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Abstract. The edge-Wiener index of a simple connected

graph G is defined as the sum of distances between all pairs of edges

of G where the distance between two edges in G is the distance

between the corresponding vertices in the line graph of G. In this

paper, we study the edge-Wiener index under the disjunctive product

of graphs and apply our results to compute the edge-Wiener index

for the disjunctive product of paths and cycles.

Introduction

Throughout this paper, we consider connected finite graphs without
any loops or multiple edges. Let G be such a graph with vertex set V (G)
and edge set E(G). A topological index (also known as graph invariant) is
any function on a graph that does not depend on a labeling of its vertices.
Several hundreds of different invariants have been employed to date with
various degrees of success in QSAR/QSPR studies. We refer the reader to
[12] for review.

The oldest topological index is the one put forward in 1947 by Harold
Wiener [23] nowadays referred to as the Wiener index. Wiener used his
index for the calculation of the boiling points of alkanes. The Wiener
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index W (G) of a graph G is defined as the sum of distances between all
pairs of vertices of G,

W (G) =
∑

{u,v}⊆V (G)

d(u, v |G),

where d(u, v |G) denotes the distance between the vertices u and v of G
which is defined as the length of any shortest path in G connecting them.
We denote d(u, v |G) simply by d(u, v) when no ambiguity is present.
Details on the mathematical properties of the Wiener index and its appli-
cations in chemistry can be found in [8, 10,11,13–15].

Motivated by definition of the Wiener index, the edge-Wiener index

was introduced based on distance between all pairs of edges in a graph in
2009 [9, 19, 21]. The edge-Wiener index of a graph G is defined as

We(G) =
∑

{f,g}⊆E(G)

de(f, g |G),

where de(f, g |G) denotes the distance between the edges f and g of
G which is defined as the ordinary distance between the corresponding
vertices in the line graph L(G) of G. So, We(G) = W (L(G)). It has been
proved that [19], for each pair of edges f = uv and g = zt of G,

de(f, g |G) =

{

min{d(u, z), d(u, t), d(v, z), d(v, t)}+ 1 if f 6= g,

0 if f = g.

For details on the theory of the edge-Wiener index and its applications
see [2, 22,24] and specially the recent paper [18].

Many graphs are composed of simpler graphs via various graph opera-

tions also known as graph products. These composite graphs have more
complicated structures than their components. So, in general, computing
their topological invariants is more difficult than computing the topological
invariants of their components. So, it is important to understand how cer-
tain invariants of such composite graphs are related to the corresponding
invariants of their components. The edge-Wiener index of some graph
operations have been computed before [1, 3–7]. In this paper, we study
the behavior of the edge-Wiener index under the disjunctive product of
graphs and apply our results to compute the edge-Wiener index for the
disjunctive product of paths and cycles. We refer the reader to [17] for
details on the properties and applications of graph operations.
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1. Definitions and preliminaries

For a simple connected graph G, let NG(u) denote the open neighbor-
hood of a vertex u in G which is the set of all vertices of G adjacent with
u. The cardinality of NG(u) is called the degree of u in G and denoted
by dG(u). If there is no confusion, we simply use N(u) and d(u) instead
of NG(u) and dG(u), respectively. Let ∆(G) denote the number of all
triangles (3-cycles) in G and M1(G) denote the first Zagreb index of G
which is one the oldest topological indices introduced by Gutman and
Trinajstić [16] as follow.

M1(G) =
∑

u∈V (G)

d(u)2 =
∑

uv∈E(G)

(

d(u) + d(v)
)

. (1)

It is easy to check that,

∑

uv∈E(G)

|N(u) ∩N(v)| = 3∆(G) (2)

and
∑

u,v∈V (G)

|N(u) ∩N(v)| = M1(G). (3)

Using the inclusion–exclusion principle and then (1), (2), and (3), one can
easily get the following equations.

∑

uv∈E(G)

|N(u) ∪N(v)| = M1(G)− 3∆(G) (4)

and
∑

u,v∈V (G)

|N(u) ∪N(v)| = 4ne−M1(G), (5)

where n and e denote the order and size of the graph G, respectively.

Here, we introduce some useful notations which will be used throughout
the paper.

ν(G) =
∑

uv∈E(G)

|N(u) ∪N(v)|2 , (6)

ν∗(G) =
∑

u,v∈V (G)

|N(u) ∪N(v)|2 , (7)
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µ(G) =
∑

uv∈E(G)

∑

z∈V (G)\(N(u)∪N(v))

∣

∣N(z) \
(

N(u) ∪N(v)
)∣

∣ , (8)

and

µ∗(G) =
∑

u,v∈V (G)

∑

z∈V (G)\(N(u)∪N(v))

∣

∣N(z) \
(

N(u) ∪N(v)
)
∣

∣ . (9)

2. Results and discussion

Let G1 and G2 be two simple connected graphs. We denote by V (Gi)
and E(Gi), the vertex set and edge set of Gi, respectively, where i ∈ {1, 2}.
The disjunctive product G1 ∨ G2 of graphs G1 and G2 is a graph with
the vertex set V (G1) × V (G2) and two vertices (u1, u2) and (v1, v2) of
G1 ∨ G2 are adjacent if and only if u1 and v1 are adjacent in G1 or u2
and v2 are adjacent in G2. The disjunctive product of two graphs is also
known as their co-normal product or OR product. The distance between
the vertices u = (u1, u2) and v = (v1, v2) of G1 ∨G2 is given by

d(u, v|G1 ∨G2) =











0 if u1 = v1, u2 = v2,

1 if u1v1 ∈ E(G1) or u2v2 ∈ E(G2),

2 otherwise.

In this section, we compute the edge-Wiener index of the disjunctive
product of G1 and G2. Throughout the section, for notational convenience,
we let G = G1 ∨G2 be the disjunctive product of a pair of graphs G1 and
G2, and n1, e1, n2, e2 denote the order of G1, size of G1, order of G2, size
of G2, respectively.

At first, we consider three subsets of E(G) as follows.

E1 ={(u1, u2)(v1, v2) | u1v1 ∈ E(G1), u2, v2 ∈ V (G2)},

E2 ={(u1, u2)(v1, v2) | u2v2 ∈ E(G2), u1, v1 ∈ V (G1)},

E3 ={(u1, u2)(v1, v2) | u1v1 ∈ E(G1), u2v2 ∈ E(G2)}.

It is clear that, E(G) =
⋃3

i=1Ei and

|E(G)| = |E1|+ |E2| − 2 |E3| = e1n
2
2 + e2n

2
1 − 2e1e2. (10)

Since all distinct vertices of G are either at distance 1 or 2, so all distinct
edges of G are either at distance 1, 2, or 3. Therefore, we can partition
the set of all pairs of edges of G into three sets as follows.

A ={{f, g} | de(f, g |G) = 1},
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B ={{f, g} | de(f, g |G) = 2},

C ={{f, g} | de(f, g |G) = 3}.

In order to find the edge-Wiener index of G, we should compute the
cardinality of the above sets. It is clear that,

|A|+ |B|+ |C| =

(

|E(G)|

2

)

=

(

e1n
2
2 + e2n

2
1 − 2e1e2

2

)

. (11)

By (11), it is enough to find the cardinality of the sets A and C.
In the following proposition, we compute the cardinality of the set A.

Proposition 1. The cardinality of the set A is given by

|A| =
1

2

[

n2(n
2
2 − 4e2)M1(G1) + n1(n

2
1 − 4e1)M1(G2) (12)

+M1(G1)M1(G2) + 8n1n2e1e2 − 2(e1n
2
2 + e2n

2
1 − 2e1e2)

]

.

Proof. Clearly, A is the set of all pairs of adjacent edges of G. So

|A| =
∑

u∈V (G)

(

d(u)

2

)

=
1

2

∑

u∈V (G)

(

d(u)2 − d(u)
)

=
1

2
M1(G)− |E(G)| .

By Theorem 3 in [20], the first Zagreb index of the disjunctive product of
G1 and G2 is given by

M1(G) =n2(n
2
2 − 4e2)M1(G1) + n1(n

2
1 − 4e1)M1(G2)

+M1(G1)M1(G2) + 8n1n2e1e2.

Now using (10), we can get (12).

Now we start to find the cardinality of the set C. Suppose f =
(u1, u2)(v1, v2) is an arbitrary edge of G and let C(f) be the set of all
edges of G which are at distance 3 from f ,

C(f) = {g ∈ E(G) | de(f, g |G) = 3}.

In the following lemma, we compute the cardinality of the set C(f).

Lemma 1. For every arbitrary edge f = (u1, u2)(v1, v2) of G, the cardi-

nality of the set C(f) is given by

|C(f)| =
1

2

[

(

n2 − |N(u2) ∪N(v2)|
)2

(13)
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×
∑

z1∈V (G1)\(N(u1)∪N(v1))

∣

∣N(z1) \
(

N(u1) ∪N(v1)
)∣

∣

+
(

n1 − |N(u1) ∪N(v1)|
)2

×
∑

z2∈V (G2)\(N(u2)∪N(v2))

∣

∣N(z2) \
(

N(u2) ∪N(v2)
)
∣

∣

−
∑

z1∈V (G1)\(N(u1)∪N(v1))

∣

∣N(z1) \
(

N(u1) ∪N(v1)
)
∣

∣

×
∑

z2∈V (G2)\(N(u2)∪N(v2))

∣

∣N(z2) \
(

N(u2) ∪N(v2)
)
∣

∣

]

.

Proof. Let f = (u1, u2)(v1, v2) be an arbitrary edge of G and let g =
(z1, z2)(t1, t2) be an arbitrary element of C(f). By definition of the distance
de, we have

1 + min{d
(

(u1, u2), (z1, z2)
)

, d
(

(u1, u2), (t1, t2)
)

, d
(

(v1, v2), (z1, z2)
)

,

d
(

(v1, v2), (t1, t2)
)

} = de(f, g|G) = 3.

Hence,

min{d
(

(u1, u2), (z1, z2)
)

, d
(

(u1, u2), (t1, t2)
)

, d
(

(v1, v2), (z1, z2)
)

,

d
(

(v1, v2), (t1, t2)
)

} = 2.

Since all distinct vertices of G are either at distance 1 or 2, so

d
(

(u1, u2), (z1, z2)
)

= d
(

(u1, u2), (t1, t2)
)

= d
(

(v1, v2), (z1, z2)
)

= d
(

(v1, v2), (t1, t2)
)

= 2.

This implies that, zi and ti are adjacent neither to ui nor to vi in Gi,
where i ∈ {1, 2}. Consequently,

|C(f)| =
1

2

∑

z1∈V (G1)\(N(u1)∪N(v1))

∑

z2∈V (G2)\(N(u2)∪N(v2))

[

∣

∣N(z1) \
(

N(u1)

∪N(v1)
)
∣

∣

(

n2 − |N(u2) ∪N(v2)|
)

+
∣

∣N(z2) \
(

N(u2) ∪N(v2)
)
∣

∣

(

n1 − |N(u1) ∪N(v1)|
)

−
∣

∣N(z1) \
(

N(u1) ∪N(v1)
)∣

∣

∣

∣N(z2) \
(

N(u2) ∪N(v2)
)∣

∣

]

.

=
1

2

[

∑

z1∈V (G1)\(N(u1)∪N(v1))

∣

∣N(z1) \
(

N(u1) ∪N(v1)
)
∣

∣
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∑

z2∈V (G2)\(N(u2)∪N(v2))

(

n2 − |N(u2) ∪N(v2)|
)

+
∑

z2∈V (G2)\(N(u2)∪N(v2))

∣

∣N(z2) \
(

N(u2) ∪N(v2)
)∣

∣

∑

z1∈V (G1)\(N(u1)∪N(v1))

(

n1 − |N(u1) ∪N(v1)|
)

−
∑

z1∈V (G1)\(N(u1)∪N(v1))

∣

∣N(z1) \
(

N(u1) ∪N(v1)
)∣

∣

∑

z2∈V (G2)\(N(u2)∪N(v2))

∣

∣N(z2) \
(

N(u2) ∪N(v2)
)∣

∣

]

.

Now, (13) is obtained after simplifying the above expression.

Let f = (u1, u2)(v1, v2) be an edge of G. Then, (u1, v2)(v1, u2) is also
an edge of G. We denote the edge (u1, v2)(v1, u2) by f̄ .

Lemma 2. For every arbitrary edge f = (u1, u2)(v1, v2) of G,
∣

∣C(f̄)
∣

∣ =
|C(f)|.

Proof. The cardinality of C(f̄) can easily be obtained by changing the
role of the vertices u2 and v2 in (13). On the other hand, one can easily
check that changing the role of these two vertices does not influence the
result. So

∣

∣C(f̄)
∣

∣ = |C(f)|.

In the following proposition, we obtain the cardinality of the set C.

Proposition 2. The cardinality of the set C is given by

|C| =
1

4

[(

n2
2(n

2
2 − 10e2) + ν∗(G2)− 2ν(G2) (14)

+ 6n2

(

M1(G2)− 2∆(G2)
)

)

µ(G1)

+
(

n2
1(n

2
1 − 10e1) + ν∗(G1)− 2ν(G1)

+ 6n1

(

M1(G1)− 2∆(G1)
)

)

µ(G2)

+
(

n2
2e2 + ν(G2)− 2n2

(

M1(G2)− 3∆(G2)
)

)

µ∗(G1)

+
(

n2
1e1 + ν(G1)− 2n1

(

M1(G1)− 3∆(G1)
)

)

µ∗(G2)

− µ(G1)µ
∗(G2)− µ(G2)µ

∗(G1) + 2µ(G1)µ(G2)
]

.
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Proof. For every f ∈ E(G), there exist |C(f)| elements in C. Furthermore,
for every pair of edges f, g in G, g ∈ C(f) if and only if f ∈ C(g). Hence,

|C| =
1

2

∑

f∈E(G)

|C(f)| =
1

2

[

∑

f∈E1

|C(f)|+
∑

f∈E2

|C(f)|

−
∑

f∈E3

(

|C(f)|+
∣

∣C(f̄)
∣

∣

)

]

.

Using Lemma 2, we obtain

|C| =
1

2

[

∑

f∈E1

|C(f)|+
∑

f∈E2

|C(f)| − 2
∑

f∈E3

|C(f)|
]

. (15)

Now, we compute
∑

f∈Ei
|C(f)|, for every i ∈ {1, 2, 3}.

By definition of the set E1 and (13), we have

∑

f∈E1

|C(f)| =
1

2

∑

u1v1∈E(G1)

∑

u2,v2∈V (G2)

[

(

n2 − |N(u2) ∪N(v2)|
)2

∑

z1∈V (G1)\(N(u1)∪N(v1))

∣

∣N(z1) \
(

N(u1) ∪N(v1)
)
∣

∣

+
(

n1 − |N(u1) ∪N(v1)|
)2

∑

z2∈V (G2)\(N(u2)∪N(v2))

∣

∣N(z2) \
(

N(u2) ∪N(v2)
)
∣

∣

−
∑

z1∈V (G1)\(N(u1)∪N(v1))

∣

∣N(z1) \
(

N(u1) ∪N(v1)
)
∣

∣

∑

z2∈V (G2)\(N(u2)∪N(v2))

∣

∣N(z2) \
(

N(u2) ∪N(v2)
)
∣

∣

]

.

By simplifying the above expression, we obtain

∑

f∈E1

|C(f)| =
1

2

[

∑

u2,v2∈V (G2)

(

n2 − |N(u2) ∪N(v2)|
)2

∑

u1v1∈E(G1)

∑

z1∈V (G1)\(N(u1)∪N(v1))

∣

∣N(z1) \
(

N(u1) ∪N(v1)
)
∣

∣

+
∑

u1v1∈E(G1)

(

n1 − |N(u1) ∪N(v1)|
)2

∑

u2,v2∈V (G2)

∑

z2∈V (G2)\(N(u2)∪N(v2))

∣

∣N(z2) \
(

N(u2) ∪N(v2)
)
∣

∣
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−
∑

u1v1∈E(G1)

∑

z1∈V (G1)\(N(u1)∪N(v1))

∣

∣N(z1) \
(

N(u1) ∪N(v1)
)
∣

∣

∑

u2,v2∈V (G2)

∑

z2∈V (G2)\(N(u2)∪N(v2))

∣

∣N(z2) \
(

N(u2) ∪N(v2)
)
∣

∣

]

.

Now using (4)−(9), we obtain

∑

f∈E1

|C(f)| =
1

2

[(

n4
2 + ν∗(G2)− 2n2

(

4n2e2 −M1(G2)
)

)

µ(G1)

+
(

n2
1e1 + ν(G1)− 2n1

(

M1(G1)− 3∆(G1)
)

)

µ∗(G2)

− µ(G1)µ
∗(G2)

]

.

(16)

By definition of the set E2 and (13), we have

∑

f∈E2

|C(f)| =
1

2

∑

u2v2∈E(G2)

∑

u1,v1∈V (G1)

[

(

n2 − |N(u2) ∪N(v2)|
)2

∑

z1∈V (G1)\(N(u1)∪N(v1))

∣

∣N(z1) \
(

N(u1) ∪N(v1)
)
∣

∣

+
(

n1 − |N(u1) ∪N(v1)|
)2

∑

z2∈V (G2)\(N(u2)∪N(v2))

∣

∣N(z2) \
(

N(u2) ∪N(v2)
)
∣

∣

−
∑

z1∈V (G1)\(N(u1)∪N(v1))

∣

∣N(z1) \
(

N(u1) ∪N(v1)
)
∣

∣

∑

z2∈V (G2)\(N(u2)∪N(v2))

∣

∣N(z2) \
(

N(u2) ∪N(v2)
)
∣

∣

]

.

By symmetry, we obtain

∑

f∈E2

|C(f)| =
1

2

[(

n4
1 + ν∗(G1)− 2n1

(

4n1e1 −M1(G1)
)

)

µ(G2)

+
(

n2
2e2 + ν(G2)− 2n2

(

M1(G2)− 3∆(G2)
)

)

µ∗(G1)

− µ(G2)µ
∗(G1)

]

.

(17)

By definition of the set E3 and (13), we have

∑

f∈E3

|C(f)| =
1

2

∑

u1v1∈E(G1)

∑

u2v2∈E(G2)

[

(

n2 − |N(u2) ∪N(v2)|
)2
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∑

z1∈V (G1)\(N(u1)∪N(v1))

∣

∣N(z1) \
(

N(u1) ∪N(v1)
)∣

∣

+
(

n1 − |N(u1) ∪N(v1)|
)2

∑

z2∈V (G2)\(N(u2)∪N(v2))

∣

∣N(z2) \
(

N(u2) ∪N(v2)
)
∣

∣

−
∑

z1∈V (G1)\(N(u1)∪N(v1))

∣

∣N(z1) \
(

N(u1) ∪N(v1)
)
∣

∣

∑

z2∈V (G2)\(N(u2)∪N(v2))

∣

∣N(z2) \
(

N(u2) ∪N(v2)
)∣

∣

]

.

Using (4), (6), and (8), we obtain

∑

f∈E3

|C(f)| =
1

2

[(

n2
2e2 + ν(G2)− 2n2

(

M1(G2)− 3∆(G2)
)

)

µ(G1)

+
(

n2
1e1 + ν(G1)− 2n1

(

M1(G1)− 3∆(G1)
)

)

µ(G2)

− µ(G1)µ(G2)
]

.

(18)

Now by (15)−(18), we can get (14).

Now, we are ready to compute the edge-Wiener index of the disjunctive
product of G1 and G2.

Theorem 1. Assume that G1 and G2 are simple connected graphs, G1∨G2

is the disjunctive product of G1 and G2, and n1, e1, n2, e2 denote the

order of G1, size of G1, order of G2, size of G2, respectively. Under the

notation introduced earlier, the edge-Wiener index We(G1 ∨ G2) of the

disjunctive product G1 ∨G2 of G1 and G2 is given by

We(G1 ∨G2) =
1

4

[(

n2
2(n

2
2 − 10e2) + ν∗(G2)− 2ν(G2) (19)

+ 6n2

(

M1(G2)− 2∆(G2)
)

)

µ(G1)

+
(

n2
1(n

2
1 − 10e1) + ν∗(G1)− 2ν(G1)

+ 6n1

(

M1(G1)− 2∆(G1)
)

)

µ(G2)

+
(

n2
2e2 + ν(G2)− 2n2

(

M1(G2)− 3∆(G2)
)

)

µ∗(G1)

+
(

n2
1e1 + ν(G1)− 2n1

(

M1(G1)− 3∆(G1)
)

)

µ∗(G2)
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− µ(G1)µ
∗(G2)− µ(G2)µ

∗(G1) + 2µ(G1)µ(G2)

− 2n2(n
2
2 − 4e2)M1(G1)− 2n1(n

2
1 − 4e1)M1(G2)

− 2M1(G1)M1(G2) + 4
(

e1n
2
2 + e2n

2
1 − 2e1e2

)2
− 16n1n2e1e2

]

.

Proof. Let G = G1 ∨G2. By applying Propositions 1-2, Lemmas 1-2, and
definition of the edge-Wiener index We(G), we get

We(G) =
∑

{f,g}⊆E(G)

de(f, g |G) =
∑

{f,g}∈A∪B∪C

de(f, g |G)

=
∑

{f,g}∈A

de(f, g |G) +
∑

{f,g}∈B

de(f, g |G) +
∑

{f,g}∈C

de(f, g |G)

= |A|+ 2 |B|+ 3 |C| = 2(|A|+ |B|+ |C|)− |A|+ |C| .

Now, using (11), (12), and (14), we can get (19).

Let Pn and Cn denote the n−vertex path and cycle, respectively. It
can be verified by a direct calculation that, for every n > 2,

M1(Pn) = 4n− 6; ∆(Pn) = 0;

ν(Pn) =

{

4 if n = 2,

16n− 30 if n > 3;

ν∗(Pn) =

{

10 if n = 2,

2(8n2 − 27n+ 31) if n > 3;

µ(Pn) =

{

0 if n = 2,

2(n− 3)(n− 4) if n > 3;

µ∗(Pn) =

{

0 if n = 2,

2(n− 3)(n2 − 6n+ 10) if n > 3.

Also for every n > 3,

M1(Cn) = 4n;

∆(Cn) =

{

1 if n = 3,
0 if n > 4;

ν(Cn) =

{

27 if n = 3,
16n if n > 4;

ν∗(Cn) =

{

160 if n = 4,
2n(8n− 13) if n 6= 4;
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µ(Cn) =

{

0 if n 6 4,
2n(n− 5) if n > 5;

µ∗(Cn) =

{

0 if n 6 4,
2n(n− 4)2 if n > 5.

Now using (19), we easily arrive at:

Corollary 1. For every integers n > 2 and m > 3,

We(Pn ∨ Cm)

=











































































150 if n = 2, m = 3,

432 if n = 2, m = 4,

m(m3 + 3m2 +m− 9) if n = 2, m > 5,
1
2(18n

4 + 24n3 − 39n2 − 45n+ 72) if n > 3, m = 3,

8(2n4 + 7n3 − 2n2 − 30n+ 38) if n > 3, m = 4,
1
2m

[

n4(3m− 5)

+ 2n3(3m2 − 18m+ 44)

+ n2(3m3 − 42m2 + 280m− 722)

− n(11m3 − 152m2 + 1038m− 2524)

+ 2(7m3 − 103m2 + 683m− 1583)
]

if n > 3, m > 5.
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