On block-supersymmetric polynomials on Banach spaces

Dmytro Faryma, Volodymyr Kimak, Viktoriia Kravtsiv, and Andriy Zagorodnyuk

Communicated by A. Zhuchok

ABSTRACT. We investigate algebras of block-supersymmetric polynomials on an infinite-dimensional Banach space $\ell_p(\mathbb{C}^s)$ of absolutely p-convergent sequences of vectors in \mathbb{C}^s , and ring structures on the set \mathcal{M}_p of point evaluation homomorphisms of these algebras. In particular, we establish some necessary and sufficient conditions for a polynomial to be block-supersymmetric. Also, we describe complex ring homomorphisms of \mathcal{M}_p .

Introduction and preliminaries

Theory of symmetric functions is a natural subject in the classical theory of invariants, algebras, and combinatorics (see e.g. [19]). The main results and methods of this theory have nontrivial extensions to infinite-dimensional spaces. Symmetric (invariant) polynomials with respect to some groups of symmetries of Banach spaces ℓ_p were considered first in [11, 20]. Algebras of symmetric analytic functions on Banach spaces, their homomorphisms, and spectra have been studied in [1, 3, 6, 7, 23, 24, 25] and others (see [5] and the references therein).

This research was supported by the National Research Foundation of Ukraine, 2023.03/0198.

²⁰²⁰ Mathematics Subject Classification: 46G25, 46H10.

Key words and phrases: symmetric polynomials on Banach spaces, supersymmetric polynomials, block-supersymmetric polynomials, symmetric analytic functions.

It is well-known that in the algebra of all symmetric polynomials of n scalar variables x_1, \ldots, x_n with respect to permutations of the variables there is an algebraic basis of power symmetric polynomials F_1, \ldots, F_n ,

$$F_k(x) = \sum_{i=1}^n x_i^k.$$

It means that any symmetric polynomial of n variables can be uniquely represented as an algebraic combination of F_1, \ldots, F_n . According to [11, 20], this result can be extended to some infinite-dimensional cases. It was shown that polynomials

$$F_k(x) = \sum_{i=1}^{\infty} x_i^k, \quad k \ge \lceil p \rceil$$

form an algebraic basis in the algebra of all symmetric polynomials on ℓ_p , $1 \le p < \infty$, where $\lceil p \rceil$ is the ceiling of p.

Let $\ell_p(\mathbb{C}^s)$, $1 \leq p < \infty$ be the Banach space of sequences

$$x = (x_1, x_2, \ldots, x_i, \ldots)$$

such that $x_j = (x_j^{(1)}, \dots, x_j^{(s)})$ are vectors in \mathbb{C}^s for every fixed $j \in \mathbb{N}$, and the series

$$||x||_p := \Big(\sum_{i=1}^{\infty} \sum_{r=1}^{s} |x_j^{(r)}|^p\Big)^{1/p}$$

converges. A polynomial P on $\ell_p(\mathbb{C}^s)$ is block-symmetric (or vector-symmetric) if

$$P(x_1, x_2, ..., x_m, ...) = P(x_{\sigma(1)}, x_{\sigma(2)}, ..., x_{\sigma(m)}, ...)$$

for every permutation (injective mapping) $\sigma \colon \mathbb{N} \to \mathbb{N}$ and every $x_m \in \mathbb{C}^s$. It is known [17] that polynomials

$$H^{\mathbf{k}}(x) = H^{k_1, k_2, \dots, k_s}(x) = \sum_{i=1}^{\infty} \prod_{r=1}^{s} (x_j^{(r)})^{k_r}$$

for $|\mathbf{k}| \geq \lceil p \rceil$ form an algebraic basis in the algebra $\mathcal{P}_{vs}(\ell_p(\mathbb{C}^s))$ of block-symmetric polynomials on $\ell_p(\mathbb{C}^s)$, $1 \leq p < \infty$, where $x = (x_1, x_2, \ldots)$ are in $\ell_p(\mathbb{C}^s)$. Here we use the standard notations for multi-indexes $\mathbf{k} = (k_1, k_2, \ldots, k_s)$, and $|\mathbf{k}| = k_1 + k_2 + \cdots + k_s$. Block-symmetric (or

MacMahon) polynomials on finite-dimensional spaces where investigated in [21].

A supersymmetric polynomial P of m + n complex variables

$$(y_1,\ldots,y_m|x_1,\ldots,x_n)\in\mathbb{C}^m\times\mathbb{C}^n$$

is defined as a polynomials that is invariant with respect to separate permutations y_1, \ldots, y_m and x_1, \ldots, x_n and satisfy the following cancelation law: $P(t, \ldots, y_m | t, \ldots, x_n)$ does not depend on t. In [22] Stembridge proved that polynomials $T_k = F_k(x) - F_k(y)$, $k \in \mathbb{N}$ form the set of generators of supersymmetric polynomials. Note that in [14] it was proved that this algebra is not finitely generated, that is, there does not exist a finite number of generators. Supersymmetric polynomials and supersymmetric analytic functions on sequences Banach spaces and some their generalizations were investigated in [4, 8, 9, 10, 13].

Let $\mathbb{Z}_0 = \mathbb{Z} \setminus \{0\}$ and $\ell_p(\mathbb{C}^s_{\mathbb{Z}_0})$ be the Banach space of two-sides sequences

$$z = (\dots, z_{-n}, \dots, z_{-1}, z_1, \dots, z_n, \dots) = (y|x)$$

= $(\dots, y_n, \dots, y_1|x_1, \dots, x_n, \dots)$

such that

$$||z||_p := \left(\sum_{i=-\infty}^{\infty} ||z_i||_p^p\right)^{1/p} = \left(\sum_{i=-\infty}^{\infty} \sum_{j=1}^s |z_i^{(j)}|^p\right)^{1/p} < \infty,$$

where $1 \leq p < \infty$. Here the vectors $x = (x_1, x_2, \ldots)$ and $y = (y_1, y_2, \ldots)$ are in $\ell_p(\mathbb{C}^s)$, that is, the vector coordinates $x_i = (x_i^{(1)}, \ldots, x_i^{(s)})$ and $y_i = (y_i^{(1)}, \ldots, y_i^{(s)})$ are vectors in \mathbb{C}^s with $z_n = x_n, z_{-n} = y_n$ for $n \in \mathbb{N}$. Let us consider the following polynomials on $\ell_p(\mathbb{C}^s_{\mathbb{Z}_0})$:

$$T^{\mathbf{k}}(z) = H^{\mathbf{k}}(x) - H^{\mathbf{k}}(y) = \sum_{j=1}^{\infty} \prod_{r=1}^{s} (x_j^{(r)})^{k_r} - \sum_{j=1}^{\infty} \prod_{r=1}^{s} (y_j^{(r)})^{k_r}, \quad (1)$$

$$\mathbf{k} = (k_1, \dots, k_s), |\mathbf{k}| \ge \lceil p \rceil.$$

Definition 1. A polynomial P on $\ell_p(\mathbb{C}^s_{\mathbb{Z}_0})$ is called block-supersymmetric (or vector-supersymmetric) if it is an algebraic combination of polynomials $\{T^{\mathbf{k}}\}_{|\mathbf{k}|=\lceil p\rceil}^{\infty}$. That is, P can be written as a finite sum of finite products of polynomials in $\{T^{\mathbf{k}}\}_{|\mathbf{k}|=\lceil p\rceil}^{\infty}$ and constants. We denote by $\mathcal{P}_{vsup}(\ell_p)$ the algebra of all block-supersymmetric polynomials on $\ell_p(\mathbb{C}^s_{\mathbb{Z}_0})$.

Block-supersymmetric polynomials and their possible applications were studied in [8, 12, 15, 16]. In this paper, we continue to investigate algebras of block-supersymmetric polynomials on $\ell_p(\mathbb{C}^s_{\mathbb{Z}_0})$ and ring structures on point evaluation homomorphisms of these algebras. In Section 1, we introduce a "supersymmetric semigroup" of symmetries \mathfrak{S} and prove that a polynomial is supersymmetric if and only if it is \mathfrak{S} -invariant. In Section 2, we consider the case if \mathbb{C}^s is an algebra and investigate a ring structure that appears on the set of point evaluation functionals on the algebra of block-supersymmetric polynomials.

1. Generators of block-supersymmetric polynomials

For a given $x = (x_1, x_2, ...) \in \ell_p(\mathbb{C}^s)$ we denote by supp (x) the support of x, that is,

$$supp (x) = \{ i \in \mathbb{N} \colon x_i \neq 0 \}.$$

Let $x = (x_1, x_2, ...)$ and $v = (v_1, v_2, ...)$ are in $\ell_p(\mathbb{C}^s)$. We say that $x \sim v$ if there exists a bijection σ from supp (x) to supp (v) such that $x_i = v_{\sigma(i)}$ for every $i \in \text{supp}(x)$.

Using Theorem 1 and Corollary 1 in [18], we can get the following proposition.

Proposition 1. If there is an integer m such that $H^{\mathbf{k}}(x) = H^{\mathbf{k}}(v)$ for every multi-index \mathbf{k} such that $|\mathbf{k}| > m$, then $x \sim v$.

Conversely, if
$$x \sim v$$
, then $H^{\mathbf{k}}(x) = H^{\mathbf{k}}(v)$ for every \mathbf{k} , $|\mathbf{k}| \geq \lceil p \rceil$.

Proof. Note that if x has infinity many nonzero vector coordinates x_i then x is equivalent to a vector \widetilde{x} such that all vector coordinates of \widetilde{x} are nonzero and $H^{\mathbf{k}}(x) = H^{\mathbf{k}}(\widetilde{x})$ for every \mathbf{k} , $|\mathbf{k}| \geq \lceil p \rceil$. Indeed, we can obtain \widetilde{x} from x removing zero coordinates. Thus, without the loss of generality, we can assume that either x or v has a finite number of nonzero vector coordinates or all vector coordinates x_i and v_i of both x and v respectively, are nonzero vectors in \mathbb{C}^s . But for this case, in [18] it was proved that x and v must be equivalent.

The converse statement is evident.

In [15] it was proved that the polynomials $T^{\mathbf{k}}$ are algebraically independent in $\mathcal{P}_{vsup}(\ell_1)$. From here we immediately have that $T^{\mathbf{k}}$ are algebraically independent in $\mathcal{P}_{vsup}(\ell_p)$, $|\mathbf{k}| \geq \lceil p \rceil$. Thus we have the following proposition.

Proposition 2. The sequence of polynomials $\{T^{\mathbf{k}}\}_{|\mathbf{k}|=\lceil p \rceil}^{\infty}$ is an algebraic basis in $\mathcal{P}_{vsup}(\ell_p)$.

We need the following operation " \bullet " of the "symmetric addition" on $\ell_p(\mathbb{C}^s)$ (see [6, 18]):

$$x \bullet u = (x_1, u_1, \dots, x_n, u_n, \dots), \quad x, u \in \ell_p(\mathbb{C}^s).$$

Clearly, $H^{\mathbf{k}}(x \bullet u) = H^{\mathbf{k}}(x) + H^{\mathbf{k}}(u)$ for every \mathbf{k} , $|\mathbf{k}| > \lceil p \rceil$. The operation " \bullet " was extended to $\ell_p(\mathbb{C}^s_{\mathbb{Z}_0})$ in [15] by

$$z \bullet w = (y \bullet v | x \bullet u) = (\dots, v_n, y_n, \dots, v_1, y_1 | x_1, u_1, \dots, x_n, u_n, \dots),$$

where z = (y|x), w = (v|u). We denote by $z^- = (y|x)^- = (x,y)$ the "symmetric inverse" element to z. It is easy to see that $(z^-)^- = z$ and $z \bullet z^- \sim (0|0)$.

From the definitions and Proposition 1 we have the following properties of "•" (cf. [15]).

Proposition 3. The following statements hold:

1.
$$T^{\mathbf{k}}(z \bullet w) = T^{\mathbf{k}}(z) + T^{\mathbf{k}}(w)$$
 for every $\mathbf{k} = (k_1, \dots, k_s), |\mathbf{k}| \ge \lceil p \rceil$.

2.
$$z \sim 0$$
 if and only if we can write $z = (d|b)$ for some $d, b \in \ell_p(\mathbb{C}^s)$ and $H^{\mathbf{k}}(d) = H^{\mathbf{k}}(b)$ for all \mathbf{k} , $|\mathbf{k}| \geq \lceil p \rceil$, and if and only if $d \sim b$.

Let us introduce the following equivalence relation on $\ell_p(\mathbb{C}^s_{\mathbb{Z}_0})$. Given

$$z = (y|x) = (\ldots, y_2, y_1|x_1, x_2, \ldots)$$

and

$$z' = (y'|x') = (\dots, y'_2, y'_1|x'_1, x'_2, \dots)$$

in $\ell_p(\mathbb{C}^s_{\mathbb{Z}_0})$ are equivalent $(z \sim z')$ if and only if there are $a = (a_1, a_2, \ldots)$ and $b = (b_1, b_2, \ldots)$ in $\ell_p(\mathbb{C}^s)$ such that $x \bullet a \sim x' \bullet b$ and $y \bullet a \sim y' \bullet b$ in $\ell_p(\mathbb{C}^s)$.

The quotient set $\ell_p(\mathbb{C}^s_{\mathbb{Z}_0})/\sim$ will be denoted by \mathcal{M}_p . Let $[z] \in \mathcal{M}_p$ be the equivalence class containing $z \in \ell_p(\mathbb{C}^s_{\mathbb{Z}_0})$. Clearly, any block-supersymmetric polynomials P is well-defined on \mathcal{M} by P([z]) = P(z). The operations introduced above can be extended to \mathcal{M}_p by

$$[z] + [w] = [z \bullet w]$$
 and $-[z] = [z^-], \quad z, w \in \ell_p(\mathbb{C}^s_{\mathbb{Z}_0}).$ (2)

It is easy to check that so defined operations on \mathcal{M}_p do not depend on representatives and $(\mathcal{M}_p, +, -)$ is a commutative group, where $\mathbb{O} = (0|0)$ is the zero element.

Let [z] = [(y|x)]. We say that (y|x) is an irreducible representative of [z] if $x_i \neq y_j$ for every $i \in \text{supp}(x)$ and $j \in \text{supp}(y)$. It is easy to check (see e.g. [8]) that any $[z] \in \mathcal{M}_p$ has an irreducible representative.

Theorem 1. Let z = (y|x) and z' = (y'|x') be in $\ell_p(\mathbb{C}^s)$. Then $z \sim z'$ if and only if $T^{\mathbf{k}}(z) = T^{\mathbf{k}}(z')$ for every $\mathbf{k}, |\mathbf{k}| \geq \lceil p \rceil$.

Proof. Without loss of generality, we may assume that (y|x) and (y'|x') are irreducible representatives of [z] and [z'] respectively. If $T^{\mathbf{k}}(z) = T_k(z')$, then $T^{\mathbf{k}}(z \bullet z'^-) = 0$, that is,

$$(x \bullet y' | y \bullet x') \sim 0.$$

Thus,

$$H^{\mathbf{k}}(x \bullet y') = H^{\mathbf{k}}(y \bullet x'), \quad |\mathbf{k}| \ge \lceil p \rceil.$$

Hence, $(x \bullet y') \sim (y \bullet x')$, that is, there exists a bijection from supp $(x \bullet y')$ to supp $(y \bullet x')$ such that, up to this bijection, the coordinates of $x \bullet y'$ are the same as the coordinates of $y \bullet x'$. If x is not equivalent to x', then there is a nonzero vector $a \in \mathbb{C}^s$ such that a is a coordinate of x with the multiplicity n and n is a coordinate of n with the multiplicity n, and $n \neq n'$ (if n is not a coordinate of say n, then n' = n). Suppose that n > n'. Then the relation $(x \bullet y') \sim (y \bullet x')$ is possible only if n is a coordinate of n with the multiplicity n - n' > 0. Thus, n and n have the same vector coordinate n of a nonzero multiplicity. But n is irreducible. A contradiction.

Let $z \sim z'$. Then $x \bullet a \sim x' \bullet b$ and $y \bullet a \sim y' \bullet b$ for some a and b in $\ell_p(\mathbb{C}^s)$. Thus, for every $\mathbf{k}, |\mathbf{k}| \geq \lceil p \rceil$,

$$T^{\mathbf{k}}(z) = T^{\mathbf{k}}(x \bullet a | y \bullet a) = T^{\mathbf{k}}(x' \bullet b | y' \bullet b) = T^{\mathbf{k}}(z').$$

Let us denote by \mathfrak{S} the following "semigroup of supersymmetry" consisting of affine operators on $\ell_p(\mathbb{C}^s_{\mathbb{Z}_0})$ of the form:

$$(\ldots, y_2, y_1 | x_1, x_2, \ldots) \mapsto (\ldots, y_2, y_1 | x_{\sigma(1)}, x_{\sigma(2)}, \ldots),$$

$$(\ldots, y_2, y_1|x_1, x_2, \ldots) \mapsto (\ldots, y_{\mu(2)}, y_{\mu(1)}|x_1, x_2, \ldots),$$

and

$$(y|x) \mapsto (y \bullet a|x \bullet a),$$

where σ and μ are arbitrary permutations on \mathbb{N} , and $a \in \ell_p(\mathbb{C}^s)$. A polynomial P is said to be \mathfrak{S} -symmetric if P(A(x)) = P(x) for every $A \in \mathfrak{S}$ and $x \in \ell_p(\mathbb{C}^s_{\mathbb{Z}_0})$.

Theorem 2. A polynomial P on $\ell_p(\mathbb{C}^s_{\mathbb{Z}_0})$ is block-supersymmetric if and only if it is \mathfrak{S} -symmetric.

Proof. Clearly, every block-supersymmetric polynomial is \mathfrak{S} -symmetric. Let P be \mathfrak{S} -symmetric. Consider polynomials $H^{\mathbf{k}}_{+}(y|x) = H^{\mathbf{k}}(x)$, and $H^{\mathbf{k}}_{-}(y|x) = H^{\mathbf{k}}(y)$, $|\mathbf{k}| \geq \lceil p \rceil$. From the definition of \mathfrak{S} it follows that P is an algebraic combination of $H^{\mathbf{k}}_{+}$ and $H^{\mathbf{k}}_{-}$, $\lceil p \rceil \leq |\mathbf{k}| \leq \deg P$ because, P can be represented as a block-symmetric polynomial of x with coefficients that are block-symmetric polynomial of y. Thus, P is an algebraic combination of polynomials $T^{\mathbf{k}} = H^{\mathbf{k}}_{+} - H^{\mathbf{k}}_{-}$ and $Q^{\mathbf{k}} = H^{\mathbf{k}}_{+} + H^{\mathbf{k}}_{-}$. Note, that

$$Q^{\mathbf{k}}(y \bullet a | x \bullet a) = Q^{\mathbf{k}}(y|x) + 2H^{\mathbf{k}}(a)$$

Let $q = q(t_1, \ldots, t_m, r_1, \ldots, r_m)$ be a polynomial of several variables for some appropriate m such that

$$P(y|x) = q(T^{\mathbf{k}_1}(y|x), \dots, T^{\mathbf{k}_m}(y|x), Q^{\mathbf{k}_1}(y|x), \dots, Q^{\mathbf{k}_m}(y|x)),$$

 $\lceil p \rceil \leq |\mathbf{k}| \leq \deg P$. It is known [2] that for an arbitrary finite sequence of complex numbers $(\lambda_1, \ldots, \lambda_m)$ there exists a vector $a \in \ell_p(\mathbb{C}^s)$ such that $H^{\mathbf{k}_1}(a) = \lambda_1, \ldots, H^{\mathbf{k}_m}(a) = \lambda_m$. Then

$$P(y|x) = P(y \bullet a | x \bullet a)$$

$$= q(T^{\mathbf{k}_1}(y \bullet a | x \bullet a), \dots, T^{\mathbf{k}_m}(y \bullet a | x \bullet a), Q^{\mathbf{k}_1}(y \bullet a | x \bullet a),$$

$$\dots, Q^{\mathbf{k}_m}(y \bullet a | x \bullet a))$$

$$= q(T^{\mathbf{k}_1}(y|x), \dots, T^{\mathbf{k}_m}(y|x), Q^{\mathbf{k}_1}(y \bullet a | x \bullet a),$$

$$\dots, Q^{\mathbf{k}_m}(y \bullet a | x \bullet a))$$

$$= q(T^{\mathbf{k}_1}(y|x), \dots, T^{\mathbf{k}_m}(y|x), Q^{\mathbf{k}_1}(y|x) + \lambda_1, \dots, Q^{\mathbf{k}_m}(y|x) + \lambda_m).$$

But it is possible only if the polynomial q does not depend on variables r_1, \ldots, r_m that completes the proof.

Let us consider the finite-dimensional case. For any fixed positive integers n, m, and s we consider the space $\mathbb{C}^s_{n,m}$ consisting of the vectors

$$(y_m,\ldots,y_1|x_1,\ldots,x_n)$$

such that each x_i and y_j are in \mathbb{C}^s . The space $\mathbb{C}^s_{n,m}$ can be naturally included into $\ell_1(\mathbb{C}^s_{\mathbb{Z}_0})$ by

$$(y_m, \dots, y_1 | x_1, \dots, x_n) \mapsto (\dots, 0, y_m, \dots, y_1 | x_1, \dots, x_n, 0, \dots).$$

The restrictions of block-supersymmetric polynomials on $\ell_1(\mathbb{C}_{\mathbb{Z}_0}^s)$ to $\mathbb{C}_{n,m}^s$ define block-supersymmetric polynomials on $\mathbb{C}_{n,m}^s$. Hence, the restrictions of $H^{\mathbf{k}}$, $|\mathbf{k}| \geq 1$ are generators in the algebra of block-supersymmetric polynomials on $\mathbb{C}_{n,m}^s$. Of course, this family of generators is algebraically dependent because an infinity sequence of polynomials can not be algebraically independent in a finite dimensional space. On the other hand, as we mentioned above, even for s=1 the algebra of block-supersymmetric polynomials on $\mathbb{C}_{n,m}^s$ is infinitely generated [14] and so, it is infinitely generated for any other s as well.

2. Ring structures associated with block-supersymmetric polynomials

The fact that the family $\{T^{\mathbf{k}}\}$, $|\mathbf{k}| \geq \lceil p \rceil$ forms an algebraic basis in $\mathcal{P}_{vsup}(\ell_p)$ guarantees us that every complex homomorphism φ of $\mathcal{P}_{vsup}(\ell_p)$ can be defined by a family of numbers $\{c_{\mathbf{k}}\}$, $|\mathbf{k}| \geq \lceil p \rceil$ so that $\varphi(T^{\mathbf{k}}) = c_{\mathbf{k}}$. However, for applications to algebras of block-supersymmetric analytic functions (see [15]), it is important to have a description of point evaluation functionals. For every $z \in \ell_p(\mathbb{C}^s_{\mathbb{Z}_0})$ the point evaluation functional δ_z is defined as

$$\delta_z(P) = P(z), \quad P \in \mathcal{P}_{vsup}(\ell_p).$$

Clearly, $\delta_z = \delta_{z'}$ if and only if $T^{\mathbf{k}}(z) = T^{\mathbf{k}}(z')$, $|\mathbf{k}| \geq \lceil p \rceil$. From Theorem 1 it follows that $\delta_z = \delta_{z'}$ if and only if $z \sim z'$. It is known [8] that the set of point evaluation functionals on the algebra of block-supersymmetric polynomials admits a ring structure if there is a multiplication on \mathbb{C}^s . We suppose that an operation of multiplication " $\odot_{\mathcal{A}}$ " is defined on \mathbb{C}^s so that \mathbb{C}^s with " $\odot_{\mathcal{A}}$ " and the usual operation of addition is an algebra. We denote the algebra ($\mathbb{C}^s, +, \odot_{\mathcal{A}}$) by \mathcal{A} .

Let $x, y \in \ell_1(\mathbb{C}^s)$. Then the symmetric multiplication $x \diamond_{\mathcal{A}} y$ associated with the multiplication $\odot_{\mathcal{A}}$ is the set of elements $x_i \odot_{\mathcal{A}} y_j$, $i, j \in \mathbb{N}$ enumerated in some fixed order, where $x_i = (x_i^{(1)}, \dots, x_i^{(s)}), y_i = (y_i^{(1)}, \dots, y_i^{(s)}) \in \mathbb{C}^s$. Let now u = (y|x) and v = (d|b) be in $\mathbb{C}^s_{\mathbb{Z}_0}(\ell_p)$. As in [13], we define

$$u \diamond_{\mathcal{A}} v = [((y \diamond_{\mathcal{A}} b) \bullet (x \diamond_{\mathcal{A}} d) | (y \diamond_{\mathcal{A}} d) \bullet (x \diamond_{\mathcal{A}} b))].$$

The operations above can be lifted to \mathcal{M}_p by

$$[u] + [v] = [u \bullet v], \quad -[u] = [u^-], \quad [u] \stackrel{\mathcal{A}}{\times} [v] = [u \diamond_{\mathcal{A}} v].$$

Proposition 4 ([8]). The set $(\mathcal{M}, +, \overset{\mathcal{A}}{\times})$ is a ring with zero $\mathbb{O} = [(\mathbf{0}|\mathbf{0})]$. If e is a unit of \mathcal{A} , then $\mathbb{I} = [(\mathbf{0}|(e, 0 \dots))]$ is a unit of $(\mathcal{M}, +, \overset{\mathcal{A}}{\times})$. If \mathcal{A} is commutative, then $(\mathcal{M}, +, \overset{\mathcal{A}}{\times})$ is a commutative ring.

Let θ be a multiplicative map, $\theta \colon \mathcal{A} \to \mathbb{C}$ such that if $x \in \ell_p(\mathbb{C}^s)$, then the sequence $(\theta(x_n))$ is in ℓ_1 . We consider the following function on $\ell_p(\mathbb{C}^s_{\mathbb{Z}_0})$ associated with θ ,

$$T_{\theta}(y|x) = \sum_{n=1}^{\infty} \theta(x_n) - \sum_{n=1}^{\infty} \theta(y_n).$$

Clearly, if θ is a polynomial on \mathbb{C}^s , then T_{θ} is a polynomial on $\ell_p(\mathbb{C}^s_{\mathbb{Z}_0})$.

Theorem 3. For every θ defined as above,

(i)
$$T_{\theta}(u \bullet v) = T_{\theta}(u) + T_{\theta}(v)$$
 and $T_{\theta}(u \diamond_{\mathcal{A}} v) = T_{\theta}(u)T_{\theta}(v)$, $u, v \in \ell_{p}(\mathbb{C}^{s}_{\mathbb{Z}_{0}});$

(ii) the function T_{θ} can be lifted to a function τ_{θ} on \mathcal{M}_p by

$$\tau_{\theta}[(y|x)] = T_{\theta}(y|x),$$

and τ_{θ} is a ring homomorphism.

Proof. (i) Let u = (y|x) and v = (d|b). Then

$$T_{\theta}(u \bullet v) = \sum_{n=1}^{\infty} \theta(x_n) - \sum_{n=1}^{\infty} \theta(y_n) + \sum_{n=1}^{\infty} \theta(b_n) - \sum_{n=1}^{\infty} \theta(d_n) = T_{\theta}(u) + T_{\theta}(v).$$

Also, by the multiplicativity of θ ,

$$\begin{split} T_{\theta}(u \diamond_{\mathcal{A}} v) &= T_{\theta}((y \diamond_{\mathcal{A}} b) \bullet (x \diamond_{\mathcal{A}} d) | (y \diamond_{\mathcal{A}} d) \bullet (x \diamond_{\mathcal{A}} b)) \\ &= \sum_{n,m=1}^{\infty} \theta(x_n b_m) + \sum_{n,m=1}^{\infty} \theta(y_n d_m) - \sum_{n,m=1}^{\infty} \theta(x_n d_m) - \sum_{n,m=1}^{\infty} \theta(y_n b_m) \\ &= \Big(\sum_{n=1}^{\infty} \theta(x_n) - \sum_{n=1}^{\infty} \theta(y_n)\Big) \Big(\sum_{n=1}^{\infty} \theta(b_n) - \sum_{n=1}^{\infty} \theta(d_n)\Big) \\ &= T_{\theta}(y|x) T_{\theta}(d|b) = T_{\theta}(u) T_{\theta}(v). \end{split}$$

(ii) Let $u = (y|x) \sim u' = (y'|x')$ in $\ell_p(\mathbb{C}^s_{\mathbb{Z}_0})$. Then there are a and b in $\ell_p(\mathbb{C}^s)$ such that, up to permutations, $(y \bullet a|x \bullet a) = (y' \bullet b|x' \bullet b)$. Thus,

$$T_{\theta}(y|x) = T_{\theta}(y \bullet a|x \bullet a) = T_{\theta}(y' \bullet b|x' \bullet b) = T_{\theta}(y'|x').$$

Hence, $\tau_{\theta}([u]) = T_{\theta}(u)$ does not depend on representatives. From (i) it follows that

$$\tau_{\theta}([u] + [v]) = \tau_{\theta}([u]) + \tau_{\theta}([v]), \quad \text{and} \quad \tau_{\theta}([u] \stackrel{\mathcal{A}}{\times} [v]) = \tau_{\theta}([u])\tau_{\theta}([v])$$

for every [u], and [v] in $\ell_p(\mathbb{C}^s_{\mathbb{Z}_0})$.

Example 1. Let $x \odot_{\mathcal{A}} y = (x^{(1)}y^{(1)}, \dots, x^{(s)}y^{(s)})$ be the coordinate-wise multiplication, $x, y \in \mathbb{C}^s$, and

$$\theta((x^{(1)},\ldots,x^{(s)})) = (x^{(1)})^{k_1}\cdots(x^{(s)})^{k_s}$$

for some multi-index $\mathbf{k} = k_1, \dots, k_s, k_i \in \mathbb{Z}_0$, $|\mathbf{k}| \neq \lceil p \rceil$. Then θ satisfies conditions of Theorem 3, and $T_{\theta} = T^{\mathbf{k}}$.

We will use notations $u \diamond v$ instead of $u \diamond_{\mathcal{A}} v$ and [u][v] instead of $[u] \times [v]$ if \mathcal{A} is \mathbb{C}^s with the coordinate-wise multiplication as in Example 1. Thus, we have the following corollary.

Corollary 1. For every $\mathbf{k} = k_1, \dots, k_s, k_i \in \mathbb{Z}_0, |\mathbf{k}| \neq \lceil p \rceil, T^{\mathbf{k}}(u \diamond v) = T^{\mathbf{k}}(u)T^{\mathbf{k}}(v), u, v \in \mathcal{M}_p \text{ and } \tau_{\mathbf{k}} \colon [u] \mapsto T^{\mathbf{k}}(u) \text{ are ring homomorphisms of } (\mathcal{M}_p, \cdot, +).$

Remark 1. Note that functionals $\tau_{\mathbf{k}}$, $|\mathbf{k}| \neq \lceil p \rceil$ do not exhaust the set of complex valued ring homomorphisms of the ring $(\mathcal{M}_p, \cdot, +)$ as in Example 1. In particular, setting $\theta = |(x^{(1)})^{k_1} \cdots (x^{(s)})^{k_s}|$, we will get some others complex valued ring homomorphisms τ_{θ} .

Example 2. Let $s=n^2$ for some integer n>1, and $\mathcal{A}=\mathbb{C}^s=M(n\times n)$ be the algebra of $n\times n$ matrices and $\odot_{\mathcal{A}}$ be the usual matrix multiplication. It is well-known that there is no nontrivial complex homomorphisms of $M(n\times n)$. But there are multiplicative mappings on $M(n\times n)$. For example, the mapping $a\mapsto \det(a)$ is a multiplicative n-homogeneous (continuous) polynomial. From the continuity and homogeneity of $\det(\cdot)$ it follows that there is a constant C>0 such that

$$|\det(a)| \le C ||a||_p^n,$$

where $a = (a_{ij}) \in M(n \times n)$, and

$$||a||_p = \Big(\sum_{i=1}^n \sum_{j=1}^n |a_{ij}|^p\Big)^{1/p}.$$

Thus, if $x = (x_1, x_2, ...)$ is a sequence of matrices in $M(n \times n)$ such that $x \in \ell_p(M(n \times n))$, then the sequence $\left(\left(\det(x_1)\right)^k, \left(\det(x_2)\right)^k, ...\right)$ belongs to ℓ_1 for every k such that $kn \geq \lceil p \rceil$. Hence, $\theta_k := \left(\det(a)\right)^k$ satisfies conditions of Theorem 3 and so,

$$\tau_{\theta_k}[(y|x)] = \sum_{i=1}^{\infty} \left(\det(x_i) \right)^k - \sum_{i=1}^{\infty} \left(\det(y_i) \right)^k$$

is a complex ring homomorphism for every k such that $kn \geq \lceil p \rceil$.

Note that for any multiplicative unital subsemigroup with $\mathcal{A}_0 \subset \mathcal{A}$ the subset

$$\{[(y|x)] \in \mathcal{M}_p \colon x_i \in \mathcal{A}_0, y_i \in \mathcal{A}_0\}$$

is a subring of \mathcal{M}_p .

References

- [1] Aron, R., Galindo, P., Pinasco, D., Zalduendo, I.: Group-symmetric holomorphic functions on a Banach space. Bull. Lond. Math. Soc. **48**(5), 779–796 (2016). https://doi.org/10.1112/blms/bdw043
- [2] Bandura, A., Kravtsiv, V., Vasylyshyn, T.: Algebraic basis of the algebra of all symmetric continuous polynomials on the Cartesian product of ℓ_p -spaces. Axioms 11(2), 41 (2022). https://doi.org/10.3390/axioms11020041
- [3] Burtnyak, I., Chopyuk, Y., Vasylyshyn, S., Vasylyshyn, T.: Algebras of weakly symmetric functions on spaces of Lebesgue measurable functions. Carpathian Math. Publ. 15(2), 411–419 (2023). https://doi.org/10.15330/cmp.15.2.411-419
- [4] Chernega, I.V.: A semiring in the spectrum of the algebra of symmetric analytic functions in the space ℓ_1 . J. Math. Sci. **212**, 38–45 (2016). https://doi.org/10.10 07/s10958-015-2647-3
- [5] Chernega, I., Dmytryshyn, R., Kravtsiv, V., Vasylyshyn, T., Zagorodnyuk, A.: Function calculus on rings of multisets associated with symmetric and supersymmetric polynomials. Carpathian Math. Publ. 17(1), 187–199 (2025). https://doi.org/10.15330/cmp.17.1.187-199
- [6] Chernega, I., Galindo, P., Zagorodnyuk, A.: Some algebras of symmetric analytic functions and their spectra. Proc. Edinb. Math. Soc. 55(1), 125–142 (2012). https://doi.org/10.1017/S0013091509001655

- [7] Chernega, I., Galindo, P., Zagorodnyuk, A.: On the spectrum of the algebra of bounded-type symmetric analytic functions on l_1 . Math. Nachr. **297**, 3835–3846. https://doi.org/10.1002/mana.202300415
- [8] Chernega, I., Zagorodnyuk, A.: Supersymmetric polynomials and a ring of multisets of a banach algebra. Axioms 11(10), 511 (2022). https://doi.org/10.3390/axioms11100511
- [9] Chopyuk, Y., Vasylyshyn, T., Zagorodnyuk, A.: Rings of multisets and integer multinumbers. Mathematics 10, 778 (2022). https://doi.org/10.3390/math10050778
- [10] Chopiuk, Y., Zagorodnyuk, A.: Symmetric functions and rings of multinumbers associated with finite groups. Symmetry 17(1), 33 (2025). https://doi.org/10.3390/ sym17010033
- [11] González, M., Gonzalo, R., Jaramillo, J.A.: Symmetric polynomials on rearrangement-invariant function spaces. J. Lond. Math. Soc. 59(2), 681–697 (1999). https://doi.org/10.1112/S0024610799007164
- [12] Hryniv, R., Kravtsiv, V., Vasylyshyn, T., Zagorodnyuk, A.: Symmetric and supersymmetric polynomials on ℓ_p and partition functions in quantum statistical physics. Physica Scripta **100**(7), 075208 (2025). https://doi.org/10.1088/1402-4896/adde1e
- [13] Jawad, F., Zagorodnyuk, A.: Supersymmetric polynomials on the space of absolutely convergent series. Symmetry 11(9), 1111 (2019). https://doi.org/10.3390/sym11091111
- [14] Kantor, I., Trishin, I.: The algebra of polynomial invariants of the adjoint representation of the Lie superalgebra gl(m|n). Comm. Algebra **25**(7), 2039–2070 (1997). https://doi.org/10.1080/00927879708825971
- [15] Kravtsiv, V.: Block-supersymmetric polynomials on spaces of absolutely convergent series. Symmetry 16(2), 179 (2024). https://doi.org/10.3390/sym16020179
- [16] Kravtsiv, V.V., Dolishniak, P.Y., Stakhiv, R.Y.: Waring-Girard formulas for block-symmetric and block-supersymmetric polynomials. Mat. Stud. 63, 210–220 (2025). https://doi.org/10.30970/ms.63.2.210-220
- [17] Kravtsiv, V., Vasylyshyn, T., Zagorodnyuk, A.: On algebraic basis of the algebra of symmetric polynomials on $\ell_p(\mathbb{C}^n)$. J. Funct. Spaces **2017**, 4947925 (2017). https://doi.org/10.1155/2017/4947925
- [18] Kravtsiv, V.V., Zagorodnyuk, A.V.: Spectra of algebras of block-symmetric analytic functions of bounded type. Mat. Stud. 58(1), 69–81 (2022). https://doi.org/10.30970/ms.58.1.69-81
- [19] Macdonald, I.G.: Symmetric functions and orthogonal polynomials. University Lecture Serie, AMS: Providence, RI, USA (1997). https://doi.org/10.1090/ulect/ 012
- [20] Nemirovskii, A., Semenov, S.: On polynomial approximation of functions on Hilbert space. Mat. USSR-Sb. 21, 255–277 (1973). https://doi.org/10.1070/SM19 73v021n02ABEH002016
- [21] Rosas, M.: MacMahon symmetric functions, the partition lattice, and Young subgroups. J. Comb. Theory Ser. A 96(2), 326–340 (2001). https://doi.org/10.1006/jcta.2001.3186

- [22] Stembridge, J.R.: A characterization of supersymmetric polynomials. J. Algebra **95**(2), 439–444 (1985). https://doi.org/10.1016/0021-8693(85)90115-2
- [23] Vasylyshyn, S.: Spectra of algebras of analytic functions, generated by sequences of polynomials on Banach spaces, and operations on spectra. Carpathian Math. Publ. 15(1), 104–119 (2023). https://doi.org/10.15330/cmp.15.1.104-119
- [24] Vasylyshyn, T.: Algebras of symmetric and block-symmetric functions on spaces of Lebesgue measurable functions. Carpathian Math. Publ. 16(1), 174–189 (2024). https://doi.org/10.15330/cmp.16.1.174-189
- [25] Vasylyshyn, T.: Symmetric analytic functions on the Cartesian power of the complex Banach space of Lebesgue measurable essentially bounded functions on [0, 1]. J. Math. Anal. Appl. 509(2), 125977 (2022). https://doi.org/10.1016/j.jmaa.2021. 125977
- [26] Zagorodnyuk, A.V., Kravtsiv, V.V.: Multiplicative convolution on the algebra of block-symmetric analytic functions. J. Math. Sci. 246, 245–255 (2020). https://doi. org/10.1007/s10958-020-04734-z

CONTACT INFORMATION

D. Faryma, Vasyl Stefanyk Precarpathian NationalV. Kimak, University, 57 Shevchenka Str., 76018,

V. Kravtsiv, Ivano-Frankivsk, Ukraine

A. Zagorodnyuk E-Mail: dmytro.faryma.19@pnu.edu.ua, volodymyr.kimak.22@pnu.edu.ua, viktoriia.kravtsiv@pnu.edu.ua,

andriy.zagorodnyuk@pnu.edu.ua

Received by the editors: 10.07.2025 and in final form 01.08.2025.