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A study of homoderivations in 3-prime
near-rings with centralizing constraints
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Abstract. In this paper, we explore the commutativity of
3-prime near-rings that admit homoderivations satisfying specific
differential identities. Furthermore, we present an example demon-
strating the essential role of the 3-primeness assumption in several
theorems, emphasizing that this condition cannot be disregarded.

Introduction

The study of derivations and their generalizations plays a central role

in understanding the structural properties of algebraic systems, particu-

larly in noncommutative ring theory. A key line of investigation concerns

conditions under which the existence of certain derivation-like maps im-

poses commutativity or other rigid algebraic behaviors on the underlying

structure. This theme has been extensively explored in the context of

prime rings and has yielded a variety of structural theorems with wide

applicability in algebra and its branches.

Let N be a left near-ring, i.e., a nonempty set equipped with two bi-

nary operations “+ ” and “ · ” such that (N ,+) is a group (not necessarily

abelian), (N , ·) is a semigroup, and left distributivity holds: x · (y+ z) =

x · y + x · z for all x, y, z ∈ N . Right near-rings are defined analogously

with right distributivity. Near-rings generalize the concept of rings by

relaxing both distributivity and commutativity of addition, leading to a
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wider and more flexible class of algebraic structures, with connections to

combinatorics, automata theory, and coding theory.

An important subclass is that of 3-prime near-rings, defined by the

property that xN y = {0} implies x = 0 or y = 0. These structures

provide a fertile ground for extending classical results from ring theory.

Moreover, a near-ring is called zero-symmetric if 0 · x = 0 for all x ∈ N ,

and 2-torsion free if 2x = 0 implies x = 0. The symbol Z(N ) will denote

the multiplicative center of N , that is, Z(N ) = {x ∈ N | xy = yx for all

y ∈ N}.
Among the tools for probing the internal structure of such rings and

near-rings are additive maps such as derivations. A derivation on a near-

ring N is an additive function d : N → N satisfying the Leibniz rule:

d(xy) = d(x)y+xd(y) for all x, y ∈ N . In the literature, various additive

constructions including derivations, semi-derivations, generalized deriva-

tions, and related operators satisfying centralizing or algebraic identities,

have been successfully applied to establish commutativity results in privi-

leged near-rings (see [4, 5, 7–13] and the references therein).

In a related context, let R be a ring. In a remarkable generalization,

El Sofy [6] introduced the concept of a homoderivation, defined as an

additive map h : R → R satisfying h(xy) = h(x)h(y) + h(x)y + xh(y).

Such maps encapsulate a broader class of additive functions, where the

interaction between elements reflects not only linearity but also nonlinear

multiplicative perturbations. Interestingly, in prime rings, any map that

is simultaneously a derivation and a homoderivation is necessarily the

zero map. These structures have since been studied further, notably by

Alharfie et al. [1], who established commutativity conditions for prime

rings admitting homoderivations satisfying various centralizing identities

involving commutators, anticommutators, and central elements.

The present work aims to extend these developments to the setting

of 3-prime zero-symmetric near-rings. We investigate the behavior of ho-

moderivations h : N → N that satisfy identities of the form
[
[x, h(y)] +

x ◦ y, t
]
∈ Z(N ),

[
[x, h(y)] + x ◦ y, t

]
◦ r ∈ Z(N ) for all x, y, t, r ∈ N ,

and similar variants. Our goal is to determine sufficient conditions under

which such identities enforce the commutativity of N . The results pre-

sented here generalize known theorems in ring theory and illustrate how

non-associative algebraic frameworks can be constrained via functional

identities derived from homomorphisms and derivations.
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1. Preliminary results

We begin this section with the following lemmas, which play a crucial
role in establishing the proofs of our main results.

Lemma 1. Let N be a 3-prime near-ring and I be a nonzero semigroup
ideal of N .

(i) [2, Lemma 1.4(i)] If x, y ∈ N and xIy = {0}, then x = 0 or y = 0.

(ii) [2, Lemma 1.3(i)] If x ∈ N and xI = {0} or Ix = {0}, then x = 0.

Lemma 2. Let N be a 3-prime near-ring.

(i) [2, Lemma 1.2(iii)] If z ∈ Z(N )∖{0} and xz ∈ Z(N ), then x ∈ Z(N ).

(ii) [2, Lemma 1.5] If N ⊆ Z(N ), then N is a commutative ring.

(iii) [2, Lemma 1.2(ii)] If Z(N ) contains a nonzero element z for which
z + z ∈ Z(N ), then (N ,+) is abelian.

Lemma 3 ([3, Theorem 3.7(i)]). Let N be a 2-torsion free 3-prime near-
ring. If N admits a nonzero homoderivation h, then the following asser-
tions are equivalent:

(i) h(N ) ⊆ Z(N );

(ii) N is a commutative ring.

2. Main results

A. Raji et al. [11] studied the commutativity of a prime near-ring N
admitting a multiplicative semiderivation d that satisfies either of the
properties [d(I), I] ⊆ Z(N ), d(I) ◦ N ⊆ Z(N ) and N ◦ d(I) ⊆ Z(N ),
where I is a nonzero semigroup ideal of N . Motivated by these results in
the multiplicative center, in the following, we investigate the commuta-
tivity of a near-ring N admitting a homoderivation h that is zero-power
valued on N .

Theorem 1. Let N be a 2-torsion free 3-prime near-ring. If N admits
a nonzero homoderivation h which is zero-power valued on N , then the
following conditions are equivalent:

(i)
[
[x, h(y)] + x ◦ y, t

]
∈ Z(N ) for all x, y, t ∈ N ;
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(ii)
[
[x, h(y)] + x ◦ y, t

]
◦ r ∈ Z(N ) for all x, y, t, r ∈ N ;

(iii)
[(
[x, h(y)] + x ◦ y

)
◦ t, r

]
∈ Z(N ) for all x, y, t, r ∈ N ;

(iv) N is a commutative ring.

Proof. It follows from condition (iv) that properties (i)–(iii) hold.
Let us show that (i) ⇒ (iv). By hypothesis, we have[

[x, h(y)] + x ◦ y, t
]
∈ Z(N ) for all x, y, t ∈ N . (1)

Replace t in (1) with ([x, h(y)]+x◦y)t, we get ([x, h(y)]+x◦y)
[
[x, h(y)]+

x ◦ y, t
]
∈ Z(N ) for all x, y, t ∈ N . By applying Lemma 2(i) together

with (1), the above relation proves that
[
[x, h(y)] + x ◦ y, t

]
= 0 or

[x, h(y)] + x ◦ y ∈ Z(N ) for all x, y, t ∈ N . Both conditions give the
following

[x, h(y)] + x ◦ y ∈ Z(N ) for all x, y ∈ N . (2)

Our next goal is to show that Z(N ) ̸= {0}. In fact, suppose that Z(N ) =
{0}, then (2) yields

[x, h(y)] + x ◦ y = 0 for all x, y ∈ N . (3)

Since h is zero-power valued on N and is a nonzero mapping, there
exists an element y0 ∈ N and a positive integer k = k(y0) > 1 such
that hk(y0) = 0 and z = hk−1(y0) ̸= 0. According to (3), it follows that
x ◦ z = 0 for all x ∈ N which implies that x(−z) = zx for all x ∈ N .
Replacing x by xt in the last relation and using it again, we obtain
N [t,−z] = {0} for all t ∈ N . In view of Lemma 1(ii), we infer that
−z ∈ Z(N ). Now, putting x = −z in (3), we arrive at N (2(−z)) = {0}.
Based on Lemma 1(ii) and the fact that N is 2-torsion-free, we obtain
z = 0; which leads to a contradiction. Accordingly, Z(N ) ̸= {0}. Let
0 ̸= z0 ∈ Z(N ), and taking x = z0 in (2) we obtain z0 ◦ y ∈ Z(N ) for all
y ∈ N , which implies that z0(y + y) ∈ Z(N ) for all y ∈ N . Given that
z0 ̸= 0 and in view of Lemma 2(i), it follows that y + y ∈ Z(N ) for all
y ∈ N . Replacing y by y2 in the above relation and using Lemma 2(i),
we get either 2y = 0 or y ∈ Z(N ) for all y ∈ N . Because N is 2-torsion
free, both conditions force y ∈ Z(N ). Consequently, N is a commutative
ring by Lemma 2(ii).

(ii) ⇒ (iv). Assume that the following condition holds[
[x, h(y)] + x ◦ y, t

]
◦ r ∈ Z(N ) for all x, y, t, r ∈ N . (4)
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As a result,
[
[[x, h(y)]+x◦y, t]◦r,m

]
= 0 for all x, y, t, r,m ∈ N . Substi-

tuting
[
[x, h(y)]+x◦y, t

]
r for r, we obtain

[[
[x, h(y)]+x◦y, t

][
[x, h(y)]+

x◦y, t
]
◦r,m

]
= 0 for all x, y, t, r,m ∈ N , which implies that

([
[x, h(y)]+

x ◦ y, t
]
◦ r

)[[
[x, h(y)] + x ◦ y, t

]
,m

]
= 0 for all x, y, t, r,m ∈ N . Taking

into account (4), the preceding relation yields
([
[x, h(y)]+x ◦ y, t

]
◦ r

)
N[[

[x, h(y)] +x ◦ y, t
]
,m

]
= {0} for all x, y, t, r,m ∈ N . In the light of the

3-primeness of N , we find that for all x, y, t, r,m ∈ N either[
[x, h(y)] + x ◦ y, t

]
◦ r = 0 or

[[
[x, h(y)] + x ◦ y, t

]
,m

]
= 0. (5)

Let x, y be two arbitrary elements of N .

� If
[
[x, h(y)]+x◦y, t

]
◦r = 0 for all t, r ∈ N , then

[
[x, h(y)]+x◦y, t

]
r

= r
(
−

[
[x, h(y)] + x ◦ y, t

])
for all t, r ∈ N . Taking r = nr, where

n ∈ N , in the last equation, we obtain n(−
[
[x, h(y)] + x ◦ y, t

]
)r =

nr(−
[
[x, h(y)] + x ◦ y, t

]
) for all r, t, n ∈ N , which results in N[

−
[
[x, h(y)] + x ◦ y, t

]
, r
]
= {0} for all t, r ∈ N . Thus, by Lem-

ma 1(ii), it follows that −
[
[x, h(y)]+x◦y, t

]
∈ Z(N ) for all t ∈ N .

Substituting
(
[x, h(y)]+x◦y

)
t for t in the last relation and applying

Lemma 2(i), we obtain
[
[x, h(y)]+x◦y, t

]
= 0 or [x, h(y)]+x◦y ∈

Z(N ) which reduce to [x, h(y)] + x ◦ y ∈ Z(N ).

� Now, suppose that there exist t0, r0 ∈ N such that
[
[x, h(y)] +

x◦y, t0
]
◦r0 ̸= 0. In virtue of (5),

[
[x, h(y)]+x◦y, t0

]
will be a non-

zero element of Z(N ). Replacing r by
[
[x, h(y)]+x◦y, t0

]
in (4), we

obtain
[
[x, h(y)]+x◦y, t0

]([
[x, h(y)]+x◦y, t

]
+
[
[x, h(y)]+x◦y, t

])
∈

Z(N ) for all t ∈ N , and hence in view of Lemma 2(i), we conclude
that

([
[x, h(y)] + x ◦ y, t

]
+

[
[x, h(y)] + x ◦ y, t

])
∈ Z(N ) for all

t ∈ N . Substituting
[
[x, h(y)] + x ◦ y, t

]
for r in (4), we find that[

[x, h(y)]+x◦y, t
](
[[x, h(y)]+x◦y, t]+[[x, h(y)]+x◦y, t]

)
∈ Z(N )

for all t ∈ N . Once again, by Lemma 2(i) and the 2-torsion freeness
of N , we conclude that

[
[x, h(y)] + x ◦ y, t

]
∈ Z(N ) for all t ∈ N .

Consequently, from both cases, since x and y are arbitrary, it follows
that [[x, h(y)] + x ◦ y, t] ∈ Z(N ) for all x, y, t ∈ N . Hence, by the proof
of (i) ⇒ (iv), N must be a commutative ring.

(iii) ⇒ (iv). Let us assume that[(
[x, h(y)] + x ◦ y

)
◦ t, r

]
∈ Z(N ) for all x, y, t, r ∈ N . (6)

Putting
((
[x, h(y)]+x◦y

)
◦t
)
r instead of r in (6) and invoking Lemma 2(i),

we find that
(
[x, h(y)]+x ◦ y

)
◦ t ∈ Z(N ) or

[(
[x, h(y)]+x ◦ y

)
◦ t, r

]
= 0
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for all x, y, t, r ∈ N . It follows that(
[x, h(y)] + x ◦ y

)
◦ t ∈ Z(N ) for all x, y, t ∈ N . (7)

Assume that Z(N ) = {0}. Replacing t by [x, h(y)] + x ◦ y in (7), we get

2
(
[x, h(y)]+x◦y

)2
= 0 for all x, y ∈ N . Given the 2-torsion freeness, we

infer that
(
[x, h(y)] + x ◦ y

)2
= 0 for all x, y ∈ N . On the other hand,

(7) yields
(
[x, h(y)] + x ◦ y

)
t+ t

(
[x, h(y)] + x ◦ y

)
= 0 for all x, y, t ∈ N .

Left multiplying the previous equation by
(
[x, h(y)] + x ◦ y

)
, we get(

[x, h(y)] + x ◦ y
)
t
(
[x, h(y)] + x ◦ y

)
= 0 for all x, y, t ∈ N which can be

written as
(
[x, h(y)]+x◦y

)
N
(
[x, h(y)]+x◦y

)
= {0} for all x, y ∈ N . In

the light of the 3-primeness of N , we obtain [x, h(y)] + x ◦ y = 0 for all
x, y ∈ N . Since this relation matches expression (3), we apply the same
technique used in the proof of (i) ⇒ (iv), leading to a contradiction, and
therefore Z(N ) ̸= {0}. Now, choosing 0 ̸= z0 ∈ Z(N ) and replacing t
by z0 in (7), we get z0

(
[x, h(y)] + x ◦ y+ [x, h(y)] + x ◦ y

)
∈ Z(N ) for all

x, y ∈ N which, because of Lemma 2(i), implies that 2
(
[x, h(y)]+x◦y

)
∈

Z(N ) for all x, y ∈ N . Taking [x, h(y)] + x ◦ y instead of t in (7) gives(
[x, h(y)] + x ◦ y

)(
2
(
[x, h(y)] + x ◦ y

))
∈ Z(N ) for all x, y,∈ N . In

view of Lemma 2(i), the preceding relation demonstrates that either
2
(
[x, h(y)]+x◦y

)
= 0 or [x, h(y)]+x◦y ∈ Z(N ) for all x, y ∈ N . But, sin-

ce N is 2-torsion free, the first condition assures that [x, h(y)]+x◦y = 0.
Hence, in all cases [x, h(y)] + x ◦ y ∈ Z(N ) for all x, y ∈ N which is
identical to expression (2). Therefore, N is a commutative ring.

Theorem 2. Let N be a 3-prime near-ring. If N admits a nonzero
homoderivation h which is zero-power valued on N , then the following
conditions are equivalent:

(i)
[
[x, h(y)] + xy, t

]
∈ Z(N ) for all x, y, t ∈ N ;

(ii)
[(
[x, h(y)] + xy

)
◦ t, r

]
∈ Z(N ) for all x, y, t, r ∈ N ;

(iii) N is a commutative ring.

Proof. It is straightforward to confirm that condition (iii) ensures pro-
perties (i) and (ii).

Let us prove that (i) implies (iii). Suppose that[
[x, h(y)] + xy, t

]
∈ Z(N ) for all x, y, t ∈ N . (8)

This leads us to
[[
[x, h(y)] + xy, t

]
, s
]
= 0 for all x, y, t, s ∈ N . By

substituting t with
(
[x, h(y)] + xy

)
t in the previous relation, we obtain
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[(
[x, h(y)] + xy

)[
[x, h(y)] + xy, t

]
, s
]
= 0 for all x, y, t, s ∈ N which, in

view of (8), can be written as
[
[x, h(y)]+xy, t

][
[x, h(y)]+xy, s

]
= 0 for all

x, y, t, s ∈ N . On the other hand, left multiplying the preceding equation
by an arbitrary element of N and in virtue of (8), we obtain

[
[x, h(y)] +

xy, t
]
N
[
[x, h(y)] + xy, s

]
= {0} for all x, y, t, s ∈ N . Considering the

3-primeness of N , the previous relation implies that
[
[x, h(y)]+xy, t

]
= 0

or
[
[x, h(y)] + xy, s

]
= 0 for all x, y, t, s ∈ N . Both conditions give

[x, h(y)] + xy ∈ Z(N ) for all x, y ∈ N . (9)

Next, we claim that Z(N ) ̸= {0}. Indeed, suppose that Z(N ) = {0}.
Then, (9) yields

[x, h(y)] + xy = 0 for all x, y ∈ N . (10)

Since h is a nonzero zero-power valued on N , there exists an element
y0 ∈ N and a minimal integer k = k(y0) > 1 such that hk(y0) = 0 and
z = hk−1(y0) ̸= 0. Putting y = z in (10) gives xz = 0 for all x ∈ N .
Applying Lemma 1(ii), we find that z = 0; a contradiction. Hence
Z(N ) ̸= {0} as claimed. Let z0 ∈ Z(N ) be such that z0 ̸= 0 and repla-
cing x by z0 in (9), we find that z0y ∈ Z(N ) for all y ∈ N . In virtue of
Lemma 2(i), we conclude that N ⊆ Z(N ), and therefore N is a commu-
tative ring by Lemma 2(ii).

To demonstrate that (i) ⇒ (iii), assume that[(
[x, h(y)] + xy

)
◦ t, r

]
∈ Z(N ) for all x, y, t, r ∈ N . (11)

Replacing r by
((
[x, h(y)]+xy

)
◦t
)
r in (11) and using it again, we obtain[(

[x, h(y)] + xy
)
◦ t

[(
[x, h(y)] + xy

)
◦ t, r

]
, s
]
= 0 for all x, y, t, r, s ∈ N

which can be rewritten as
[(
[x, h(y)]+xy

)
◦t, r

][(
[x, h(y)]+xy

)
◦t, s

]
= 0

for all x, y, t, r, s ∈ N . On the other hand, left multiplying the preceding
equation by m, where m ∈ N , and taking r = s, we obtain

[(
[x, h(y)] +

xy
)
◦ t, r

]
m

[(
[x, h(y)] + xy

)
◦ t, r

]
= 0 for all x, y, t, r,m ∈ N . By

3-primeness of N , the previous relation forces
[(
[x, h(y)]+xy

)
◦ t, r

]
= 0

for all x, y, t, r ∈ N . That is,(
[x, h(y)] + xy

)
◦ t ∈ Z(N ) for all x, y, t ∈ N . (12)

Suppose now that Z(N ) = {0}. Then (12) yields
(
[x, h(y)] + xy

)
t =

t
(
−
(
[x, h(y)]+xy

))
for all x, y, t ∈ N . For t = mt, wherem ∈ N , we infer

that m
(
−
(
[x, h(y)]+xy

))
t = mt

(
−
(
[x, h(y)]+xy

))
for all x, y,m, t ∈ N .

Accordingly, N
[
−

(
[x, h(y)] + xy

)
, t
]
= {0} for all x, y, t ∈ N . Invoking
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Lemma 1(ii) and using our assumption that Z(N ) = {0}, we obtain
[x, h(y)] + xy = 0 for all x, y ∈ N . As this result is the same as (10), we
conclude that Z(N ) ̸= {0}. Letting 0 ̸= z0 ∈ Z(N ) and replacing t by z0
in (12), we get z0

(
[x, h(y)]+xy+[x, h(y)]+xy

)
∈ Z(N ) for all x, y ∈ N .

By Lemma 2(i) and the fact that z0 ̸= 0, it follows that 2([x, h(y)]+xy) ∈
Z(N ) for all x, y ∈ N . Again, by replacing t with [x, h(y)] + xy in (12),
we get

(
[x, h(y)]+xy

)(
2
(
[x, h(y)]+xy

))
∈ Z(N ) for all x, y ∈ N . Using

Lemma 2(i), the former equation yields

2
(
[x, h(y)] + xy

)
= 0 or [x, h(y)] + xy ∈ Z(N ) for all x, y ∈ N . (13)

Suppose that there exist x0, y0 ∈ N such that 2
(
[x0, h(y0)] + x0y0

)
= 0,

then [x0, h(y0)] + x0y0 = −
(
[x0, h(y0)] + x0y0

)
. Putting x = x0, y = y0

and t =
(
[x0, h(y0)] + x0y0

)
t in (12), we obtain

(
[x0, h(y0)] + x0y0

)(
[x0, h(y0)] + x0y0

)
◦ t ∈ Z(N ) for all t ∈ N . Applying Lemma 2(i),

we find that
(
[x0, h(y0)] + x0y0

)
◦ t = 0 or [x0, h(y0)] + x0y0 ∈ Z(N ) for

all t ∈ N . If
(
[x0, h(y0)] + x0y0

)
◦ t = 0 holds for all t ∈ N , then(

[x0, h(y0)] + x0y0
)
t = −t

(
[x0, h(y0)] + x0y0

)
= t

(
−
(
[x0, h(y0)] + x0y0

))
= t

(
[x0, h(y0)] + x0y0

)
for all t ∈ N

which shows that [x0, h(y0)] + x0y0 ∈ Z(N ). Consequently, (13) reduces
to [x, h(y)] + xy ∈ Z(N ) for all x, y ∈ N which is identical to (9), and
therefore N is a commutative ring.

Theorem 3. Let N be a 2-torsion free 3-prime near-ring. If N admits a
nonzero homoderivation h, then the following conditions are equivalent:

(i)
[
[h(x), y] + y ◦ h(x), t

]
◦ r ∈ Z(N ) for all x, y, t, r ∈ N ;

(ii)
[(
[h(x), y] + y ◦ h(x)

)
◦ t, r

]
∈ Z(N ) for all x, y, t, r ∈ N ;

(iii) N is a commutative ring.

Proof. One can readily check that property (iii) implies both properties
(i) and (ii).

Let us demonstrate that (i) ⇒ (iii). We are assuming that[
[h(x), y] + y ◦ h(x), t

]
◦ r ∈ Z(N ) for all x, y, t, r ∈ N . (14)

Setting r =
[
[h(x), y]+ y ◦h(x), t

]
r in (14) and applying Lemma 2(i), we

obtain[
[h(x), y] + y ◦ h(x), t

]
◦ r = 0 or

[
[h(x), y] + y ◦ h(x), t

]
∈ Z(N ) (15)
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for all x, y, t ∈ N . Let x, y, t ∈ N , and suppose that
[
[h(x), y] +

y ◦ h(x), t
]
◦ r = 0 for all r ∈ N . So that,

[
[h(x), y] + y ◦ h(x), t

]
r =

r
(
−
[
[h(x), y]+y◦h(x), t

])
for all r∈N . Now, putting r = nr, where n∈N ,

in the last equation, thereby obtaining n
(
−

[
[h(x), y] + y ◦ h(x), t

])
r =

nr
(
−
[
[h(x), y]+y◦h(x), t

])
for all n ∈ N , which leads toN

[
−
[
[h(x), y]+

y ◦ h(x), t
]
, r
]
= {0} for all r ∈ N , and hence −

[
[h(x), y] + y ◦ h(x), t

]
∈

Z(N ). Consequently, (15) yields[
[h(x), y]+y ◦h(x), t

]
∈ Z(N ) or −

[
[h(x), y]+y ◦h(x), t

]
∈ Z(N ) (16)

for all x, y, t ∈ N . Assume that there are x0, y0, t0 ∈ N such that
k =

[
[h(x0), y0] + y0 ◦ h(x0), t0

]
/∈ Z(N ). From (16), we find that −k ∈

Z(N )∖ {0}. Substituting −k for r in (14), we obtain (−k)
(
2
[
[h(x), y] +

y ◦ h(x), t
])

∈ Z(N ) for all x, y, t ∈ N . In virtue of Lemma 2(i) and
the fact that −k ̸= 0, it follows 2

[
[h(x), y] + y ◦ h(x), t

]
∈ Z(N ) for all

x, y, t ∈ N . Replacing r by
[
[h(x), y] + y ◦ h(x), t

]
in (14), we find that[

[h(x), y]+y◦h(x), t
](
2
[
[h(x), y]+y◦h(x), t

])
∈ Z(N ) for all x, y, t ∈ N .

Invoking Lemma 2(i) and taking into account that the 2-torsion freeness
of N , we deduce that

[
[h(x), y] + y ◦ h(x), t

]
∈ Z(N ) for all x, y, t ∈

N . Specifically, for x = x0, y = y0 and t = t0, we obtain k ∈ Z(N )
which contradicts our assumption that k /∈ Z(N ). Therefore, (16) shows
that

[
[h(x), y] + y ◦ h(x), t

]
∈ Z(N ) for all x, y, t ∈ N . In particular,

for t =
(
[h(x), y] + y ◦ h(x)

)
t, we get

(
[h(x), y] + y ◦ h(x)

)[
[h(x), y] +

y ◦ h(x), t
]
∈ Z(N ) for all x, y, t ∈ N . Using Lemma 2(i), we arrive at

[h(x), y] + y ◦ h(x) ∈ Z(N ) for all x, y ∈ N . (17)

Putting y = h(x)y, where x ∈ N , in (17), we find that h(x)
(
[h(x), y] +

y ◦ h(x)
)
∈ Z(N ) for all x, y ∈ N . By Lemma 2(i), this leads to

h(x) ∈ Z(N ) or [h(x), y] + y ◦ h(x) = 0 for all x, y ∈ N . (18)

Suppose that [h(x), y] + y ◦ h(x) = 0 for all x, y ∈ N . Given the 2-tor-
sion freeness of N , we deduce that h(x)N = {0} and hence h = 0 by
Lemma 1(ii); a contradiction to our hypothesis. Consequently, there
exist x0, y0 ∈ N such that [h(x0), y0]+ y0 ◦h(x0) ̸= 0, which implies that
h(x0) ̸= 0 and from (18) its follows that h(x0) ∈ Z(N ). Replacing x
by x0 in (17), we get h(x0)(y + y) ∈ Z(N ) for all y ∈ N . In view of
Lemma 2(i), it follows that y + y ∈ Z(N ) for all y ∈ N . Replacing y by
ty, where t ∈ N in the last result and using it again, we conclude that
either t ∈ Z(N ) or 2y = 0 for all y, t ∈ N . Taking into account that N
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is 2-torsion free, the above condition imply that N ⊆ Z(N ). Thus, N is
a commutative ring by Lemma 2(ii).

(ii) ⇒ (iii). Suppose that[(
[h(x), y] + y ◦ h(x)

)
◦ t, r

]
∈ Z(N ) for all x, y, t, r ∈ N . (19)

Putting
((
[h(x), y] + y ◦ h(x)

)
◦ t

)
r instead of r in (19), we obtain(

[h(x), y] + y ◦ h(x)
)
◦ t

[(
[h(x), y] + y ◦ h(x)

)
◦ t, r

]
∈ Z(N ) for all

x, y, t, r ∈ N . By application of Lemma 2(i), the latter relation shows
that

[(
[h(x), y] + y ◦ h(x)

)
◦ t, r

]
= 0 or

(
[h(x), y] + y ◦ h(x)

)
◦ t ∈ Z(N )

for all x, y, t, r ∈ N . Which leads us to the following conclusion(
[h(x), y] + y ◦ h(x)

)
◦ t ∈ Z(N ) for all x, y, t ∈ N . (20)

Suppose that Z(N ) = {0}. It follows that
(
[h(x), y]+y ◦h(x)

)
◦ t = 0 for

all x, y, t ∈ N and thus
(
[h(x), y]+y◦h(x)

)
t = t

(
−
(
[h(x), y]+y◦h(x)

))
for

all x, y, t ∈ N . Taking t = ts, where s ∈ N , in the previous equation and
using it again, we find that t

(
−
(
[h(x), y]+y◦h(x)

))
s = ts

(
−
(
[h(x), y]+

y◦h(x)
))

and hence by Lemma 1(ii) that−
(
[h(x), y]+y◦h(x)

)
∈ Z(N ) =

{0} which means that [h(x), y] + y ◦ h(x) = 0 for all x, y ∈ N . However,
this result, developed after (18), leads to a contradiction. Therefore
Z(N ) ̸= {0}. Now, choosing 0 ̸= z0 ∈ Z(N ) and replacing t by z0 in
(20), we obtain z0

(
2
(
[h(x), y] + y ◦ h(x)

))
∈ Z(N ) for all x, y ∈ N . In

the light of Lemma 2(i), we infer that 2
(
[h(x), y] + y ◦ h(x)

)
∈ Z(N ) for

all x, y ∈ N . Once again, replacing t by [h(x), y]+y◦h(x) in (20), we get(
[h(x), y]+y ◦h(x)

)(
[h(x), y]+y ◦h(x)+ [h(x), y]+y ◦h(x)

)
∈ Z(N ) for

all x, y ∈ N . By Lemma 2(i) and 2-torsion freeness of N , we conclude
that [h(x), y] + y ◦ h(x) ∈ Z(N ) for all x, y ∈ N . Finally, by applying
the same techniques as those used after relation (17), we deduce that N
is a commutative ring.

We show in the following results that no nonzero homoderivation h,
which is zero-power valued on N , can satisfy the given conditions.

Theorem 4. Let N be a 2-torsion-free 3-prime near-ring. There exists
no nonzero homoderivation h, which is zero-power valued on N , that
satisfies any of the following conditions:

(i) h(x) ◦ h(y) = x ◦ y for all x, y ∈ N ;

(ii) h(x) ◦ h(y) = h(x) ◦ y for all x, y ∈ N ;

(iii) h(x) ◦ y = x ◦ y for all x, y ∈ N .
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Proof. (i) Suppose that N has a nonzero homoderivation h such that
h(x) ◦ h(y) = x ◦ y for all x, y ∈ N . By applying recurrence, we have
hn(x) ◦ hn(y) = x ◦ y for all x, y ∈ N and n ∈ N. Since h is zero-power
valued on N , then there exist positive integers k(x) > 1 and k(y) > 1
such that hk(x)(x) = hk(y)(y) = 0. Let us define p = max(k(x), k(y)),
then 0 = hp(x) ◦ hp(y) = x ◦ y for all x, y ∈ N . From the proof of
[14, Theorem 3.9], we deduce that N = {0}, a contradiction.

(ii) Given that N has a nonzero homoderivation h satisfies h(x) ◦
h(y) = h(x) ◦ y for all x, y ∈ N . By induction, it follows that h(x) ◦
hn(y) = h(x)◦y for all x, y ∈ N and n ∈ N. Since h is zero-power valued
on N , there exists a positive integer k = k(y) > 1 such that hk(y) = 0.
Hence, we deduce that

0 = h(x) ◦ hk(y) = h(x) ◦ y for all x, y ∈ N . (21)

Thus, we obtain h(x)y = y(−h(x)) = yh(−x) for all x, y ∈ N . Ta-
king y = ty and replacing x by −x in the last equation, we infer that
th(−x)y = tyh(−x) for all x, y, t ∈ N . That is, N [h(x), y] = {0} for all
x, y ∈ N . By Lemma 1(ii), this implies that h(N ) ⊆ Z(N ), and hence
N is a commutative ring by Lemma 3. So, from (21), it follows that
N (h(x) + h(x)) = {0} for all x ∈ N , which yields h = 0.

(iii) Assume that N admits a nonzero homoderivation h such that
h(x)◦y = x◦y for all x, y ∈ N . By recurrence, we obtain hn(x)◦y = x◦y
for all x, y ∈ N and n ∈ N. Since h is zero-power valued on N , for each
x ∈ N , there exists a positive integer k = k(x) > 1 such that hk(x) = 0.
Thus, 0 = hk(x) ◦ y = x ◦ y for all x, y ∈ N which is the same result
obtained in the proof of (i), leading to a contradiction.

The following example illustrates the necessity of assuming that N
is 3-prime in the hypotheses of our theorems.

Example 1. Let S be a 2-torsion free left near-ring. Let us define N ,
h1 and h2 : N → N by:

N =


0 x 0
0 0 0
0 y 0

 | 0, x, y ∈ S

,

h1

0 x 0
0 0 0
0 y 0

 =

0 0 0
0 0 0
0 x 0

 and h2

0 x 0
0 0 0
0 y 0

 =

0 x 0
0 0 0
0 0 0

 .



156 A study of homoderivations in 3-prime near-rings

Then, N is a 2-torsion-free near-ring that is not 3-prime. Clearly, h1 is
a nonzero zero-power-valued homoderivation on N , and h2 is a nonzero
homoderivation on N , satisfying the following properties:

1) [[A, h1(B)] +A ◦B,C] ∈ Z(N );

2) [[A, h1(B)] +A ◦B,C] ◦D ∈ Z(N );

3) [([A, h1(B)] +A ◦B) ◦ C,D] ∈ Z(N );

4) [[A, h1(B)] +AB,C] ∈ Z(N );

5) [([A, h1(B)] +AB) ◦ C,D] ∈ Z(N );

6) [[h2(A), B] +A ◦ h2(B), C] ◦D ∈ Z(N );

7) [
(
[h2(A), B] +A ◦ h2(B)

)
◦ C,D] ∈ Z(N );

8) h1(A) ◦ h1(B) = A ◦B;

9) h1(A) ◦ h1(B) = h1(A) ◦B;

10) h1(A) ◦B = A ◦B

for all A,B,C,D ∈ N . However, N is a noncommutative near-ring due
to the noncommutativity of its addition operation.
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