as]
= m (201 — &102)[a1, az] + m(&101 + &103)[ar, a3
= —m(&o1 — &o2)az + m(&o1 + &1o3)as
= (m&ioz — mé&eor)az + (m&ior +méios)as.

[z, 4], 2]

Then
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[z, y], 2] + [y, [z, 2]]
= (§amo1 — &imor)az + (mé&ioa — méao1)ag + (méior +méioz)as
= (&imoe — &imeor)az + (Samor + &imos)as = [z, [y, 2]].

Thus, we indeed have a Leibniz algebra. O

Proposition 2. Let L be a non-nilpotent Leibniz algebra of dimension 3
having the Leibniz kernel of dimension 1, S = Annp,(Leib(L)). Suppose
that L # S and L/Leib(L) is an abelian algebra. Then L = Leii4(3, F)
s a Leibniz algebra of the following type

Lei14(3, F) = Fay; & Fay @ Fas where
la1,a1] = a3 = [a1,a3], [a1, az] = [a2,a1] =0,

[CLQ,CLQ] = [ag,ag] = [ag,al] = [ag,ag} = [ag,ag] = 0

In this case, Leib(L) = Faz = [L,L], (®*"(L) = S = Fay @ Fas is
an abelian ideal. Moreover, Fay = ((L) = ¢"8"(L), Fa; ® Fas is a
non-nilpotent subalgebra of L.

Proof. Let again K = Leib(L), then L/K is a Lie algebra of dimen-
sion 2. As it was shown above Annl'(K) is an ideal of L such that
L/Ann"(K) of dimension 1. The inclusion Leib(L) < ¢'°f(L) implies
that Ann®(K) = Annp(K) = S. As it was shown above S/K is an
ideal of L/K of dimension 1. In follows that S is nilpotent subalgebra
of dimension 2. The factor-algebra L/K is a non-abelian Lie algebra of
dimension 2. Let b be an element of L such that b ¢ S = Annp(K).
Then the subalgebra (b, K) is not nilpotent. The equality [K,b] = (0)
implies that (b, K) is not a Lie algebra. Taking into account the infor-
mation about the structure of a two-dimensional Leibniz algebra (see,

for example, a survey [14]) we can suppose that [b,b] = [b,c] = ¢ where
K = Fe.

Choose in S the element a such that a € K. Then S = Fa® Fc, and,
moreover [a,c] = [¢,a] = 0. Let b be an element of L such that b ¢ S.

The equality K = [a + K, b+ K] implies that [a,b] = k;c for some scalar
k1 € F. And similarly [b, a] = kac for some scalar ko € F'. We have

Hl[b’ C] = [b’ Rlc] = [b7 [av b]] = [[b7 a]; b] + [(Z, [b, b]]
= Hba a]v b] = [HQC, b] = 0.

Since b ¢ Annp(K), k1 = 0.
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Consider the mapping Ly : S — S defined by the rule: Ly(y) = [b,y
y € S. Clearly, L is a linear mapping, Ker(Ly) = Annnght( b), Im(Ly)
[b,S] = K. An isomorphism

vl

= [b,S] = Im(Ly) = S/Ker(Ly) = S/Ann5e™ (b),

and the fact that dimp(K) = 1 implies that Annrlght(b) =Y has dimen-
sion 1. Let x = aa+ Bb+ yc be an arbitrary element of L and let y € Y.
We have

[z, 9] = [aa + Bb+ye,y] = afa,y] + Blb, y] + e, y] = 0,
[y, 2] = [y, ca + Bb + ] = aly, a] + Bly, b] + 7y, ¢] = Bly, bl.
Furthermore, [b,[y,b]] = [[b,y],b] + [y, [b,b]] = 0, so that [b,[y,z]] =

[b, Bly, b]] = 0. Thus, we can see that [x,y],[y,z] € Y, and YV is an ideal
of L. Since b ¢ Annp(K), Y N K = (0) and S = K @Y. In particular,
we obtain that S is an abelian ideal. In the coset a + K we choose an
element ag such that ag € Y. By this choice, [b,a2] = 0. From what
has been established above, we obtain the following result: [a2,b] = 0, so
that, Fag =Y = Anng(b). Together with [c,as] = 0 = [az, ¢] it follows
that Fas = Y = ((L).

Put now a3 = b, a3 = ¢. Then we come to the following Leibniz
algebra

Leiy (3, F) = Fay ® Fay @ Faz where
la1, a1] = a3 = [a1, a3], [a1, az] = [az,a1] =0,
[az, az] = [az, a3] = [ag, a1] = [a3, a2] = [a3, a3] = 0.
In this case, Leib(L) = Faz = [L,L], (L) = S = Fay ® Fas is
an abelian ideal. Moreover, Fay = ((L) = ¢"'"(L), Fa; @ Fas is a
non-nilpotent subalgebra of L.

Let us verify that an algebra with such defining relations is indeed a
Leibniz algebra. Let z,y, z be arbitrary elements of L,

x = §1a1 + §eaz + E3a3,
Yy = mai + n2a2 + n3as,
z = 0161 + 0209 + 03a3,

where &1, &2, &3, M1, M2, M3, 01, 02, 03 are arbitrary scalars. Then

[z,y] = [&1a1 + &20a2 + 303,101 + N2a2 + 1303]
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= &imaz + &imzaz = (§m + 1m3)as,
[z, 2] = (§&101 + &103)as,
[y, z] = (mo1 + nio3)as.

Thus
[z, [y, 2] = [&1a1 + &a2 + E3as, (Mo + nos)as]
= & (mo1 + mos)lar, as]
= &1(mo1 +mos)az = (§1mor + &1mos)as,
[z, 9], 2] = [(&1m + &1m3)as, o01a1 + 0202 + o3a3] = 0,
Y, [z, 2]] = [ma1 + mag + n3as, (§101 + &103)as)
=n(&1o1 + &103)[a1, a3)
=m(&o1 + &o3)ag = (méror + méios)as.
Then
[[x,y], Z] + [ya [(L‘, Z]] =0+ (7715101 + 7715103)03 = [.%', [ya Z”
Thus, we have a Leibniz algebra. O

3. Main results

Theorem 1. Let D be an algebra of derivations of the Leibniz algebra
Leii3(3,F). Then D is isomorphic to a Lie subalgebra of Ms(F') con-
sisting of the matrices of the following form.:

2 oo
o o
2 O O

B,v € F. Furthermore, D is abelian and D is a direct sum of two one-
dimensional subalgebras.

and f € Der(L). By Lemma 1, Fag =

Proof. Let L = Leii3(3,F)
) = (L), by Lemma 2, f([L,L]) < [L,L]. So

F(Leib(L)) = £ (1)
that
fla1) = anar + agag + azas,
f(az) = Paaz + Bas,
f(az) = vas,
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ap, a2, a3, B2, 33,7 € F. Then

flas) = f([lar, a1]) = [f(ar), a1] + [a1, f(a1)]

= [1a1 + agag + agas, a1] + [a1, ara1 + agas + asas)

= ailar, a1] + arfar, a1] + aslar, as] + aslal, as)

= 2a1a3 — aga + azag = —asag + (201 + as)as,
flas) = f(la1, as]) = [f(a1), as] + [a1, f(as)]

= [1a1 + agag + agas, as] + [a1, yas]

= aia1, az] +v[ar, a3z] = araz +yaz = (o1 +7)as,
flaz) = f(laz, a1]) = [f(a2), a1] + [a2, f(a1)]

= [Baaz + B3a3, a1] + [az, ara1 + asas + azas]

= falaz, a1] + aqlaz, a1] = Peaz + anag = (B2 + a1)as.
Thus, we obtain

—anaz + (201 + az)az = (o + 7)az = vas,
(B2 + a1)az = Baaz + Bzas.

It follows that
a;=az=0,a3 =7,83=0.

Hence, Z(f) is the following matrix:

2 oo
o o
2 O O

B,v € F.
Conversely, let x,y be arbitrary elements of L,

x = §1a1 + §oan + §3a3,
Yy = nia1 + n2a2 + n3as,

where &1, &9, &3, 11, M2, M3 are arbitrary scalars. Then

[z,y] = [§101 + &2a2 + §3a3,ma1 + n2ag + n3as)]
= &mlar, ar] + &imzlar, az] + &umslar, as] + Eom[az, a1
= §1mas — §1m2az + E1nzas + Eanraz
= (&am — &im2)az + (&1 + &1m3)as,
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f(@) = f(&rar + &ea2 + §3a3) = &1 f(a1) + &2f (a2) + &3 (as)
= §1vas + &2Baz + E3vas
= &Pag + (&1 + &37)as,
f(y) = n2Baz + (m~y + n3v)as,
f([z,y]) = f((&am — &im2)az + (&m + &ims)as)
= (&am — &in2) faz) + (&am + &n3) f(a3)
Som — &np)Paz + (&1 + &inz)yas
§om B — E1maB)az + (1 + 1mzy)as.

—~ o~

Thus,

[f (), y] + [z, f(y)]
= [§2Ba2 + (&17 + &37)as, mar + n2a2 + n3a3)
+[&1a1 + &aaz + §3a3, m2Baz + (m1y + n37y)as]
= &offmaz, a1] + & (my + n37)[a1, as] + E1meBlat, as]
= §afmaz + (Eamy + §1mzy)as — BEinzaz
= (§&2Bm — B&imz)az + (E1my + E1mzy)as,

so that f([z,y]) = [f(x),y] + [z, f(y)].
Denote by A the subset of M3(F) consisting of the matrices of the

following form:
0 00
0 0 0],
v 0 7

~v € F. Denote by B the subset of M;3(F') consisting of the matrices of

the following form:
0 0
0 0 |,
0 0
pgekF.

It is not hard to see that A, B are one-dimensional subalgebras of
=(L), [B,A] = (0), Z(L) is a direct sum A &® B. O

o O

Theorem 2. The algebra of derivations of the Leibniz algebra Leiq4(3, F)
is isomorphic to the derivation algebra of Lei3(3, F).

Proof. Let L = Leiy4(3,F) and f € Der(L). By Lemma 1, ¢'*(L) =
(L)) = f(Fay ® Fag), Fay = ((L) = f(¢(L)), by Lemma 2, Fag =
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f(Leib(L)) = f([L, L)) <[L,L]. So that

fla1) = ara1 + anas + asas,
f(CLQ) = 5a27
f(a3) = nas,

a1, a9,a3, 8,7 € F. Then

flag) = f([ar, a1]) = [f(a1), a1] + [a1, f(a1)]
= [a1a1 + agag + azas, a1] + a1, ara1 + azaz + asas]
= aiar, a1] + aqfar, a1] + aslay, as)
= 2aa3 + agaz = (2&1 + 043)(13,
flas) = f(la1,as3]) = [f(a1), as] + [a1, f(as)]
= [1a1 + anag + agas, as] + (a1, yas]

= aqla1, az] + v[a1, a3] = (a1 +v)as.
Thus, we obtain
(201 + a3)az = (o1 +7)az = yas.

It follows that oy = ag = 0, 3 = . Hence, Z(f) is the following matrix:

= O O
o™ O

0
0],
¥

B,y eF.
Conversely, let x,y be arbitrary elements of L,
r = &1a1 + 202 + E3as,
Yy = may + n2a2 + 1303,

where &1, &2, &3, M1, 12, 3 are arbitrary scalars. Then

[z,y] = [§1a01 + &2a2 + 303, mar + 1n2a2 + n303]
= &imlar, a1] + &inzlar, az] = Eimaz + E1mzas
= (&m + &in3)as,

f(x) = f(§1a1 + 202 + &3a3) = &1 f(ar) + &af (az) + &3 f(as)
= &1vaz + §28az + E3vaz = aBaz + (§17 + €37)as,
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f(y) = n2Baz + (my + n37)as,
[z, y]) = fF((Eam + &mz)az) = (& + Em3) f(a3)
= (&im + &nz)vas = (Somy + &nsy)as,

so that f([z,y]) = [f(2),y] + [z, f(y)]-

As we can see that the algebra of derivations of Leibniz algebra
Leiy4(3, F') is isomorphic to the algebra of derivations of Leibniz algebra
L6i13(3, F) O]
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